1
|
Clark JA, Robinson S, Espinoza EM, Bao D, Derr JB, Croft L, O'Mari O, Grover WH, Vullev VI. Poly(dimethylsiloxane) as a room-temperature solid solvent for photophysics and photochemistry. Phys Chem Chem Phys 2024; 26:8062-8076. [PMID: 38372740 DOI: 10.1039/d3cp05413f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Medium viscosity strongly affects the dynamics of solvated species and can drastically alter the deactivation pathways of their excited states. This study demonstrates the utility of poly(dimethylsiloxane) (PDMS) as a room-temperature solid-state medium for optical spectroscopy. As a thermoset elastic polymer, PDMS is transparent in the near ultraviolet, visible, and near infrared spectral regions. It is easy to mould into any shape, forming surfaces with a pronounced smoothness. While PDMS is broadly used for the fabrication of microfluidic devices, it swells in organic solvents, presenting severe limitations for the utility of such devices for applications employing non-aqueous fluids. Nevertheless, this swelling is reversible, which proves immensely beneficial for loading samples into the PDMS solid matrix. Transferring molecular-rotor dyes (used for staining prokaryotic cells and amyloid proteins) from non-viscous solvents into PDMS induces orders-of-magnitude enhancement of their fluorescence quantum yield and excited-state lifetimes, providing mechanistic insights about their deactivation pathways. These findings demonstrate the unexplored potential of PDMS as a solid solvent for optical applications.
Collapse
Affiliation(s)
- John A Clark
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| | - Samantha Robinson
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| | - Eli M Espinoza
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Duoduo Bao
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| | - James B Derr
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Luca Croft
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| | - Omar O'Mari
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| | - William H Grover
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| | - Valentine I Vullev
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
- Department of Chemistry, University of California, Riverside, CA 92521, USA
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
- Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
2
|
"Sporotan" a new fluorescent stain for identifying cryptic spores of Rhodobacter johrii. J Microbiol Methods 2020; 177:106019. [PMID: 32805369 DOI: 10.1016/j.mimet.2020.106019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 11/27/2022]
Abstract
We propose a new fluorescent stain "sporotan" and staining protocol which aid in the identification of cryptic endospores which are otherwise mistaken as poly-β-hydroxyalkanoate granules.
Collapse
|
3
|
Namioka S, Yoshida N, Konno H, Makabe K. Residue-Specific Binding Mechanisms of Thioflavin T to a Surface of Flat β-Sheets within a Peptide Self-Assembly Mimic. Biochemistry 2020; 59:2782-2787. [DOI: 10.1021/acs.biochem.0c00280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sae Namioka
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jyonan, Yonezawa, Yamagata 992-8510, Japan
| | - Norio Yoshida
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroyuki Konno
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jyonan, Yonezawa, Yamagata 992-8510, Japan
| | - Koki Makabe
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jyonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
4
|
Rafique J, Saba S, Frizon TEA, Braga AL. Fe3
O4
Nanoparticles: A Robust and Magnetically Recoverable Catalyst for Direct C-H Bond Selenylation and Sulfenylation of Benzothiazoles. ChemistrySelect 2018. [DOI: 10.1002/slct.201702623] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jamal Rafique
- Labselen, Departamento de Química; Universidade Federal de Santa Catarina; Florianópolis 88040-900 SC-Brazil
| | - Sumbal Saba
- Labselen, Departamento de Química; Universidade Federal de Santa Catarina; Florianópolis 88040-900 SC-Brazil
| | - Tiago E. A. Frizon
- Universidade Federal de Santa Catarina, Campus Araranguá; Araranguá 88906-072 SC-Brazil
| | - Antonio L. Braga
- Labselen, Departamento de Química; Universidade Federal de Santa Catarina; Florianópolis 88040-900 SC-Brazil
| |
Collapse
|
5
|
Upadhyayula S, Nuñez V, Espinoza EM, Larsen JM, Bao D, Shi D, Mac JT, Anvari B, Vullev VI. Photoinduced dynamics of a cyanine dye: parallel pathways of non-radiative deactivation involving multiple excited-state twisted transients. Chem Sci 2015; 6:2237-2251. [PMID: 29449923 PMCID: PMC5701728 DOI: 10.1039/c4sc02881c] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 02/09/2015] [Indexed: 12/11/2022] Open
Abstract
Cyanine dyes are broadly used for fluorescence imaging and other photonic applications. 3,3'-Diethylthiacyanine (THIA) is a cyanine dye composed of two identical aromatic heterocyclic moieties linked with a single methine, -CH[double bond, length as m-dash]. The torsional degrees of freedom around the methine bonds provide routes for non-radiative decay, responsible for the inherently low fluorescence quantum yields. Using transient absorption spectroscopy, we determined that upon photoexcitation, the excited state relaxes along two parallel pathways producing three excited-state transients that undergo internal conversion to the ground state. The media viscosity impedes the molecular modes of ring rotation and preferentially affects one of the pathways of non-radiative decay, exerting a dominant effect on the emission properties of THIA. Concurrently, the polarity affects the energy of the transients involved in the decay pathways and further modulates the kinetics of non-radiative deactivation.
Collapse
Affiliation(s)
- Srigokul Upadhyayula
- Department of Bioengineering , University of California , Riverside , CA 92521 , USA .
- Department of Biochemistry , University of California , Riverside , CA 92521 , USA
| | - Vicente Nuñez
- Department of Bioengineering , University of California , Riverside , CA 92521 , USA .
| | - Eli M Espinoza
- Department of Chemistry , University of California , Riverside , CA 92521 , USA
| | - Jillian M Larsen
- Department of Bioengineering , University of California , Riverside , CA 92521 , USA .
| | - Duoduo Bao
- Department of Bioengineering , University of California , Riverside , CA 92521 , USA .
| | - Dewen Shi
- Department of Bioengineering , University of California , Riverside , CA 92521 , USA .
| | - Jenny T Mac
- Department of Biochemistry , University of California , Riverside , CA 92521 , USA
| | - Bahman Anvari
- Department of Bioengineering , University of California , Riverside , CA 92521 , USA .
| | - Valentine I Vullev
- Department of Bioengineering , University of California , Riverside , CA 92521 , USA .
- Department of Biochemistry , University of California , Riverside , CA 92521 , USA
- Department of Chemistry , University of California , Riverside , CA 92521 , USA
- Materials Science and Engineering Program , University of California , Riverside , CA 92521 , USA
| |
Collapse
|
6
|
Lock JY, Wyatt E, Upadhyayula S, Whall A, Nuñez V, Vullev VI, Liu H. Degradation and antibacterial properties of magnesium alloys in artificial urine for potential resorbable ureteral stent applications. J Biomed Mater Res A 2013; 102:781-92. [DOI: 10.1002/jbm.a.34741] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/28/2013] [Accepted: 04/02/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Jaclyn Y. Lock
- Department of Bioengineering; University of California-Riverside; 900 University Avenue Riverside California 92521
| | - Eric Wyatt
- Department of Bioengineering; University of California-Riverside; 900 University Avenue Riverside California 92521
| | - Srigokul Upadhyayula
- Department of Bioengineering; University of California-Riverside; 900 University Avenue Riverside California 92521
- Department of Biochemistry and Molecular Biology; University of California-Riverside; 900 University Avenue Riverside California 92521
| | - Andrew Whall
- Department of Bioengineering; University of California-Riverside; 900 University Avenue Riverside California 92521
| | - Vicente Nuñez
- Department of Bioengineering; University of California-Riverside; 900 University Avenue Riverside California 92521
| | - Valentine I. Vullev
- Department of Bioengineering; University of California-Riverside; 900 University Avenue Riverside California 92521
- Materials Science and Engineering Program; University of California-Riverside; 900 University Avenue Riverside California 92521
- Department of Chemistry; University of California-Riverside; 900 University Avenue Riverside California 92521
| | - Huinan Liu
- Department of Bioengineering; University of California-Riverside; 900 University Avenue Riverside California 92521
- Materials Science and Engineering Program; University of California-Riverside; 900 University Avenue Riverside California 92521
| |
Collapse
|
7
|
Nuñez V, Upadhyayula S, Millare B, Larsen JM, Hadian A, Shin S, Vandrangi P, Gupta S, Xu H, Lin AP, Georgiev GY, Vullev VI. Microfluidic Space-Domain Time-Resolved Emission Spectroscopy of Terbium(III) and Europium(III) Chelates with Pyridine-2,6-Dicarboxylate. Anal Chem 2013; 85:4567-77. [DOI: 10.1021/ac400200x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vicente Nuñez
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
| | - Srigokul Upadhyayula
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
- Department of Biochemistry, University of California, Riverside, California 92521,
United States
| | - Brent Millare
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
| | - Jillian M. Larsen
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
| | - Ali Hadian
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
| | - Sanghoon Shin
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
| | - Prashanthi Vandrangi
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
| | - Sharad Gupta
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
| | - Hong Xu
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
| | - Adam P. Lin
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
| | - Georgi Y. Georgiev
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
| | - Valentine I. Vullev
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
- Department of Biochemistry, University of California, Riverside, California 92521,
United States
- Department
of Chemistry, University of California,
Riverside, California 92521,
United States
| |
Collapse
|
8
|
Upadhyayula S, Lam S, Ha A, Malik-Chaudhry HK, Vullev VI. Dynamic staining of Bacillus endospores with Thioflavin T. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:499-502. [PMID: 23365938 DOI: 10.1109/embc.2012.6345977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Rapid detection and identification of endospores presents a range of complex challenges. Dynamic staining approach, developed in our lab, utilizes the time-course fluorescence enhancement of an amyloid-staining dye, Thioflavin T (ThT), after mixing with intact endospores. We examined the kinetics of staining Bacillus atrophaeus and Bacillus thuringiensis endospores, and the rates of staining were different for the two bacilli when intact endospores were treated with ThT. This finding demonstrates an avenue for attaining information about the sporulated bacterial species without lysing, germinating or other pretreatment steps.
Collapse
Affiliation(s)
- Srigokul Upadhyayula
- Department of Biochemistry, Department of Bioengineering and Center for Bioengineering Research, University of California, Riverside, CA 92521, USA.
| | | | | | | | | |
Collapse
|
9
|
Xia B, Bao D, Upadhyayula S, Jones G, Vullev VI. Anthranilamides as bioinspired molecular electrets: experimental evidence for a permanent ground-state electric dipole moment. J Org Chem 2013; 78:1994-2004. [PMID: 23270467 DOI: 10.1021/jo301942g] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As electrostatic equivalents of magnets, organic electrets offer unparalleled properties for impacting energy conversion and electronic applications. While biological systems have evolved to efficiently utilize protein α-helices as molecular electrets, the synthetic counterparts of these conjugates still remain largely unexplored. This paper describes a study of the electronic properties of anthranilamide oligomers, which proved to be electrets based on their intrinsic dipole moments as evident from their spectral and dielectric properties. NMR studies provided the means for estimating the direction of the intrinsic electric dipoles of these conjugates. This study sets the foundation for the development of a class of organic materials that are de novo designed from biomolecular motifs and possess unexplored electronic properties.
Collapse
Affiliation(s)
- Bing Xia
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| | | | | | | | | |
Collapse
|
10
|
Wu X, Xu C, Tripp RA, Huang YW, Zhao Y. Detection and differentiation of foodborne pathogenic bacteria in mung bean sprouts using field deployable label-free SERS devices. Analyst 2013; 138:3005-12. [DOI: 10.1039/c3an00186e] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Upadhyayula S, Quinata T, Bishop S, Gupta S, Johnson NR, Bahmani B, Bozhilov K, Stubbs J, Jreij P, Nallagatla P, Vullev VI. Coatings of polyethylene glycol for suppressing adhesion between solid microspheres and flat surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:5059-69. [PMID: 22364506 DOI: 10.1021/la300545v] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This article describes the development and the examination of surface coatings that suppress the adhesion between glass surfaces and polymer microspheres. Superparamagnetic doping allowed for exerting magnetic forces on the microbeads. The carboxyl functionalization of the polymer provided the means for coating the beads with polyethylene glycol (PEG) with different molecular weight. Under gravitational force, the microbeads settled on glass surfaces with similar polymer coatings. We examined the efficacy of removing the beads from the glass surfaces by applying a pulling force of ~1.2 pN. The percent beads remaining on the surface after applying the pulling force for approximately 5 s served as an indication of the adhesion propensity. Coating of PEG with molecular weight ranging between 3 and 10 kDa was essential for suppressing the adhesion. For the particular substrates, surface chemistry and aqueous media we used, coatings of 5 kDa manifested optimal suppression of adhesion: that is, only 3% of the microbeads remained on the surface after applying the pulling magnetic force. When either the glass or the beads were not PEGylated, the adhesion between them was substantial. Addition of a noncharged surfactant, TWEEN, above its critical micelle concentrations (CMCs) suppressed the adhesion between noncoated substrates. The extent of this surfactant-induced improvement of the adhesion suppression, however, did not exceed the quality of preventing the adhesion that we attained by PEGylating both substrates. In addition, the use of surfactants did not significantly improve the suppression of bead-surface adhesion when both substrates were PEGylated. These findings suggest that such surfactant additives tend to be redundant and that covalently grafted coatings of PEGs with selected chain lengths provide sufficient suppression of nonspecific interfacial interactions.
Collapse
Affiliation(s)
- Srigokul Upadhyayula
- Department of Bioengineering, University of California, Riverside, California 91521, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|