1
|
Ardizzone CM, Albritton HL, Lillis RA, Bagnetto CEL, Shen L, Cavacini LA, Kozlowski PA, Quayle AJ. Human genital antibody-mediated inhibition of Chlamydia trachomatis infection and evidence for ompA genotype-specific neutralization. PLoS One 2021; 16:e0258759. [PMID: 34662351 PMCID: PMC8523062 DOI: 10.1371/journal.pone.0258759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/04/2021] [Indexed: 11/19/2022] Open
Abstract
The endocervix, the primary site of Chlamydia trachomatis (Ct) infection in women, has a unique repertoire of locally synthesized IgG and secretory IgA (SIgA) with contributions from serum IgG. Here, we assessed the ability of genital and serum-derived IgG and IgA from women with a recent positive Ct test to neutralize Ct elementary bodies (EBs) and inhibit inclusion formation in vitro in human endocervical epithelial cells. We also determined if neutralization was influenced by the major outer membrane protein (MOMP) of the infecting strain, as indicated by ompA gene sequencing and genotyping. At equivalent low concentrations of Ct EB (D/UW-3/Cx + E/UW-5/Cx)-specific antibody, genital-derived IgG and IgA and serum IgA, but not serum IgG, significantly inhibited inclusion formation, with genital IgA being most effective, followed by genital IgG, then serum IgA. The well-characterized Ct genotype D strain, D/UW-3/Cx, was neutralized by serum-derived IgG from patients infected with genotype D strains, genital IgG from patients infected with genotype D or E strains, and by genital IgA from patients infected with genotype D, E, or F strains. Additionally, inhibition of D/UW-3/Cx infection by whole serum, rather than purified immunoglobulin, was associated with levels of serum EB-specific IgG rather than the genotype of infecting strain. In contrast, a Ct genotype Ia clinical isolate, Ia/LSU-56/Cx, was neutralized by whole serum in a genotype and genogroup-specific manner, and inhibition also correlated with EB-specific IgG concentrations in serum. Taken together, these data suggest that (i) genital IgA most effectively inhibits Ct infection in vitro, (ii) human antibody-mediated inhibition of Ct infection is significantly influenced by the ompA genotype of the infecting strain, (iii) the genital antibody repertoire develops or matures differently compared to systemic antibody, and (iv) ompA genotype-specificity of inhibition of infection by whole serum can be overcome by high concentrations of Ct-specific IgG.
Collapse
Affiliation(s)
- Caleb M. Ardizzone
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Hannah L. Albritton
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Rebecca A. Lillis
- Division of Infectious Diseases, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Caitlyn E. L. Bagnetto
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Li Shen
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Lisa A. Cavacini
- MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, United States of America
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Alison J. Quayle
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| |
Collapse
|
2
|
Albritton HL, Kozlowski PA, Lillis RA, McGowin CL, Siren JD, Taylor SN, Ibana JA, Buckner LR, Shen L, Quayle AJ. A novel whole-bacterial enzyme linked-immunosorbant assay to quantify Chlamydia trachomatis specific antibodies reveals distinct differences between systemic and genital compartments. PLoS One 2017; 12:e0183101. [PMID: 28797112 PMCID: PMC5552291 DOI: 10.1371/journal.pone.0183101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/29/2017] [Indexed: 11/19/2022] Open
Abstract
Chlamydia trachomatis (CT) is the leading sexually transmitted bacterial infection. The continued global burden of CT infection strongly predicates the need for a vaccine to supplement current chlamydial control programs. The correlates of protection against CT are currently unknown, but they must be carefully defined to guide vaccine design. The localized nature of chlamydial infection in columnar epithelial cells of the genital tract necessitates investigation of immunity at the site of infection. The purpose of this study was to develop a sensitive whole bacterial enzyme-linked immunosorbent assay (ELISA) to quantify and compare CT-specific IgG and IgA in sera and genital secretions from CT-infected women. To achieve this, elementary bodies (EBs) from two of the most common genital serovars (D and E) were attached to poly-L-lysine-coated microtiter plates with glutaraldehyde. EB attachment and integrity were verified by the presence of outer membrane antigens and the absence of bacterial cytoplasmic antigens. EB-specific IgG and IgA standards were developed by pooling sera with high titers of CT-specific antibodies from infected women. Serum, endocervical and vaginal secretions, and endocervical cytobrush specimens from CT-infected women were used to quantify CT-specific IgG and IgA which were then normalized to total IgG and IgA, respectively. Analyses of paired serum and genital samples revealed significantly higher proportions of EB-specific antibodies in genital secretions compared to sera. Cervical and vaginal secretions and cytobrush specimens had similar proportions of EB-specific antibodies, suggesting any one of these genital sampling techniques could be used to quantify CT-specific antibodies when appropriate normalization methodologies are implemented. Overall, these results illustrate the need to investigate genital tract CT antibody responses, and our assay provides a useful quantitative tool to assess natural immunity in defined clinical groups and CT vaccine trials.
Collapse
Affiliation(s)
- Hannah L. Albritton
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Rebecca A. Lillis
- Department of Medicine, Division of Infectious Diseases, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Chris L. McGowin
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Julia D. Siren
- Department of Medicine, Division of Infectious Diseases, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Stephanie N. Taylor
- Department of Medicine, Division of Infectious Diseases, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Joyce A. Ibana
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
- Institute of Biology, University of the Philippines Diliman, Quezon City, National Capital Region, Philippines
| | - Lyndsey R. Buckner
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Li Shen
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Alison J. Quayle
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
- * E-mail:
| |
Collapse
|
3
|
Abstract
Trachoma is the commonest infectious cause of blindness worldwide. Recurrent infection of the ocular surface by Chlamydia trachomatis, the causative agent, leads to inturning of the eyelashes (trichiasis) and blinding corneal opacification. Trachoma is endemic in more than 50 countries. It is currently estimated that there are about 1.3 million people blind from the disease and a further 8.2 million have trichiasis. Several estimates for the burden of disease from trachoma have been made, giving quite variable results. The variation is partly because different prevalence data have been used and partly because different sequelae have been included. The most recent estimate from the WHO placed it at around 1.3 million Disability-Adjusted Life Years (DALYs). A key issue in producing a reliable estimate of the global burden of trachoma is the limited amount of reliable survey data from endemic regions.
Collapse
Affiliation(s)
- Matthew J Burton
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | | |
Collapse
|
4
|
Wright HR, Taylor HR. Clinical examination and laboratory tests for estimation of trachoma prevalence in a remote setting: what are they really telling us? THE LANCET. INFECTIOUS DISEASES 2005; 5:313-20. [PMID: 15854887 DOI: 10.1016/s1473-3099(05)70116-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Worldwide, an estimated 84 million people have active trachoma and 7.6 million people have trachomatous trichiasis. WHO's SAFE strategy is an effective tool in the worldwide effort to eliminate blinding trachoma, but its institution and monitoring requires a simple, reliable, and cost-effective method to detect disease. To date, clinical examination has provided the main method of diagnosis. Detection of Chlamydia trachomatis with nucleic acid amplification tests does not always correlate well with clinical findings, which has prompted the suggestion that these methods should replace clinical examination. However, a review of the research carried out in animals and human beings suggests the relation between laboratory tests and clinical examination is due to the kinetics of trachoma and not to an inherent problem in either detection system. Given the increased difficulties of using laboratory tests in parts of the world where trachoma is endemic, we should not abandon clinical grading as a tool to assess the need for, and the effectiveness of, trachoma intervention programmes.
Collapse
|
5
|
Barsoum IS, Hardin LK, Colley DG. Immune responses of mice after conjunctival exposure to Chlamydia trachomatis serovar A. Med Microbiol Immunol 1988; 177:349-56. [PMID: 3265174 DOI: 10.1007/bf02389907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
CBA/J mice were inoculated in the lower conjunctival sac with live elementary bodies (EBs) of Chlamydia trachomatis serovar A. Recovery of chlamydia after exposure was done by culture of conjunctival swabs and draining lymph node (D-LN) cells in McCoy cells grown on coverslips in isolation vials. Cellular immune responsiveness was measured by lymphocyte proliferation assay of D-LN cells stimulated with irradiated EBs of serovars A, C, or L2. Humoral immunity was measured by enzyme-linked immunosorbent assay (ELISA) and immunoblot analysis. Chlamydia were consistently isolated from the conjunctiva and from the D-LN at 1 and 7 days after exposure respectively. Intermittent isolations were obtained from the conjunctiva up to day 4 and from the D-LN up to day 14 after a single exposure. Serovar A EB-stimulated lymphocyte proliferation was strong by 1 week after conjunctival exposure, but by 4 and 5 weeks, blastogenic responsiveness was very low. This lack of responsiveness may reflect a state of immunosuppression. Responses to serovars C and L2 EBs were consistently lower than to serovar A EBs. Serum IgG antichlamydia antibodies were not detected by ELISA until 2 weeks after exposure, peaked by 4-5 weeks, and decreased between 5 and 7 weeks after exposure. The IgM response was minimal at all times tested. There was, however, a modest increase in IgM antibodies at 3 and 5-7 weeks after exposure. Immunoblot analysis showed reactivity of mouse serum antibodies with polypeptide bands of 30, 41, and 52 kD at 3 and 4 weeks post exposure and predominantly with the 52 kD moiety at 5 weeks post exposure.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- I S Barsoum
- Department of Microbiology, Vanderbilt University, School of Medicine, Nashville, TN
| | | | | |
Collapse
|
6
|
Abstract
Thirty patients attending a sexually transmitted disease clinic were evaluated for genital and ocular infection with chlamydia. Eight patients had positive conjunctival immunofluorescent staining. This represents an asymptomatic, latent carrier state with important epidemiologic considerations.
Collapse
|