1
|
Zeng T, Lian CX, Zhang XY, Liu PQ, Ao J, Zhou GF, Chen XD, Huang DD, Hu DG, Chen X. Clinical symptoms and molecular epidemiologic characteristics of varicella patients among children and adults in Ganzhou, China. Virol J 2025; 22:44. [PMID: 39985060 PMCID: PMC11844084 DOI: 10.1186/s12985-025-02661-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Varicella-zoster virus (VZV) is highly transmissible; however, there are limited studies in China. METHODS The clinical symptoms, disease progression, and laboratory test results of varicella patients among children and adults diagnosed at Ganzhou Fifth People's Hospital from August 2021 to December 2022 were analysed retrospectively. Genetic polymorphisms in the open reading frame (ORF) 22 and ORF62 fragments of VZV isolates were analysed using molecular epidemiological methods. RESULTS Thirty-nine varicella patients were included in this study, 26 of them were children and 13 of them were adults. The incidence of discomfort and complications was significantly greater in adults than in children (P < 0.05). Four adults developed severe disease, one of whom died, with no cases of severe disease or death among children. The 32 VZV clinical isolates were all Clade 2 wild-type strains. Four variant isolates from children had eight base mutations, five of which were missense; two variant isolates from adults had four base mutations, all of which were missense. CONCLUSIONS The risk of developing severe disease or even death after VZV infection in adults was greater than that in children. There is an urgent need for more studies focusing on the differences in the pathogenicity of VZV in different age groups.
Collapse
Affiliation(s)
- Ting Zeng
- Department of Pathogenic Biology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, 341000, China
- Department of Medical Laboratory, Qianxi People's Hospital, Qianxi, 551500, China
| | - Chao-Xian Lian
- Department of Epidemiology, School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Xiao-Yi Zhang
- Department of Epidemiology, School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Ping-Qing Liu
- Department of Infectious Disease, Ganzhou Fifth People's Hospital, Ganzhou, 341000, China
| | - Jian Ao
- Department of Infectious Disease, Ganzhou Fifth People's Hospital, Ganzhou, 341000, China
| | - Gang-Feng Zhou
- Department of Infectious Disease, Ganzhou Fifth People's Hospital, Ganzhou, 341000, China
| | - Xiao-Dong Chen
- Department of Infectious Disease, Ganzhou Fifth People's Hospital, Ganzhou, 341000, China
| | - Dan-Dan Huang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, 341000, China
| | - Dian-Gui Hu
- Department of Infectious Disease, Ganzhou Fifth People's Hospital, Ganzhou, 341000, China.
| | - Xin Chen
- Department of Pathogenic Biology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
2
|
Fukuda Y, Suzuki T, Iwata KI, Haruta K, Yamaguchi M, Torii Y, Narita A, Muramatsu H, Takahashi Y, Kawada JI. Nanopore sequencing in distinguishing between wild-type and vaccine strains of Varicella-Zoster virus. Vaccine 2024; 42:2927-2932. [PMID: 38548526 DOI: 10.1016/j.vaccine.2024.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND The introduction of varicella vaccines into routine pediatric immunization programs has led to a considerable reduction in varicella incidence. However, there have been reports of varicella, herpes zoster, and meningitis caused by the vaccine strain of varicella-zoster virus (VZV), raising concerns. Establishing the relationship between the wild-type and vaccine strains in VZV infections among previously vaccinated individuals is crucial. Differences in the single nucleotide polymorphisms (SNPs) among vaccine strains can be utilized to identify the strain. In this study, we employed nanopore sequencing to identify VZV strains and analyzed clinical samples. METHODS We retrospectively examined vesicle and cerebrospinal fluid samples from patients with VZV infections. One sample each of the wild-type and vaccine strains, previously identified using allelic discrimination real-time PCR and direct sequencing, served as controls. Ten samples with undetermined VZV strains were included. After DNA extraction, a long PCR targeting the VZV ORF62 region was executed. Nanopore sequencing identified SNPs, allowing discrimination between the vaccine and wild-type strains. RESULTS Nanopore sequencing confirmed SNPs at previously reported sites (105,705, 106,262, 107,136, and 107,252), aiding in distinguishing between wild-type and vaccine strains. Among the ten unknown samples, nine were characterized as wild strains and one as a vaccine strain. Even in samples with low VZV DNA levels, nanopore sequencing was effective in strain identification. CONCLUSION This study validates that nanopore sequencing is a reliable method for differentiating between the wild-type and vaccine strains of VZV. Its ability to produce long-read sequences is remarkable, allowing simultaneous confirmation of known SNPs and the detection of new mutations. Nanopore sequencing can serve as a valuable tool for the swift and precise identification of wild-type and vaccine strains and has potential applications in future VZV surveillance.
Collapse
Affiliation(s)
- Yuto Fukuda
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takako Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Ken-Ichi Iwata
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazunori Haruta
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Makoto Yamaguchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yuka Torii
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Atsushi Narita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Jun-Ichi Kawada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
3
|
Frantzis I, Messina M, Taylor JM, Aschheim K, Hu H, Hairston JC, Lauren CT, Gershon A, Feldstein N, Orange J, Saiman L. Varicella in the neonatal ICU due to the Varicella vaccine Oka strain. J Neonatal Perinatal Med 2023; 16:179-182. [PMID: 36744349 PMCID: PMC10346796 DOI: 10.3233/npm-221031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Varicella vaccination of non-immune post-partum women is recommended to reduce the risk of chickenpox in mothers and their infants. Though rare, transmission of the varicella vaccine strain vOka can occur from recent vaccinees to non-immune contacts who usually develop mild chickenpox. METHODS/RESULTS Here we describe an infant hospitalized in the neonatal ICU with vaccine-strain varicella due to transmission from their mother who received the varicella vaccine post-partum. We describe the infection prevention and control strategies implemented to prevent further transmission. CONCLUSION Vaccine-strain varicella transmission from mother to infant is a rare event and its occurrence in the neonatal ICU setting can be challenging. Anticipatory guidance for mothers vaccinated in the postpartum period and support of parents of an infected infant are recommended.
Collapse
Affiliation(s)
- Irene Frantzis
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- NewYork-Presbyterian Morgan Stanley Children’s Hospital, New York, NY, USA
| | - Maria Messina
- Department of Infection Prevention and Control, New York-Presbyterian Hospital, New York, NY, USA
| | - Jenny M. Taylor
- Current affiliation: Department of Pediatrics, Northwell Health Physician Partners, Northern Westchester Hospital, Mount Kisco, NY USA
| | - Katherine Aschheim
- NewYork-Presbyterian Morgan Stanley Children’s Hospital, New York, NY, USA
| | - Helen Hu
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- NewYork-Presbyterian Morgan Stanley Children’s Hospital, New York, NY, USA
| | - Jacqueline C. Hairston
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Christine T. Lauren
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anne Gershon
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Neil Feldstein
- Department of Neurosurgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Jordan Orange
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Lisa Saiman
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Infection Prevention and Control, New York-Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
4
|
Varicella Vaccine: a Molecular Variant That May Contribute to Attenuation. mBio 2022; 13:e0312022. [PMID: 36468883 PMCID: PMC9765671 DOI: 10.1128/mbio.03120-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Varicella was troublesome when varicella vaccine (vOka) was licensed in the United States. Varicella's yearly death toll was ~100, indirect costs were massive, and varicella threatened immunocompromised children. Since licensure, varicella has almost disappeared; nevertheless, vOka attenuation has lacked a molecular explanation. Sadaoka et al. (T. Sadaoka, D. P. Depledge, L. Rajbhandari, J. Breuer, et al., mBio 13:e0186422, 2022, https://doi.org/10.1128/mbio.01864-22), however, have now identified 6 core single nucleotide polymorphisms (SNPs), which singly or in combination may contribute to VOka attenuation; moreover, they found a predominant variant allele of vOka encoding the viral glycoprotein gB that results in glutamine instead of arginine at amino acid 699. This change impairs fusion activity and the ability of varicella-zoster virus (VZV) to infect human neurons from axon terminals. Molecular virological studies of vOka are reassuring in suggesting that reversion to virulence is unlikely and should also help assuage current fears about VZV vaccination and alleviate unanticipated future problems. The impressive work of Sadaoka et al. thus represents an auspicious advance in knowledge.
Collapse
|
5
|
Dollard S, Chen MH, Lindstrom S, Marin M, Rota PA. Diagnostic and Immunologic Testing for Varicella in the Era of High-Impact Varicella Vaccination: An Evolving Problem. J Infect Dis 2022; 226:S450-S455. [PMID: 36265850 DOI: 10.1093/infdis/jiac363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The clinical presentation of varicella in unvaccinated persons, with skin vesicles and scabs, has facilitated the use of rapid diagnostic methods for confirming disease. Polymerase chain reaction (PCR) assays are the diagnostic method of choice. The sharp decline in unmodified cases of varicella due to the US varicella vaccination program has led to fewer healthcare providers being familiar with varicella presentation and an increased reliance on laboratory diagnosis to confirm suspected cases. The mild, atypical presentation of the disease in vaccinated persons (fewer skin lesions, mostly maculopapular) has made it more challenging for providers to recognize and also to collect samples to detect the virus. Nonetheless, PCR is highly sensitive and specific in confirming modified disease if adequate samples are provided. While a positive PCR result is confirmatory, interpreting a negative result can prove to be more challenging in determining whether suspected varicella is falsely negative or attributable to other causes. Enhanced education of healthcare providers is critical for adequate specimen collection from modified varicella cases. In addition, more sensitive commercial serologic assays are needed in the United States for varicella immunity testing in the vaccine era.
Collapse
Affiliation(s)
- Sheila Dollard
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Min-Hsin Chen
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stephen Lindstrom
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mona Marin
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Paul A Rota
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Arvin AM. Insights From Studies of the Genetics, Pathogenesis, and Immunogenicity of the Varicella Vaccine. J Infect Dis 2022; 226:S385-S391. [PMID: 36265853 DOI: 10.1093/infdis/jiac278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
While the varicella vaccine was created with approaches established for other live attenuated viral vaccines, novel methods to probe virus-host interactions have been used to explore the genetics, pathogenesis, and immunogenicity of the vaccine compared to wild-type varicella-zoster virus (VZV). As summarized here, a mechanism-based understanding of the safety and efficacy of the varicella vaccine has been achieved through these investigations.
Collapse
Affiliation(s)
- Ann M Arvin
- Departments of Pediatrics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
7
|
Tommasi C, Breuer J. The Biology of Varicella-Zoster Virus Replication in the Skin. Viruses 2022; 14:982. [PMID: 35632723 PMCID: PMC9147561 DOI: 10.3390/v14050982] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023] Open
Abstract
The replication of varicella-zoster virus (VZV) in skin is critical to its pathogenesis and spread. Primary infection causes chickenpox, which is characterised by centrally distributed skin blistering lesions that are rich in infectious virus. Cell-free virus in the cutaneous blistering lesions not only spreads to cause further cases, but infects sensory nerve endings, leading to the establishment of lifelong latency in sensory and autonomic ganglia. The reactivation of virus to cause herpes zoster is again characterised by localised painful skin blistering rash containing infectious virus. The development of in vitro and in vivo models of VZV skin replication has revealed aspects of VZV replication and pathogenesis in this important target organ and improved our understanding of the vaccine strain vOKa attenuation. In this review, we outline the current knowledge on VZV interaction with host signalling pathways, the viral association with proteins associated with epidermal terminal differentiation, and how these interconnect with the VZV life cycle to facilitate viral replication and shedding.
Collapse
Affiliation(s)
- Cristina Tommasi
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Judith Breuer
- Department of Infection, Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
8
|
Vaccine Strain and Wild-Type Clades of Varicella-Zoster Virus in Central Nervous System and Non-CNS Disease, New York State, 2004-2019. J Clin Microbiol 2022; 60:e0238121. [PMID: 35321554 DOI: 10.1128/jcm.02381-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since the introduction of the varicella-zoster virus (VZV) vaccine in the United States in 1995, there has been a dramatic decrease in both the number and severity of varicella cases. However, VZV surveillance data and information on the VZV clade distribution in central nervous system (CNS) disease and non-CNS disease in New York State is not available. To investigate this, cerebrospinal fluid (CSF) samples from patients with encephalitis or meningitis and non-CSF samples from patients with non-CNS disease manifestations consistent with VZV, collected from 2004 to 2019, were tested with molecular VZV assays. A total of 341 CSF and 1,398 non-CSF samples that tested positive by a VZV-specific real-time PCR assay were further characterized as wild-type or vaccine strain by 3 biallelic real-time PCR assays targeting single nucleotide polymorphism (SNP) markers in open reading frame (ORF) 62. Genotyping was then performed on wild-type strains by conventional PCR and sequencing of 500-bp regions in ORFs 21, 22, and 50. Sequence analysis identified clades 1 to 5 in both sample types with a virtually identical clade distribution between CSF and non-CSF samples. In addition, 19 clade 6 and 13 clade 9 samples were detected in non-CSF samples after implementation of an expanded genotyping scheme, including ORF 29, 38, and 67. These clades were not detected in any CSF samples. Finally, a total of 28 vaccine strains were detected, 25 in the non-CSF samples and 3 in the CSF samples. All three cases of vaccine strain with CNS involvement experienced relatively minor symptoms of aseptic meningitis and fully recovered. These results support the evidence that while the VZV vaccine is capable of causing CNS disease, it is still a rare event and symptoms are typically less severe than those caused by wild-type infection.
Collapse
|
9
|
Levin MJ, Weinberg A. Immune Responses to Varicella-Zoster Virus Vaccines. Curr Top Microbiol Immunol 2022; 438:223-246. [PMID: 35102438 DOI: 10.1007/82_2021_245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The live attenuated varicella vaccine is intended to mimic the tempo and nature of the humoral and cell-mediated immune responses to varicella infection. To date, two doses of varicella vaccine administered in childhood have been very effective in generating varicella-zoster virus (VZV) immune responses that prevent natural infection for at least several decades. After primary infection, the infecting VZV establishes latency in sensory and cranial nerve ganglia with the potential to reactivate and cause herpes zoster. Although, the immune responses developed during varicella are important for preventing herpes zoster they wane with increasing age (immune senescence) or with the advent of immune suppression. Protection can be restored by increasing cell-mediated immune responses with two doses of an adjuvanted recombinant VZV glycoprotein E vaccine that stimulates both VZV-and gE-specific immunity. This vaccine provides ~85-90% protection against herpes zoster for 7-8 years (to date).
Collapse
Affiliation(s)
- Myron J Levin
- Departments of Pediatrics and Medicine, University of Colorado Denver School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Adriana Weinberg
- Departments of Pediatrics, Medicine, and Pathology, University of Colorado Denver School of Medicine, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
10
|
Ramachandran PS, Wilson MR, Catho G, Blanchard-Rohner G, Schiess N, Cohrs RJ, Boutolleau D, Burrel S, Yoshikawa T, Wapniarski A, Heusel EH, Carpenter JE, Jackson W, Ford BA, Grose C. Meningitis Caused by the Live Varicella Vaccine Virus: Metagenomic Next Generation Sequencing, Immunology Exome Sequencing and Cytokine Multiplex Profiling. Viruses 2021; 13:2286. [PMID: 34835092 PMCID: PMC8620440 DOI: 10.3390/v13112286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/21/2022] Open
Abstract
Varicella vaccine meningitis is an uncommon delayed adverse event of vaccination. Varicella vaccine meningitis has been diagnosed in 12 children, of whom 3 were immunocompromised. We now report two additional cases of vaccine meningitis in twice-immunized immunocompetent children and we perform further testing on a prior third case. We used three methods to diagnose or investigate cases of varicella vaccine meningitis, none of which have been used previously on this disease. These include metagenomic next-generation sequencing and cytokine multiplex profiling of cerebrospinal fluid and immunology exome analysis of white blood cells. In one new case, the diagnosis was confirmed by metagenomic next-generation sequencing of cerebrospinal fluid. Both varicella vaccine virus and human herpesvirus 7 DNA were detected. We performed cytokine multiplex profiling on the cerebrospinal fluid of two cases and found ten elevated biomarkers: interferon gamma, interleukins IL-1RA, IL-6, IL-8, IL-10, IL-17F, chemokines CXCL-9, CXCL-10, CCL-2, and G-CSF. In a second new case, we performed immunology exome sequencing on a panel of 356 genes, but no errors were found. After a review of all 14 cases, we concluded that (i) there is no common explanation for this adverse event, but (ii) ingestion of an oral corticosteroid burst 3-4 weeks before onset of vaccine meningitis may be a risk factor in some cases.
Collapse
Affiliation(s)
- Prashanth S. Ramachandran
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94110, USA; (P.S.R.); (M.R.W.); (A.W.)
| | - Michael R. Wilson
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94110, USA; (P.S.R.); (M.R.W.); (A.W.)
| | - Gaud Catho
- Division of Pediatric Infectious Diseases, Geneva University Hospitals, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland;
| | - Geraldine Blanchard-Rohner
- Pediatric Immunology and Vaccinology Unit, Division of General Pediatrics, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, University of Geneva, 1205 Geneva, Switzerland;
| | - Nicoline Schiess
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
| | - Randall J. Cohrs
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - David Boutolleau
- Virology Department, National Reference Center for Herpesviruses, Pitie-Salpetriere Hospital, Sorbonne University, 75013 Paris, France; (D.B.); (S.B.)
| | - Sonia Burrel
- Virology Department, National Reference Center for Herpesviruses, Pitie-Salpetriere Hospital, Sorbonne University, 75013 Paris, France; (D.B.); (S.B.)
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Aichi, Toyoake 470-1192, Japan;
| | - Anne Wapniarski
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94110, USA; (P.S.R.); (M.R.W.); (A.W.)
| | - Ethan H. Heusel
- Division of Infectious Diseases/Virology, Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA; (E.H.H.); (J.E.C.); (W.J.)
| | - John E. Carpenter
- Division of Infectious Diseases/Virology, Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA; (E.H.H.); (J.E.C.); (W.J.)
| | - Wallen Jackson
- Division of Infectious Diseases/Virology, Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA; (E.H.H.); (J.E.C.); (W.J.)
| | - Bradley A. Ford
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA;
| | - Charles Grose
- Division of Infectious Diseases/Virology, Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA; (E.H.H.); (J.E.C.); (W.J.)
| |
Collapse
|
11
|
Abstract
Prophylactic and therapeutic vaccines for the alphaherpesviruses including varicella zoster virus (VZV) and herpes simplex virus types 1 and 2 have been the focus of enormous preclinical and clinical research. A live viral vaccine for prevention of chickenpox and a subunit therapeutic vaccine to prevent zoster are highly successful. In contrast, progress towards the development of effective prophylactic or therapeutic vaccines against HSV-1 and HSV-2 has met with limited success. This review provides an overview of the successes and failures, the different types of immune responses elicited by various vaccine modalities, and the need to reconsider the preclinical models and immune correlates of protection against HSV.
Collapse
Affiliation(s)
- Clare Burn Aschner
- Department of Microbiology-Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Betsy C. Herald
- Department of Microbiology-Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
12
|
Breuer J. Molecular Genetic Insights Into Varicella Zoster Virus (VZV), the vOka Vaccine Strain, and the Pathogenesis of Latency and Reactivation. J Infect Dis 2019; 218:S75-S80. [PMID: 30247591 DOI: 10.1093/infdis/jiy279] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genetic tools for molecular typing of varicella zoster virus (VZV) have been used to understand the spread of virus, to differentiate wild-type and vaccine strains, and to understand the natural history of VZV infection in its cognate host. Molecular genetics has identified 7 clades of VZV (1-6 and 9), with 2 more mooted. Differences between the vOka vaccine strain and wild-type VZVs have been used to distinguish the cause of postimmunization events and to provide insight into the natural history of VZV infections. Importantly molecular genetics has shown that reinfection with establishment of latency by the reinfecting strain is common, that dual infections with different viruses can occur, and that reactivation of the superinfecting genotype can both occur. Whole-genome sequencing of the vOka vaccine has been used to show that vesicles form from a single virion, that latency is established within a few days of inoculation, and that all vaccine strains are capable of establishing latency and reactivating. Novel molecular tools have characterized the transcripts expressed during latent infection in vitro.
Collapse
Affiliation(s)
- Judith Breuer
- Division of Infection and Immunity, University College London, United Kingdom
| |
Collapse
|
13
|
Laemmle L, Goldstein RS, Kinchington PR. Modeling Varicella Zoster Virus Persistence and Reactivation - Closer to Resolving a Perplexing Persistent State. Front Microbiol 2019; 10:1634. [PMID: 31396173 PMCID: PMC6667558 DOI: 10.3389/fmicb.2019.01634] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022] Open
Abstract
The latent state of the human herpesvirus varicella zoster virus (VZV) has remained enigmatic and controversial. While it is well substantiated that VZV persistence is established in neurons after the primary infection (varicella or chickenpox), we know little of the types of neurons harboring latent virus genomes, if all can potentially reactivate, what exactly drives the reactivation process, and the role of immunity in the control of latency. Viral gene expression during latency has been particularly difficult to resolve, although very recent advances indicate that it is more restrictive than was once thought. We do not yet understand how genes expressed in latency function in the maintenance and reactivation processes. Model systems of latency are needed to pursue these questions. This has been especially challenging for VZV because the development of in vivo models of VZV infection has proven difficult. Given that up to one third of the population will clinically reactivate VZV to develop herpes zoster (shingles) and suffer from its common long term problematic sequelae, there is still a need for both in vivo and in vitro model systems. This review will summarize the evolution of models of VZV persistence and address insights that have arisen from the establishment of new in vitro human neuron culture systems that not only harbor a latent state, but permit experimental reactivation and renewed virus production. These models will be discussed in light of the recent data gleaned from the study of VZV latency in human cadaver ganglia.
Collapse
Affiliation(s)
- Lillian Laemmle
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Abstract
Varicella zoster virus (VZV) is the cause of chickenpox (varicella) and shingles (zoster), and was once responsible for over 4 million infections in the United States annually. The development of a live attenuated VZV vaccine was initially viewed with extreme skepticism. Nonetheless, a VZV vaccine was developed in the 1970s by Takahashi and his colleagues in Japan and was eventually licensed in the US. It is now known to be one of the safest and most effective vaccines available and is administered worldwide. Here are described important factors that contributed to the successful research and licensure of the highly successful VZV vaccine.
Collapse
Affiliation(s)
- Jana Shaw
- Department of Pediatrics, Upstate Medical Center, Syracuse, New York
| | - Anne A. Gershon
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
15
|
Warren-Gash C, Forbes H, Breuer J. Varicella and herpes zoster vaccine development: lessons learned. Expert Rev Vaccines 2017; 16:1191-1201. [PMID: 29047317 PMCID: PMC5942150 DOI: 10.1080/14760584.2017.1394843] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/17/2017] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Before vaccination, varicella zoster virus (VZV), which is endemic worldwide, led to almost universal infection. This neurotropic virus persists lifelong by establishing latency in sensory ganglia, where its reactivation is controlled by VZV-specific T-cell immunity. Lifetime risk of VZV reactivation (zoster) is around 30%. Vaccine development was galvanised by the economic and societal burden of VZV, including debilitating zoster complications that largely affect older individuals. Areas covered: We describe the story of development, licensing and implementation of live attenuated vaccines against varicella and zoster. We consider the complex backdrop of VZV virology, pathogenesis and immune responses in the absence of suitable animal models and examine the changing epidemiology of VZV disease. We review the vaccines' efficacy, safety, effectiveness and coverage using evidence from trials, observational studies from large routine health datasets and clinical post-marketing surveillance studies and outline newer developments in subunit and inactivated vaccines. Expert commentary: Safe and effective, varicella and zoster vaccines have already made major inroads into reducing the burden of VZV disease globally. As these live vaccines have the potential to reactivate and cause clinical disease, developing alternatives that do not establish latency is an attractive prospect but will require better understanding of latency mechanisms.
Collapse
Affiliation(s)
- Charlotte Warren-Gash
- Faculty of Epidemiology & Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Harriet Forbes
- Faculty of Epidemiology & Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
16
|
Shaw J, Halsey NA, Weinberg A, Scott Schmid D, George KS, Weldon WC, Jordan M, Bryant PW, LaRussa PS, Bradshaw DY, Harrington T, Gershon A. Arm Paralysis After Routine Childhood Vaccinations: Application of Advanced Molecular Methods to the Causality Assessment of an Adverse Event After Immunization. J Pediatric Infect Dis Soc 2017; 6:e161-e164. [PMID: 28339574 PMCID: PMC6251534 DOI: 10.1093/jpids/piw084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 12/02/2016] [Indexed: 12/27/2022]
Abstract
Post-licensure surveillance for adverse events following immunizations (AEFI) can identify rare complications of vaccinations and rigorous vaccine adverse event causality assessments can help to identify possible causal relationships. We report the development of arm paralysis after varicella vaccination in a 1-year-old child. Paralysis was initially presumed to be due to vOka because of the temporal relationship between vaccination and onset of arm weakness; however, molecular studies identified wild-type varicella zoster virus VZV (WT-VZV) in the CSF, leading the authors to conclude that WT-VZV was the probable cause. This case illustrates the complexity of assessing AEFI causality, and the importance of careful and complete evaluations when determining the most likely cause of an AEFI.
Collapse
Affiliation(s)
- Jana Shaw
- Department of Pediatrics, Division of Infectious Diseases, State University of New York Upstate Medical University, Golisano Children’s Hospital, Syracuse;,Correspondence: J. Shaw, MD, MPH, Associate Professor of Pediatrics, Department of Pediatrics, Division of Infectious Diseases, State University of New York Upstate Medical University, Golisano Children’s Hospital, 750 East Adams Street, Syracuse, NY 13210 ()
| | - Neal A Halsey
- Institute for Vaccine Safety, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Adriana Weinberg
- Departments of Pediatrics, Medicine and Pathology, Director, Molecular and Virology Clinical Laboratories, University of Colorado Denver, Aurora
| | - D Scott Schmid
- National Center for Immunizations and Respiratory Diseases, Division of Viral Diseases, Atlanta, Georgia
| | - Kirsten St George
- Laboratory of Viral Diseases, Wadsworth Center, New York State Department of Health, Clinical Professor, Department of Biomedical Sciences, University at Albany, SUNY
| | - William C Weldon
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Michael Jordan
- Pediatrics, Divisions of Immunobiology, and Bone Marrow Transplantation and Immune Deficiency Cincinnati Children’s Hospital/University of Cincinnati, Ohio
| | - Patrick W Bryant
- Laboratory of Viral Diseases, Wadsworth Center, New York State Department of Health, Albany
| | - Philip S LaRussa
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Columbia University, New York, New York
| | | | - Theresa Harrington
- Centers for Disease Control and Prevention, National Center for Emerging, Zoonotic, and Infectious Diseases, Division of Healthcare Quality Promotion, Immunization Safety Office, Clinical Immunization Safety Assessment Project, Atlanta, Georgia
| | - Anne Gershon
- Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
17
|
Harada K, Heaton H, Chen J, Vazquez M, Meyer J. Zoster vaccine-associated primary varicella infection in an immunocompetent host. BMJ Case Rep 2017; 2017:bcr-2017-221166. [PMID: 28830902 DOI: 10.1136/bcr-2017-221166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A 64-year-old immunocompetent man developed a widespread pruritic and vesicular rash 2 weeks after receiving the zoster vaccine (Zostavax). He had fever, bandaemia with normal total white blood cell count and mild transaminitis. PCR testing of serum and skin was positive for varicella zoster virus (VZV), while serum VZV IgG was negative. The analysis of single nucleotide polymorphism by PCR and sequencing from the skin swab was consistent with the vaccine strain. The patient received 1 week of intravenous acyclovir and was discharged after all lesions had crusted. He continues to do well on follow-up with no significant complications.
Collapse
Affiliation(s)
- Kaoru Harada
- Department of Internal Medicine, Yale-New Haven Hospital, New Haven, Connecticut, USA
| | - Henry Heaton
- Department of Dermatology, Yale-New Haven Hospital, New Haven, Connecticut, USA
| | - Jason Chen
- Department of Pathology & Cell Biology, Columbia University College of Physicians & Surgeons, New York, New York, USA
| | - Marietta Vazquez
- Department of Pediatrics, Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jaimie Meyer
- Department of Medicine, Infectious Diseases, AIDS Program, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
18
|
Differentiation between wild-type and vaccines strains of varicella zoster virus (VZV) based on four single nucleotide polymorphisms. Epidemiol Infect 2017; 145:2618-2625. [PMID: 28748773 DOI: 10.1017/s0950268817001509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Varicella-zoster virus (VZV) infection (chickenpox) results in latency and subsequent reactivation manifests as shingles. Effective attenuated vaccines (vOka) are available for prevention of both illnesses. In this study, an amplicon-based sequencing method capable of differentiating between VZV wild-type (wt) strains and vOka vaccine is described. A total of 44 vesicular fluid specimens collected from 43 patients (16 from China and 27 from the UK) with either chickenpox or shingles were investigated, of which 10 had received previous vaccination. Four sets of polymerase chain reactions were set up simultaneously with primers amplifying regions encompassing four single nucleotide polymorphisms (SNPs), '69349-106262-107252-108111'. Nucleotide sequences were generated by Sanger sequencing. All samples except one had a wt SNP profile of 'A-T-T-T'. The sample collected from a patient who received vaccine 7-10 days ago, along with VZV vaccine preparations, Zostavax and Baike-varicella gave a SNP profile 'G-C-C-C'. The results show that this method can distinguish vaccine-derived virus from wt viruses from main four clades, (clades 1-4) and should be of utility worldwide.
Collapse
|
19
|
Karbalaie Niya MH, Bokharaei Salim F, Tavakoli A, Reza Monavari SH, Esghaei M, Tameshkel FS, Keyvani H. Varicella zoster virus genotyping in chickenpox patient's clinical isolates from Iran. Future Virol 2016. [DOI: 10.2217/fvl-2016-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: The varicella zoster virus (VZV) causes chickenpox and zoster infections. This study aimed to investigate the distribution of VZV genotypes among Iranian patients. Materials & methods: From 2010 to 2015, 244 patients were enrolled in this cross-sectional study, 45 of whom were positive for VZV DNA. Both direct sequencing and restriction fragment length polymorphism assay were performed for 19 positive specimens. SPSS v.20 was used for statistics. Results: The predominant VZV genotype was M1 (84.2%) followed by genotype E (10.5%) and genotype J (5.3%). Restriction fragment length polymorphism demonstrated that 17 strains were PstI+ BglI+ (M1 and/or J genotypes) and 2 were PstI+ BglI- (E genotype). Conclusion: This research is a prelim study on VZV genotyping. Further investigations will help to confirm the VZV genotype prevalence reported here.
Collapse
Affiliation(s)
| | | | - Ahmad Tavakoli
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Esghaei
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Keyvani
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
- Gastrointestinal & Liver Disease Research Center (GILDRC), Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Gershon AA, Breuer J, Cohen JI, Cohrs RJ, Gershon MD, Gilden D, Grose C, Hambleton S, Kennedy PGE, Oxman MN, Seward JF, Yamanishi K. Varicella zoster virus infection. Nat Rev Dis Primers 2015; 1:15016. [PMID: 27188665 PMCID: PMC5381807 DOI: 10.1038/nrdp.2015.16] [Citation(s) in RCA: 457] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Infection with varicella zoster virus (VZV) causes varicella (chickenpox), which can be severe in immunocompromised individuals, infants and adults. Primary infection is followed by latency in ganglionic neurons. During this period, no virus particles are produced and no obvious neuronal damage occurs. Reactivation of the virus leads to virus replication, which causes zoster (shingles) in tissues innervated by the involved neurons, inflammation and cell death - a process that can lead to persistent radicular pain (postherpetic neuralgia). The pathogenesis of postherpetic neuralgia is unknown and it is difficult to treat. Furthermore, other zoster complications can develop, including myelitis, cranial nerve palsies, meningitis, stroke (vasculopathy), retinitis, and gastroenterological infections such as ulcers, pancreatitis and hepatitis. VZV is the only human herpesvirus for which highly effective vaccines are available. After varicella or vaccination, both wild-type and vaccine-type VZV establish latency, and long-term immunity to varicella develops. However, immunity does not protect against reactivation. Thus, two vaccines are used: one to prevent varicella and one to prevent zoster. In this Primer we discuss the pathogenesis, diagnosis, treatment, and prevention of VZV infections, with an emphasis on the molecular events that regulate these diseases. For an illustrated summary of this Primer, visit: http://go.nature.com/14xVI1.
Collapse
Affiliation(s)
- Anne A Gershon
- Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, New York 10032, USA
| | - Judith Breuer
- Department of Infection and Immunity, University College London, UK
| | - Jeffrey I Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Massachusetts, USA
| | - Randall J Cohrs
- Departments of Neurology and Microbiology and Immunology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Michael D Gershon
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Don Gilden
- Departments of Neurology and Microbiology and Immunology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Charles Grose
- Division of Infectious Diseases/Virology, Children's Hospital, University of Iowa, Iowa City, Iowa, USA
| | - Sophie Hambleton
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Peter G E Kennedy
- Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow University, Glasgow, Scotland, UK
| | - Michael N Oxman
- Infectious Diseases Section, Medicine Service, Veterans Affairs San Diego Healthcare System, Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, San Diego, California, USA
| | - Jane F Seward
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Koichi Yamanishi
- Research Foundation for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
21
|
Gershon AA, Chen J, Gershon MD. Use of Saliva to Identify Varicella Zoster Virus Infection of the Gut. Clin Infect Dis 2015; 61:536-44. [PMID: 25882301 DOI: 10.1093/cid/civ320] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 04/08/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Varicella zoster virus (VZV) establishes latency in dorsal root, cranial nerve, and enteric ganglia and can reactivate to cause zoster. Serious gastrointestinal dysfunction can result from VZV reactivation in enteric neurons (enteric zoster), but an absence of rash makes diagnosis difficult. We thus determined whether detecting VZV DNA in saliva facilitates identification of enteric zoster. METHODS Nested and real-time polymerase chain reaction were used to validate salivary VZV DNA as a surrogate marker of VZV reactivation and then to determine the utility of that marker for the identification of those individuals within a population defined by abdominal pain that might have enteric zoster. RESULTS Salivary VZV DNA was detected in 0 of 20 healthy negative controls, 11 of 16 positive controls with zoster or varicella (P < .0001), 2 of 2 patients with zoster sine herpete (P < .01), 6 of 11 patients with unexplained abdominal pain (P < .001), and 0 of 8 patients with unrelated gastrointestinal disorders. Salivary VZV DNA disappeared after recovery in 9 of 9 tested subjects with zoster, 2 of 2 with zoster sine herpete, and 5 of 5 with abdominal pain. One patient with abdominal pain and salivary VZV DNA had perforated gastric ulcers, necessitating a wedge gastrectomy. VZV DNA (vaccine type) was found in the resected stomach; immediate early (ORF63p) and late (gE) VZV proteins were immunocytochemically detected in gastric epithelium. After recovery, VZV DNA and proteins were not detected in gastric biopsies or saliva. CONCLUSIONS Detection of salivary VZV DNA in patients with abdominal pain helps to identify putative enteric zoster for investigation and treatment.
Collapse
Affiliation(s)
| | - Jason Chen
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Michael D Gershon
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
22
|
Bhalla P, Forrest GN, Gershon M, Zhou Y, Chen J, LaRussa P, Steinberg S, Gershon AA. Disseminated, persistent, and fatal infection due to the vaccine strain of varicella-zoster virus in an adult following stem cell transplantation. Clin Infect Dis 2014; 60:1068-74. [PMID: 25452596 DOI: 10.1093/cid/ciu970] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Live attenuated varicella vaccine is recommended for healthy individuals who are susceptible to varicella. Although the vaccine is safe, effective, and used worldwide, serious adverse events have been reported, mainly in immunocompromised patients who subsequently recovered. Here, we describe the fatality of an immunocompromised patient who received the varicella vaccine. His medical history provides a cautionary lens through which to view the decision of when vaccination is appropriate. A middle-aged man with non-Hodgkin lymphoma received chemotherapy and a stem cell transplant. He was vaccinated 4 years post-transplantation, despite diagnosis of a new low-grade lymphoma confined to the lymph nodes. Within 3 months of vaccination, he developed recurrent rashes with fever, malaise, weakness, hepatitis, weight loss, and renal failure. The syndrome was eventually determined to be associated with persistent disseminated zoster caused by the vaccine virus. This case illustrates a circumstance when a live viral vaccine should not be used.
Collapse
Affiliation(s)
- Preeti Bhalla
- Department of Medicine, Oregon Health Science University, Portland
| | - Graeme N Forrest
- Department of Medicine, Oregon Health Science University, Portland Portland Veterans Affairs Medical Center, Oregon
| | | | - Yan Zhou
- Department of Pathology and Cell Biology
| | - Jason Chen
- Department of Pathology and Cell Biology
| | - Philip LaRussa
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Sharon Steinberg
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Anne A Gershon
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
23
|
Quinlivan M, Breuer J. Clinical and molecular aspects of the live attenuated Oka varicella vaccine. Rev Med Virol 2014; 24:254-73. [PMID: 24687808 DOI: 10.1002/rmv.1789] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 12/24/2022]
Abstract
VZV is a ubiquitous member of the Herpesviridae family that causes varicella (chicken pox) and herpes zoster (shingles). Both manifestations can cause great morbidity and mortality and are therefore of significant economic burden. The introduction of varicella vaccination as part of childhood immunization programs has resulted in a remarkable decline in varicella incidence, and associated hospitalizations and deaths, particularly in the USA. The vaccine preparation, vOka, is a live attenuated virus produced by serial passage of a wild-type clinical isolate termed pOka in human and guinea pig cell lines. Although vOka is clinically attenuated, it can cause mild varicella, establish latency, and reactivate to cause herpes zoster. Sequence analysis has shown that vOka differs from pOka by at least 42 loci; however, not all genomes possess the novel vOka change at all positions, creating a heterogeneous population of genetically distinct haplotypes. This, together with the extreme cell-associated nature of VZV replication in cell culture and the lack of an animal model, in which the complete VZV life cycle can be replicated, has limited studies into the molecular basis for vOka attenuation. Comparative studies of vOka with pOka replication in T cells, dorsal root ganglia, and skin indicate that attenuation likely involves multiple mutations within ORF 62 and several other genes. This article presents an overview of the clinical aspects of the vaccine and current progress on understanding the molecular mechanisms that account for the clinical phenotype of reduced virulence.
Collapse
Affiliation(s)
- Mark Quinlivan
- Division of Infection and Immunity, University College London, London, UK
| | | |
Collapse
|
24
|
Vaccine strain varicella-zoster virus-induced central nervous system vasculopathy as the presenting feature of DOCK8 deficiency. J Allergy Clin Immunol 2014; 133:1225-1227. [PMID: 24418481 DOI: 10.1016/j.jaci.2013.11.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/28/2013] [Accepted: 11/06/2013] [Indexed: 11/21/2022]
|
25
|
Gershon AA, Gershon MD. Pathogenesis and current approaches to control of varicella-zoster virus infections. Clin Microbiol Rev 2013; 26:728-43. [PMID: 24092852 PMCID: PMC3811230 DOI: 10.1128/cmr.00052-13] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Varicella-zoster virus (VZV) was once thought to be a fairly innocuous pathogen. That view is no longer tenable. The morbidity and mortality due to the primary and secondary diseases that VZV causes, varicella and herpes zoster (HZ), are significant. Fortunately, modern advances, including an available vaccine to prevent varicella, a therapeutic vaccine to diminish the incidence and ameliorate sequelae of HZ, effective antiviral drugs, a better understanding of VZV pathogenesis, and advances in diagnostic virology have made it possible to control VZV in the United States. Occult forms of VZV-induced disease have been recognized, including zoster sine herpete and enteric zoster, which have expanded the field. Future progress should include development of more effective vaccines to prevent HZ and a more complete understanding of the consequences of VZV latency in the enteric nervous system.
Collapse
|
26
|
Ihira M, Higashimoto Y, Kawamura Y, Sugata K, Ohashi M, Asano Y, Yoshikawa T. Cycling probe technology to quantify and discriminate between wild-type varicella-zoster virus and Oka vaccine strains. J Virol Methods 2013; 193:308-13. [PMID: 23820238 DOI: 10.1016/j.jviromet.2013.06.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 06/13/2013] [Accepted: 06/21/2013] [Indexed: 01/29/2023]
Abstract
Rapid differentiation between wild-type varicella zoster virus (VZV) and Oka-vaccine (vOka) strains is important for monitoring side reactions of varicella vaccination. To develop a high-throughput molecular diagnostic method for the differentiation of wild-type VZV and vOka strains based on cycling probe technology. The primers were designed to amplify common sequences spanning a single nucleotide polymorphism (SNP) in gene 62 of VZV. DNA-RNA chimeric probes (cycling probes) were designed to detect the SNP at nucleotide 105705. The cycling probe real-time PCR assays for VZV wild-type and vOka strains specifically amplified plasmids containing target sequences that ranged between 10 and 1×10(6) copies per reaction. The inter- and intra-assay coefficients of variation were less than 5%. After initial validation studies, the clinical reliability of this method was evaluated using 38 swab samples that were collected from patients suspected of being zoster. Compared to the loop mediated isothermal amplification method, which is defined as the gold standard, cycling probe real-time PCR was highly sensitive and specific. The cycling probe real-time PCR technology is a reliable tool for differentiating between wild-type VZV and vOka strains in clinical samples.
Collapse
Affiliation(s)
- Masaru Ihira
- Faculty of Clinical Engineering, Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
Gershon AA. Varicella zoster vaccines and their implications for development of HSV vaccines. Virology 2013; 435:29-36. [PMID: 23217613 DOI: 10.1016/j.virol.2012.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 09/29/2012] [Accepted: 10/01/2012] [Indexed: 02/01/2023]
Abstract
Live attenuated vaccines to prevent varicella and zoster have been available in the US for the past 17 years, with a resultant dramatic decrease in varicella incidence and a predicted future decrease in the incidence of zoster. The pathogenesis and immune responses to varicella zoster virus (VZV) as well as the safety and effectiveness of VZV vaccines are reviewed. The lack of sterilizing immunity provided by VZV vaccines has not prevented them from being safe and effective. Virological and pathological information concerning parallels and differences between VZV and herpes simplex virus (HSV) are highlighted. Although VZV and HSV are distinct pathogens, they appear to have similarities in target organs and immunity that provide an expectation of a high likelihood for the success of vaccination against HSV, and predicted to be similar to that of VZV.
Collapse
Affiliation(s)
- Anne A Gershon
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, NY, NY 10032, USA.
| |
Collapse
|
28
|
|