1
|
Gillespie SH, Hammond RJH. Rapid Drug Susceptibility Testing to Preserve Antibiotics. Methods Mol Biol 2024; 2833:129-143. [PMID: 38949707 DOI: 10.1007/978-1-0716-3981-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Antibiotic resistance is a global challenge likely to cost trillions of dollars in excess costs in the health system and more importantly, millions of lives every year. A major driver of resistance is the absence of susceptibility testing at the time a healthcare worker needs to prescribe an antimicrobial. The effect is that many prescriptions are unintentionally wasted and expose mutable organisms to antibiotics increasing the risk of resistance emerging. Often simplistic solutions are applied to this growing issue, such as a naïve drive to increase the speed of drug susceptibility testing. This puts a spotlight on a technological solution and there is a multiplicity of such candidate DST tests in development. Yet, if we do not define the necessary information and the speed at which it needs to be available in the clinical decision-making progress as well as the necessary integration into clinical pathways, then little progress will be made. In this chapter, we place the technological challenge in a clinical and systems context. Further, we will review the landscape of some promising technologies that are emerging and attempt to place them in the clinic where they will have to succeed.
Collapse
Affiliation(s)
- Stephen H Gillespie
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, Scotland, UK.
| | - Robert J H Hammond
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, Scotland, UK
| |
Collapse
|
2
|
Brosh-Nissimov T, Tzur A, Grupel D, Cahan A, Ma'aravi N, Heled-Akiva M, Jawamis H, Leskes H, Barenboim E, Sorek N. Clinical impact of the accelerate PhenoTest® BC system on patients with gram-negative bacteremia and high risk of antimicrobial resistance: a prospective before-after implementation study. Ann Clin Microbiol Antimicrob 2023; 22:62. [PMID: 37516885 PMCID: PMC10387206 DOI: 10.1186/s12941-023-00619-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 07/23/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND The Accelerate PhenoTest® BC system (AXDX) is a novel assay for rapid bacterial identification and antimicrobial susceptibility (AST). We report an evaluation of its impact on treatment of patients with Gram-negative bacteremia (GNB) with a high risk of antimicrobial resistance (AMR). METHODS A prospective single-center evaluation before and after implementation of AXDX in addition to standard-of-care (SOC) microbiology and antimicrobial stewardship program (ASP). Patients with GNB reported during laboratory working hours and prespecified risk factors for AMR were included. The primary outcome was an ASP-oriented beneficial antimicrobial change, defined as either an escalation of an inappropriate empiric treatment or de-escalation of a broad-spectrum treatment of a susceptible organism. Main secondary outcomes were time to an appropriate treatment, antimicrobial treatment duration, length of stay (LOS) and mortality. RESULTS Included were 46 and 57 patients in the pre- and post-intervention periods, respectively. The median time to an AST-oriented beneficial change was 29.2 h vs. 49.6 h, respectively (p < 0.0001). There were no significant differences in the time to appropriate treatment, LOS or mortality. Antimicrobial treatment duration was longer during the intervention period (10 vs. 8 days, p = 0.007). AXDX failed to correctly identify pathogens in all 6 cases of polymicrobial bacteremia. In two cases patient care was potentially compromised due to inappropriate de-escalation. CONCLUSIONS AXDX implementation resulted in a 20.4-hour shorter time to an ASP-oriented beneficial antimicrobial change. This should be weighed against the higher costs, the lack of other proven clinical benefits and the potential harm from mis-identification of polymicrobial bacteremias.
Collapse
Affiliation(s)
- Tal Brosh-Nissimov
- Samson Assuta Ashdod University Hospital, Harefua st. 7, Ashdod, 7747629, Israel.
- Faculty of Health Sciences, Ben Gurion University in the Negev, Be'er Sheva, Israel.
| | - Anka Tzur
- Samson Assuta Ashdod University Hospital, Harefua st. 7, Ashdod, 7747629, Israel
| | - Daniel Grupel
- Samson Assuta Ashdod University Hospital, Harefua st. 7, Ashdod, 7747629, Israel
- Faculty of Health Sciences, Ben Gurion University in the Negev, Be'er Sheva, Israel
| | - Amos Cahan
- Samson Assuta Ashdod University Hospital, Harefua st. 7, Ashdod, 7747629, Israel
| | - Nir Ma'aravi
- Samson Assuta Ashdod University Hospital, Harefua st. 7, Ashdod, 7747629, Israel
| | - Maya Heled-Akiva
- Samson Assuta Ashdod University Hospital, Harefua st. 7, Ashdod, 7747629, Israel
| | - Hasan Jawamis
- Samson Assuta Ashdod University Hospital, Harefua st. 7, Ashdod, 7747629, Israel
| | - Hanna Leskes
- Samson Assuta Ashdod University Hospital, Harefua st. 7, Ashdod, 7747629, Israel
| | - Erez Barenboim
- Samson Assuta Ashdod University Hospital, Harefua st. 7, Ashdod, 7747629, Israel
| | - Nadav Sorek
- Samson Assuta Ashdod University Hospital, Harefua st. 7, Ashdod, 7747629, Israel
| |
Collapse
|
3
|
Avershina E, Khezri A, Ahmad R. Clinical Diagnostics of Bacterial Infections and Their Resistance to Antibiotics-Current State and Whole Genome Sequencing Implementation Perspectives. Antibiotics (Basel) 2023; 12:781. [PMID: 37107143 PMCID: PMC10135054 DOI: 10.3390/antibiotics12040781] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/19/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Antimicrobial resistance (AMR), defined as the ability of microorganisms to withstand antimicrobial treatment, is responsible for millions of deaths annually. The rapid spread of AMR across continents warrants systematic changes in healthcare routines and protocols. One of the fundamental issues with AMR spread is the lack of rapid diagnostic tools for pathogen identification and AMR detection. Resistance profile identification often depends on pathogen culturing and thus may last up to several days. This contributes to the misuse of antibiotics for viral infection, the use of inappropriate antibiotics, the overuse of broad-spectrum antibiotics, or delayed infection treatment. Current DNA sequencing technologies offer the potential to develop rapid infection and AMR diagnostic tools that can provide information in a few hours rather than days. However, these techniques commonly require advanced bioinformatics knowledge and, at present, are not suited for routine lab use. In this review, we give an overview of the AMR burden on healthcare, describe current pathogen identification and AMR screening methods, and provide perspectives on how DNA sequencing may be used for rapid diagnostics. Additionally, we discuss the common steps used for DNA data analysis, currently available pipelines, and tools for analysis. Direct, culture-independent sequencing has the potential to complement current culture-based methods in routine clinical settings. However, there is a need for a minimum set of standards in terms of evaluating the results generated. Additionally, we discuss the use of machine learning algorithms regarding pathogen phenotype detection (resistance/susceptibility to an antibiotic).
Collapse
Affiliation(s)
- Ekaterina Avershina
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata, 222317 Hamar, Norway
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata, 222317 Hamar, Norway
| | - Rafi Ahmad
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata, 222317 Hamar, Norway
- Institute of Clinical Medicine, Faculty of Health Science, UiT The Arctic University of Norway, Hansine Hansens veg, 189019 Tromsø, Norway
| |
Collapse
|
4
|
López-Hernández I, López-Cerero L, Fernández-Cuenca F, Pascual Á. The role of the microbiology laboratory in the diagnosis of multidrug-resistant Gram-negative bacilli infections. The importance of the determination of resistance mechanisms. Med Intensiva 2022; 46:455-464. [PMID: 35643635 DOI: 10.1016/j.medine.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 06/15/2023]
Abstract
Early diagnosis and treatment has an important impact on the morbidity and mortality of infections caused by multidrug-resistant bacteria. Multidrug-resistant gram-negative bacilli (MR-GNB) constitute the main current threat in hospitals and especially in intensive care units (ICU). The role of the microbiology laboratory is essential in providing a rapid and effective response. This review updates the microbiology laboratory procedures for the rapid detection of BGN-MR and its resistance determinants. The role of the laboratory in the surveillance and control of outbreaks caused by these bacteria, including typing techniques, is also studied. The importance of providing standardized resistance maps that allow knowing the epidemiological situation of the different units is emphasized. Finally, the importance of effective communication systems for the transmission of results and decision making in the management of patients infected by BGN-MR is reviewed.
Collapse
Affiliation(s)
- I López-Hernández
- Unidad de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - L López-Cerero
- Unidad de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - F Fernández-Cuenca
- Unidad de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.
| | - Á Pascual
- Unidad de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Bellali S, Haddad G, Iwaza R, Fontanini A, Hisada A, Ominami Y, Raoult D, Khalil JB. Antimicrobial susceptibility testing for Gram positive cocci towards vancomycin using scanning electron microscopy. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100154. [PMID: 35909629 PMCID: PMC9325908 DOI: 10.1016/j.crmicr.2022.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The rapid detection of resistant bacteria has become a challenge for microbiologists worldwide. Numerous pathogens that cause nosocomial infections are still being treated empirically and have developed resistance mechanisms against key antibiotics. Thus, one of the challenges for researchers has been to develop rapid antimicrobial susceptibility testing (AST) to detect resistant isolates, ensuring better antibiotic stewardship. In this study, we established a proof-of-concept for a new strategy of phenotypic AST on Gram-positive cocci towards vancomycin using scanning electron microscopy (SEM). Our study evaluated the profiling of Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus after brief incubation with vancomycin. Sixteen isolates were analysed aiming to detect ultrastructural modifications at set timepoints, comparing bacteria with and without vancomycin. After optimising slides preparation and micrographs acquisition, two analytical strategies were used. The high magnification micrographs served to analyse the division of cocci based on the ratio of septa, along with the bacterial size. Susceptible strains with vancomycin showed a reduced septa percentage and the average surface area was consequently double that of the controls. The resistant bacteria revealed multiple septa occurring at advanced timepoints. Low magnification micrographs made it possible to quantify the pixels at different timepoints, confirming the profiling of cocci towards vancomycin. This new phenotypic AST strategy proved to be a promising tool to discriminate between resistant and susceptible cocci within an hour of contact with vancomycin. The analysis strategies applied here would potentially allow the creation of artificial intelligence algorithms for septa detection and bacterial quantification, subsequently creating a rapid automated SEM-AST assay.
Collapse
Affiliation(s)
- Sara Bellali
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille 13385, France
| | - Gabriel Haddad
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille 13385, France
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Marseille 13385, France
| | - Rim Iwaza
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille 13385, France
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Marseille 13385, France
| | - Anthony Fontanini
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille 13385, France
| | - Akiko Hisada
- Hitachi, Ltd., Research & Development Group, 1-280, Higashi-Koigakubo, Kokubunji-shi, Tokyo 185-8601, Japan
| | - Yusuke Ominami
- Hitachi High-Tech Corporation, 882 Ichige, Hitachinaka-shi, Ibaraki-ken 312-8504, Japan
| | - Didier Raoult
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille 13385, France
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Marseille 13385, France
| | - Jacques Bou Khalil
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille 13385, France
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny and Infections (MEPHI), Marseille 13385, France
| |
Collapse
|
6
|
El papel del laboratorio de microbiología en el diagnóstico de infecciones por bacilos gramnegativos multirresistentes. Importancia de la determinación de mecanismos de resistencias. Med Intensiva 2022. [DOI: 10.1016/j.medin.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Datar R, Orenga S, Pogorelcnik R, Rochas O, Simner PJ, van Belkum A. Recent Advances in Rapid Antimicrobial Susceptibility Testing. Clin Chem 2021; 68:91-98. [DOI: 10.1093/clinchem/hvab207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/17/2021] [Indexed: 12/30/2022]
Abstract
Abstract
Background
Antimicrobial susceptibility testing (AST) is classically performed using growth-based techniques that essentially require viable bacterial matter to become visible to the naked eye or a sophisticated densitometer.
Content
Technologies based on the measurement of bacterial density in suspension have evolved marginally in accuracy and rapidity over the 20th century, but assays expanded for new combinations of bacteria and antimicrobials have been automated, and made amenable to high-throughput turn-around. Over the past 25 years, elevated AST rapidity has been provided by nucleic acid-mediated amplification technologies, proteomic and other “omic” methodologies, and the use of next-generation sequencing. In rare cases, AST at the level of single-cell visualization was developed. This has not yet led to major changes in routine high-throughput clinical microbiological detection of antimicrobial resistance.
Summary
We here present a review of the new generation of methods and describe what is still urgently needed for their implementation in day-to-day management of the treatment of infectious diseases.
Collapse
Affiliation(s)
- Rucha Datar
- bioMérieux, Microbiology Research, La Balme Les Grottes, France
| | - Sylvain Orenga
- bioMérieux, Microbiology Research, La Balme Les Grottes, France
| | | | - Olivier Rochas
- bioMérieux, Corporate Business Development, Marcy l'Etoile, France
| | - Patricia J Simner
- Department of Pathology, Bacteriology, Division of Medical Microbiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alex van Belkum
- bioMérieux, Open Innovation and Partnerships, La Balme Les Grottes, France
| |
Collapse
|