1
|
Kumar SP, Uthra KT, Chitra V, Damodharan N, Pazhani GP. Challenges and mitigation strategies associated with Burkholderia cepacia complex contamination in pharmaceutical manufacturing. Arch Microbiol 2024; 206:159. [PMID: 38483625 DOI: 10.1007/s00203-024-03921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/15/2024] [Accepted: 03/02/2024] [Indexed: 03/19/2024]
Abstract
Burkholderia cepacia complex (BCC) is a Gram-negative, non-spore-forming bacterium with more than 20 opportunistic pathogenic species, most commonly found in soil and water. Due to their rapid mutation rates, these organisms are adaptable and possess high genomic plasticity. BCC can cause life-threatening infections in immunocompromised individuals, such as those with cystic fibrosis, chronic granulomatous disease, and neonates. BCC contamination is a significant concern in pharmaceutical manufacturing, frequently causing non-sterile product recalls. BCC has been found in purified water, cosmetics, household items, and even ultrasound gel used in veterinary practices. Pharmaceuticals, personal care products, and cleaning solutions have been implicated in numerous outbreaks worldwide, highlighting the risks associated with intrinsic manufacturing site contamination. Regulatory compliance, product safety, and human health protection depend on testing for BCC in pharmaceutical manufacturing. Identification challenges exist, with BCC often misidentified as other bacteria like non-lactose fermenting Escherichia coli or Pseudomonas spp., particularly in developing countries where reporting BCC in pharmaceuticals remains limited. This review comprehensively aims to address the organisms causing BCC contamination, genetic diversity, identification challenges, regulatory requirements, and mitigation strategies. Recommendations are proposed to aid pharmaceutical chemists in managing BCC-associated risks and implementing prevention strategies within manufacturing processes.
Collapse
Affiliation(s)
- Sethuraman Prem Kumar
- Department of Pharmaceutical Quality Assurance, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Karupanagounder Thangaraj Uthra
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Vellapandian Chitra
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Narayanasamy Damodharan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Gururaja Perumal Pazhani
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India.
| |
Collapse
|
2
|
Milinic T, McElvaney OJ, Goss CH. Diagnosis and Management of Cystic Fibrosis Exacerbations. Semin Respir Crit Care Med 2023; 44:225-241. [PMID: 36746183 PMCID: PMC10131792 DOI: 10.1055/s-0042-1760250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
With the improving survival of cystic fibrosis (CF) patients and the advent of highly effective cystic fibrosis transmembrane conductance regulator (CFTR) therapy, the clinical spectrum of this complex multisystem disease continues to evolve. One of the most important clinical events for patients with CF in the course of this disease is acute pulmonary exacerbation (PEx). Clinical and microbial epidemiology studies of CF PEx continue to provide important insight into the disease course, prognosis, and complications. This work has now led to several large-scale clinical trials designed to clarify the treatment paradigm for CF PEx. The primary goal of this review is to provide a summary and update of the pathophysiology, clinical and microbial epidemiology, outcome and treatment of CF PEx, biomarkers for exacerbation, and the impact of highly effective modulator therapy on these events moving forward.
Collapse
Affiliation(s)
- Tijana Milinic
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Oliver J McElvaney
- Cysic Fibrosis Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, Washington
| | - Christopher H Goss
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington
- Cysic Fibrosis Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
3
|
Zhang L, Tolan J, Lavigne N, Montei C, Donofrio R, Biswas P. Soleris® Automated System for the Rapid Detection of Burkholderia cepacia Complex in Cosmetic Products. J AOAC Int 2022; 106:171-178. [PMID: 36130279 PMCID: PMC9779911 DOI: 10.1093/jaoacint/qsac109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Burkholderia cepacia complex (Bcc) has emerged as an important opportunistic pathogen with rising concern in pharmaceuticals and cosmetic products. The Bcc supplement (S2-BCC-S) was purposely developed and used with the Pseudomonas vial (PD-109) for the detection of Bcc through the Soleris® Next Generation automated instrument system. OBJECTIVE This study aimed to evaluate the performance of the Soleris Bcc testing method for cosmetic products. METHOD Inclusivity and exclusivity were assessed with the Soleris Bcc method and the United States Pharmacopeia (USP) method in three enrichment broths. Matrix testing was conducted using 28 cosmetic products to compare the equivalency of the Soleris Bcc method to that of the USP reference method. Repeatability of the Soleris Bcc assay, method robustness, product stability, and lot-to-lot consistency of the Soleris reagents were also assessed. RESULTS Both the Soleris Bcc and the USP methods supported the growth of all 26 inclusivity strains, except the USP method missed one inclusivity strain in one broth. For exclusivity, 0-6% was presumptive positive with the Soleris Bcc method, and 42-48% was presumptive positive with the reference method. Kappa index was 0.96 for the matrix testing, indicating a good agreement between the Soleris Bcc assay and the reference method for testing Bcc in cosmetics. Repeatability results showed the coefficient of variation was less than 4%. The robustness and ruggedness study yielded detection times within 1 h differences when small variations were introduced. The lot-to-lot study showed consistent results among four lots of the Bcc reagents. CONCLUSIONS The automated Soleris method was successfully demonstrated to be robust, sensitive, and specific for Bcc detection in cosmetic products. HIGHLIGHTS The Soleris Bcc method is user-friendly. It shows the results in real time and generates the report automatically. Implementation of this method for detection of Bcc in cosmetics would save significant time and resources.
Collapse
Affiliation(s)
| | - Jerry Tolan
- Microbiology R&D, Neogen Corporation, 620 Lesher Place, Lansing, MI 48912, USA
| | - Nicholas Lavigne
- Microbiology R&D, Neogen Corporation, 620 Lesher Place, Lansing, MI 48912, USA
| | - Carolyn Montei
- Microbiology R&D, Neogen Corporation, 620 Lesher Place, Lansing, MI 48912, USA
| | - Robert Donofrio
- Microbiology R&D, Neogen Corporation, 620 Lesher Place, Lansing, MI 48912, USA
| | | |
Collapse
|
4
|
Cogen JD, Nichols DP, Goss CH, Somayaji R. Drugs, Drugs, Drugs: Current Treatment Paradigms in Cystic Fibrosis Airway Infections. J Pediatric Infect Dis Soc 2022; 11:S32-S39. [PMID: 36069901 DOI: 10.1093/jpids/piac061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022]
Abstract
Airway infections have remained a prominent feature in persons living with cystic fibrosis (CF) despite the dramatic improvements in survival in the past decades. Antimicrobials are a cornerstone of infection management for both acute and chronic maintenance indications. Historic clinical trials of antimicrobials in CF have led to the adoption of consensus guidelines for their use in clinical care. More recently, however, there are efforts to re-think the optimal use of antimicrobials for care with the advent of novel and highly effective CF transmembrane conductance regulator modulator therapies. Encouragingly, however, drug development has remained active concurrently in this space. Our review focuses on the evidence for and perspectives regarding antimicrobial use in both acute and maintenance settings in persons with CF. The therapeutic innovations in CF and how this may affect antimicrobial approaches are also discussed.
Collapse
Affiliation(s)
- Jonathan D Cogen
- Department of Pediatrics, University of Washington , Seattle, Washington, USA
| | - David P Nichols
- Department of Pediatrics, University of Washington , Seattle, Washington, USA.,Seattle Children's Research Institute, Seattle, Washington , USA
| | - Christopher H Goss
- Department of Pediatrics, University of Washington , Seattle, Washington, USA.,Seattle Children's Research Institute, Seattle, Washington , USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Ranjani Somayaji
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Dennehy R, Duggan N, Dignam S, McCormack S, Dillon E, Molony J, Romano M, Hou Y, Ardill L, Whelan MVX, Drulis‐Kawa Z, Ó'Cróinín T, Valvano MA, Berisio R, McClean S. Protein with negative surface charge distribution, Bnr1, shows characteristics of a DNA-mimic protein and may be involved in the adaptation of Burkholderia cenocepacia. Microbiologyopen 2022; 11:e1264. [PMID: 35212475 PMCID: PMC9060813 DOI: 10.1002/mbo3.1264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/14/2022] [Indexed: 11/11/2022] Open
Abstract
Adaptation of opportunistic pathogens to their host environment requires reprogramming of a vast array of genes to facilitate survival in the host. Burkholderia cenocepacia, a Gram-negative bacterium with a large genome of ∼8 Mb that colonizes environmental niches, is exquisitely adaptable to the hypoxic environment of the cystic fibrosis lung and survives in macrophages. We previously identified an immunoreactive acidic protein encoded on replicon 3, BCAS0292. Deletion of the BCAS0292 gene significantly altered the abundance of 979 proteins by 1.5-fold or more; 19 proteins became undetectable while 545 proteins showed ≥1.5-fold reduced abundance, suggesting the BCAS0292 protein is a global regulator. Moreover, the ∆BCAS0292 mutant showed a range of pleiotropic effects: virulence and host-cell attachment were reduced, antibiotic susceptibility was altered, and biofilm formation enhanced. Its growth and survival were impaired in 6% oxygen. In silico prediction of its three-dimensional structure revealed BCAS0292 presents a dimeric β-structure with a negative surface charge. The ΔBCAS0292 mutant displayed altered DNA supercoiling, implicated in global regulation of gene expression. Three proteins were identified in pull-downs with FLAG-tagged BCAS0292, including the Histone H1-like protein, HctB, which is recognized as a global transcriptional regulator. We propose that BCAS0292 protein, which we have named Burkholderia negatively surface-charged regulatory protein 1 (Bnr1), acts as a DNA-mimic and binds to DNA-binding proteins, altering DNA topology and regulating the expression of multiple genes, thereby enabling the adaptation of B. cenocepacia to highly diverse environments.
Collapse
Affiliation(s)
- Ruth Dennehy
- Centre of Microbial Host InteractionsInstitute of Technology TallaghtDublinIreland
| | - Niamh Duggan
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
- UCD Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinBelfield, DublinIreland
| | - Simon Dignam
- Centre of Microbial Host InteractionsInstitute of Technology TallaghtDublinIreland
| | - Sarah McCormack
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
- UCD Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinBelfield, DublinIreland
| | - Eugene Dillon
- UCD Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinBelfield, DublinIreland
| | - Jessica Molony
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
| | - Maria Romano
- Institute of Biostructures and BioimagingNational Research CouncilNaplesItaly
| | - Yueran Hou
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
- UCD Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinBelfield, DublinIreland
| | - Laura Ardill
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
| | - Matthew V. X. Whelan
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
| | - Zuzanna Drulis‐Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and MicrobiologyUniversity of WroclawWroclawPoland
| | - Tadhg Ó'Cróinín
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
| | - Miguel A. Valvano
- School of Medicine, Dentistry and Biomedical Sciences, Wellcome‐Wolfson Institute for Experimental MedicineQueen's University BelfastBelfastUK
| | - Rita Berisio
- Institute of Biostructures and BioimagingNational Research CouncilNaplesItaly
| | - Siobhán McClean
- Centre of Microbial Host InteractionsInstitute of Technology TallaghtDublinIreland
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
- UCD Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinBelfield, DublinIreland
| |
Collapse
|
6
|
Evaluation of Three Culture Media for Isolation of Burkholderia cepacia Complex from Respiratory Samples of Patients with Cystic Fibrosis. Microorganisms 2021; 9:microorganisms9122604. [PMID: 34946206 PMCID: PMC8705780 DOI: 10.3390/microorganisms9122604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022] Open
Abstract
Burkholderia cepacia complex (BCC) is a significant pathogen causing respiratory disease in individuals with cystic fibrosis (CF). Diagnosis is typically achieved by isolation of BCC on selective culture media following culture of sputum or other respiratory samples. The aim of this study was to compare the efficacy of three commercially available selective media for the isolation of BCC. The three media comprised Burkholderia cepacia selective agar (BCSA; bioMérieux), BD Cepacia medium (BD: Becton–Dickinson) and MAST Cepacia medium (MAST laboratories). Each medium was challenged with 270 respiratory samples from individuals with CF as well as an international collection of BCC (n = 26) and 14 other isolates of Burkholderia species at a range of inocula. The international collection was also used to artificially “spike” 26 respiratory samples. From a total of 34 respiratory samples containing BCC, 97% were recovered on BD and 94% were detected on MAST and BCSA. All three media were effective for isolation of BCC. BCSA was much more selective than the other two media (p < 0.0001) meaning that fewer isolates required processing to exclude the presence of BCC.
Collapse
|
7
|
Burkholderia cepacia Complex, an Emerging Nosocomial Pathogen at Health Care Facilities in Sebha, Libya. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2021. [DOI: 10.52547/jommid.9.4.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Epidemiology of Burkholderia Infections in People with Cystic Fibrosis in Canada between 2000 and 2017. Ann Am Thorac Soc 2021; 17:1549-1557. [PMID: 32946281 DOI: 10.1513/annalsats.201906-443oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Rationale: Infections by Burkholderia species bacteria in cystic fibrosis (CF) may be transmissible, necessitating infection control measures, and remain a serious cause of morbidity and mortality. The last major study of Burkholderia epidemiology in Canada included cases up until July 2000 and was marked by the dominance of a limited number of epidemic clones of Burkholderia cenocepacia.Objectives: Describe the nationwide epidemiology of Burkholderia species infections in people with cystic fibrosis in Canada over the 17-year period since 2000.Methods: Isolates were collected from across Canada between August 2000 and July 2017 and identified to the species and, for isolates between 2015 and 2017, strain level.Results: We analyzed 1,362 Burkholderia isolates from at least 396 people with CF. Forty-nine percent (n = 666) of all isolates and 47% (n = 179) of new incident infections were identified as B. multivorans. The incidence of Burkholderia infection in the Canadian CF population did not change between 2000 and 2017 at 6 cases per 1,000 annually. Multilocus sequence typing analysis suggested minimal sharing of clones in Canada.Conclusions: The epidemiology of Burkholderia in CF in Canada has shifted from limited numbers of epidemic strains of B. cenocepacia to largely nonclonal isolates of B. multivorans, B. cenocepacia, and other species. Despite widespread infection control, however, Burkholderia species bacteria continue to be acquired by people with CF at an unchanged rate, posing a continued hazard.
Collapse
|
9
|
Youenou B, Chauviat A, Ngari C, Poulet V, Nazaret S. In vitro study to evaluate the antimicrobial activity of various multifunctional cosmetic ingredients and chlorphenesin on bacterial species at risk in the cosmetic industry. J Appl Microbiol 2021; 132:933-948. [PMID: 34333822 DOI: 10.1111/jam.15245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/18/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022]
Abstract
AIMS We evaluated the activity of the preservative chlorphenesin and of four antimicrobial cosmetic multifunctional ingredients against various strains of gram-negative and gram-positive human opportunistic pathogens. METHODS AND RESULTS Growth kinetics, modelling growth parameters and statistical analyses enabled comparing bacterial behaviour in the presence and in the absence of the compound. Whatever compound tested (i.e. chlorphenesin, phenylpropanol, hexanediol, ethylhexylglycerin, hydroxyacetophenone) and strain origin (i.e. clinical versus industrial), the growth of 42 strains belonging to Acinetobacter spp., Burkholderia cepacia complex and Stenotrophomonas maltophilia, was totally inhibited. On the opposite all of the P. aeruginosa strains (n = 13) as well as 4 and 6 out of 10 strains of Pluralibacter gergoviae grew in the presence of chlorphenesin and ethylhexylglycerin, respectively. Some P. gergoviae and Staphylococcus hominis strains withstand hydroxyacetophenone. Within a species, the different strains show variable latency phase, growth rate (r) and carrying capacity (K). They can be similar, lower or higher than those measured in control conditions. CONCLUSIONS Data showed differences in the antimicrobial activity of compounds. Upon exposure, strains differed in their behaviour between and within species. Whatever species and strains, compound sensitivity could not be related to antibiotic resistance. SIGNIFICANCE AND IMPACT OF THE STUDY Most multifunctional ingredients showed significant antimicrobial properties against the wide panel of species and strains evaluated. This will help adjusting preservation strategies in the cosmetic industry.
Collapse
Affiliation(s)
- Benjamin Youenou
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| | - Amandine Chauviat
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| | | | | | - Sylvie Nazaret
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
10
|
Outbreak of Burkholderia contaminans endophthalmitis traced to a clinic ventilation system. Infect Control Hosp Epidemiol 2021; 43:1705-1707. [PMID: 34250879 DOI: 10.1017/ice.2021.298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We describe the follow-up investigation of an outbreak of endophthalmitis due to Burkholderia contaminans following cataract surgery in a single clinic. Whole-genome sequence analysis of bacteria recovered from affected patients and the clinic identified the clinic's ventilation system as the source of infection.
Collapse
|
11
|
Dagher F, Olishevska S, Philion V, Zheng J, Déziel E. Development of a novel biological control agent targeting the phytopathogen Erwinia amylovora. Heliyon 2020; 6:e05222. [PMID: 33102848 PMCID: PMC7578203 DOI: 10.1016/j.heliyon.2020.e05222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/18/2020] [Accepted: 10/08/2020] [Indexed: 10/27/2022] Open
Abstract
Antibiotics are used extensively to control animal, plant, and human pathogens. They are sprayed on apple and pear orchards to control the bacterium Erwinia amylovora, the causative agent of fire blight. This phytopathogen is developing antibiotic resistance and alternatives either have less efficacy, are phytotoxic, or more management intensive. The objective of our study was to develop an effective biological control agent colonizing the host plant and competing with Erwinia amylovora. It must not be phytotoxic, have a wide spectrum of activity, and be unlikely to induce resistance in the pathogen. To this end, several bacterial isolates from various environmental samples were screened to identify suitable candidates that are antagonistic to E. amylovora. We sampled bacteria from the flowers, leaves, and soil from apple and pear orchards from the springtime bloom period until the summer. The most effective bacteria, including isolates of Pseudomonas poae, Paenibacillus polymyxa, Bacillus amyloliquefaciens and Pantoea agglomerans, were tested in vitro and in vivo and formulated into products containing both the live strains and their metabolites that were stable for at least 9 months. Trees treated with the product based on P. agglomerans NY60 had significantly less fire blight than the untreated control and were statistically not different from streptomycin-treated control trees. With P. agglomerans NY60, fire blight never extended beyond the central vein of the inoculated leaf. The fire blight median disease severity score, 10 days after inoculation, was up to 70% less severe on trees treated with P. agglomerans NY60 as compared to untreated controls.
Collapse
Affiliation(s)
- Fadi Dagher
- INRS-Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | | | | | - Jie Zheng
- US Food and Drug Administration Regulatory Science Center for Food Safety and Applied Nutrition, 5100, Paint Branch Parkway, College Park, MD, USA
| | - Eric Déziel
- INRS-Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| |
Collapse
|
12
|
Kong P, Hong C. A Potent Burkholderia Endophyte against Boxwood Blight Caused by Calonectria pseudonaviculata. Microorganisms 2020; 8:microorganisms8020310. [PMID: 32102347 PMCID: PMC7074863 DOI: 10.3390/microorganisms8020310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 11/16/2022] Open
Abstract
Calonectria pseudonaviculata (Cps) poses an increasing threat to boxwood, a major nursery crop and iconic landscape plant worldwide. Here, we report on a potent biocontrol agent that produces small sage green (SSG) colonies on potato dextrose agar. SSG is a bacterial strain recovered from Justin Brouwers boxwood leaves with unusual response to Cps inoculation. Water-soaked symptoms developed on leaves 2 days after inoculation then disappeared a few days later. This endophyte affected several major steps of the boxwood blight disease cycle. SSG at 107 cfu/mL lysed all conidia in mixed broth culture. SSG at 108 cfu/mL reduced blight incidence by >98% when applied one day before or 3 h after boxwood were inoculated with Cps. Its control efficacy decreased with decreasing bacterial concentration to 103 cfu/mL and increasing lead time up to 20 days. When applied on diseased leaf litter under boxwood plants, SSG reduced Cps sporulation and consequently mitigated blight incidence by 90%. SSG was identified as a new member of the Burkholderia cepacia complex with distinct characters from known clinical strains. With these protective, curative, and sanitizing properties, this Burkholderia endophyte offers great promise for sustainable blight management at production and in the landscape.
Collapse
Affiliation(s)
- Ping Kong
- Correspondence: ; Tel.: +1-757-363-3941
| | | |
Collapse
|
13
|
Phenylacetyl Coenzyme A, Not Phenylacetic Acid, Attenuates CepIR-Regulated Virulence in Burkholderia cenocepacia. Appl Environ Microbiol 2019; 85:AEM.01594-19. [PMID: 31585996 DOI: 10.1128/aem.01594-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/30/2019] [Indexed: 11/20/2022] Open
Abstract
During phenylalanine catabolism, phenylacetic acid (PAA) is converted to phenylacetyl coenzyme A (PAA-CoA) by a ligase, PaaK, and then PAA-CoA is epoxidized by a multicomponent monooxygenase, PaaABCDE, before further degradation through the tricarboxylic acid (TCA) cycle. In the opportunistic pathogen Burkholderia cenocepacia, loss of paaABCDE attenuates virulence factor expression, which is under the control of the LuxIR-like quorum sensing (QS) system, CepIR. To further investigate the link between CepIR-regulated virulence and PAA catabolism, we created knockout mutants of the first step of the pathway (PAA-CoA synthesis by PaaK) and characterized them in comparison to a paaABCDE mutant using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and virulence assays. We found that while loss of PaaABCDE decreased virulence, deletion of the paaK genes resulted in a more virulent phenotype than that of the wild-type strain. Deletion of either paaK or paaABCDE led to higher levels of released PAA but no differences in levels of internal accumulation compared to the wild-type level. While we found no evidence of direct cepIR downregulation by PAA-CoA or PAA, a low-virulence cepR mutant reverted to a virulent phenotype upon removal of the paaK genes. On the other hand, removal of paaABCDE in the cepR mutant did not impact its attenuated phenotype. Together, our results suggest an indirect role for PAA-CoA in suppressing B. cenocepacia CepIR-activated virulence.IMPORTANCE The opportunistic pathogen Burkholderia cenocepacia uses a chemical signal process called quorum sensing (QS) to produce virulence factors. In B. cenocepacia, QS relies on the presence of the transcriptional regulator CepR which, upon binding QS signal molecules, activates virulence. In this work, we found that even in the absence of CepR, B. cenocepacia can elicit a pathogenic response if phenylacetyl-CoA, an intermediate of the phenylacetic acid degradation pathway, is not produced. Instead, accumulation of phenylacetyl-CoA appears to attenuate pathogenicity. Therefore, we have discovered that it is possible to trigger virulence in the absence of CepR, challenging the classical view of activation of virulence by this QS mechanism. Our work provides new insight into the relationship between metabolism and virulence in opportunistic bacteria. We propose that in the event that QS signaling molecules cannot accumulate to trigger a pathogenic response, a metabolic signal can still activate virulence in B. cenocepacia.
Collapse
|
14
|
Abstract
With the improving survival of cystic fibrosis (CF) patients and the advent of highly effective cystic fibrosis transmembrane conductance regulator therapy, the clinical spectrum of this complex multisystem disease continues to evolve. One of the most important clinical events for patients with CF in the course of this disease is an acute pulmonary exacerbation. Clinical and microbial epidemiology studies of CF pulmonary exacerbations continue to provide important insight into the disease course, prognosis, and complications. This work has now led to a number of large scale clinical trials with the goal of improving the treatment paradigm for CF pulmonary exacerbation. The primary goal of this review is to provide a summary of the pathophysiology, the clinical epidemiology, microbial epidemiology, outcome and the treatment of CF pulmonary exacerbation.
Collapse
Affiliation(s)
- Christopher H Goss
- CFF Therapeutics Development Network Coordinating Center, Department of Pediatrics, Seattle Children's Research Institute, Seattle, Washington.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine and Pediatrics, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
15
|
Devanga Ragupathi NK, Veeraraghavan B. Accurate identification and epidemiological characterization of Burkholderia cepacia complex: an update. Ann Clin Microbiol Antimicrob 2019; 18:7. [PMID: 30717798 PMCID: PMC6360774 DOI: 10.1186/s12941-019-0306-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 01/25/2019] [Indexed: 12/16/2022] Open
Abstract
Bacteria belonging to the Burkholderia cepacia complex (Bcc) are among the most important pathogens isolated from cystic fibrosis (CF) patients and in hospital acquired infections (HAI). Accurate identification of Bcc is questionable by conventional biochemical methods. Clonal typing of Burkholderia is also limited due to the problem with identification. Phenotypic identification methods such as VITEK2, protein signature identification methods like VITEK MS, Bruker Biotyper, and molecular targets such as 16S rRNA, recA, hisA and rpsU were reported with varying level of discrimination to identify Bcc. rpsU and/or 16S rRNA sequencing, VITEK2, VITEK MS and Bruker Biotyper could discriminate between Burkholderia spp. and non-Burkholderia spp. Whereas, Bcc complex level identification can be given by VITEK MS, Bruker Biotyper, and 16S rRNA/rpsU/recA/hisA sequencing. For species level identification within Bcc hisA or recA sequencing are reliable. Identification of Bcc is indispensable in CF patients and HAI to ensure appropriate antimicrobial therapy.
Collapse
Affiliation(s)
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, 632004, India.
| |
Collapse
|
16
|
A selective genome-guided method for environmental Burkholderia isolation. J Ind Microbiol Biotechnol 2019; 46:345-362. [PMID: 30680473 DOI: 10.1007/s10295-018-02121-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/19/2018] [Indexed: 12/31/2022]
Abstract
The genus Burkholderia is an emerging source of novel natural products chemistry, yet to date few methods exist for the selective isolation of strains of this genus from the environment. More broadly, tools to efficiently design selection media for any given genus would be of significant value to the natural products and microbiology communities. Using a modification of the recently published SMART protocol, we have developed a two-stage isolation protocol for strains from the genus Burkholderia. This method uses a combination of selective agar isolation media and multiplexed PCR profiling to derive Burkholderia strains from environmental samples with 95% efficiency. Creation of this new method paves the way for the systematic exploration of natural products chemistry from this important genus and offers new insight into potential methods for selective isolation method development for other priority genera.
Collapse
|
17
|
Bardet L, Rolain JM. Development of New Tools to Detect Colistin-Resistance among Enterobacteriaceae Strains. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2018; 2018:3095249. [PMID: 30631384 PMCID: PMC6305056 DOI: 10.1155/2018/3095249] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/11/2018] [Indexed: 12/27/2022]
Abstract
The recent discovery of the plasmid-mediated mcr-1 gene conferring resistance to colistin is of clinical concern. The worldwide screening of this resistance mechanism among samples of different origins has highlighted the urgent need to improve the detection of colistin-resistant isolates in clinical microbiology laboratories. Currently, phenotypic methods used to detect colistin resistance are not necessarily suitable as the main characteristic of the mcr genes is the low level of resistance that they confer, close to the clinical breakpoint recommended jointly by the CLSI and EUCAST expert systems (S ≤ 2 mg/L and R > 2 mg/L). In this context, susceptibility testing recommendations for polymyxins have evolved and are becoming difficult to implement in routine laboratory work. The large number of mechanisms and genes involved in colistin resistance limits the access to rapid detection by molecular biology. It is therefore necessary to implement well-defined protocols using specific tools to detect all colistin-resistant bacteria. This review aims to summarize the current clinical microbiology diagnosis techniques and their ability to detect all colistin resistance mechanisms and describe new tools specifically developed to assess plasmid-mediated colistin resistance. Phenotyping, susceptibility testing, and genotyping methods are presented, including an update on recent studies related to the development of specific techniques.
Collapse
Affiliation(s)
- Lucie Bardet
- Aix-Marseille Université, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Jean-Marc Rolain
- Aix-Marseille Université, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
18
|
Edler C, Derschum H, Köhler M, Neubauer H, Frickmann H, Hagen RM. Comparison of Mast Burkholderia Cepacia, Ashdown + Gentamicin, and Burkholderia Pseudomallei Selective Agar for the Selective Growth of Burkholderia Spp. Eur J Microbiol Immunol (Bp) 2017; 7:15-36. [PMID: 28386468 PMCID: PMC5372478 DOI: 10.1556/1886.2016.00037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/05/2016] [Indexed: 01/16/2023] Open
Abstract
Reliable identification of pathogenic Burkholderia spp. like Burkholderia mallei and Burkholderia pseudomallei in clinical samples is desirable. Three different selective media were assessed for reliability and selectivity with various Burkholderia spp. and nontarget organisms. Mast Burkholderia cepacia agar, Ashdown + gentamicin agar, and B. pseudomallei selective agar were compared. A panel of 116 reference strains and well-characterized clinical isolates, comprising 30 B. pseudomallei, 20 B. mallei, 18 other Burkholderia spp., and 48 nontarget organisms, was used for this assessment. While all B. pseudomallei strains grew on all three tested selective agars, the other Burkholderia spp. showed a diverse growth pattern. Nontarget organisms, i.e., nonfermentative rod-shaped bacteria, other species, and yeasts, grew on all selective agars. Colony morphology did not allow unambiguous discrimination. While the assessed selective media reliably allowed the growth of a wide range of B. pseudomallei strains, growth of other Burkholderia spp. is only partially ensured. Growth of various nontarget organisms has to be considered. Therefore, the assessed media can only be used in combination with other confirmative tests in the diagnostic procedure for the screening for melioidosis or glanders.
Collapse
Affiliation(s)
- Carola Edler
- Department of Dermatology, German Armed Forces Hospital of Hamburg , Hamburg, Germany
| | - Henri Derschum
- CBRN Defence, Safety and Environmental Protection School, Science Division
| | | | - Heinrich Neubauer
- Friedrich Loeffler Institute, Federal Research Institute for Animal Health , Jena, Germany
| | - Hagen Frickmann
- Department of Tropical Medicine at the Bernhard Nocht Institute, German Armed Forces Hospital of Hamburg, Hamburg, Germany; Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Ralf Matthias Hagen
- Department of Preventive Medicine, Bundeswehr Medical Academy , Munich, Germany
| |
Collapse
|
19
|
Youenou B, Hien E, Deredjian A, Brothier E, Favre-Bonté S, Nazaret S. Impact of untreated urban waste on the prevalence and antibiotic resistance profiles of human opportunistic pathogens in agricultural soils from Burkina Faso. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:25299-25311. [PMID: 27696161 DOI: 10.1007/s11356-016-7699-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
This study examined the long-term effects of the landfill disposal of untreated urban waste for soil fertilization on the prevalence and antibiotic resistance profiles of various human opportunistic pathogens in soils from Burkina Faso. Samples were collected at three sites in the periphery of Ouagadougou during two campaigns in 2008 and 2011. At each site, amendment led to changes in physico-chemical characteristics as shown by the increase in pH, CEC, total C, total N, and metal contents. Similarly, the numbers of total heterotrophic bacteria were higher in the amended fields than in the control ones. No sanitation indicators, i.e., coliforms, Staphylococci, and Enterococci, were detected. Pseudomonas aeruginosa and Burkholderia cepacia complex (Bcc) were detected at a low level in one amended field. Stenotrophomonas maltophilia was detected from both campaigns at the three sites in the amended fields and only once in an unamended field. Diversity analysis showed some opportunistic pathogen isolates to be closely related to reference clinical strains responsible for nosocomial- or community-acquired infections in Northern countries. Antibiotic resistance tests showed that P. aeruginosa and Bcc isolates had a wild-type phenotype and that most S. maltophilia isolates had a multi-drug resistance profile with resistance to 7 to 15 antibiotics. Then we were able to show that amendment led to an increase of some human opportunistic pathogens including multi-drug resistant isolates. Although the application of untreated urban waste increases both soil organic matter content and therefore soil fertility, the consequences of this practice on human health should be considered.
Collapse
Affiliation(s)
- Benjamin Youenou
- Research Group on « Multi-résistance environnementale et efflux bactérien», UMR 5557 Ecologie Microbienne, CNRS, VetAgro Sup and Université Lyon 1, 43, Boulevard du 11 Novembre 1918, Villeurbanne Cedex, 69622, Villeurbanne, France
| | - Edmond Hien
- LMI IESOL, UMR Eco&Sols, IRD-Université de Ouagadougou, UFR/SVT 03 BP 7021, Ouagadougou, Burkina Faso
| | - Amélie Deredjian
- Research Group on « Multi-résistance environnementale et efflux bactérien», UMR 5557 Ecologie Microbienne, CNRS, VetAgro Sup and Université Lyon 1, 43, Boulevard du 11 Novembre 1918, Villeurbanne Cedex, 69622, Villeurbanne, France
| | - Elisabeth Brothier
- Research Group on « Multi-résistance environnementale et efflux bactérien», UMR 5557 Ecologie Microbienne, CNRS, VetAgro Sup and Université Lyon 1, 43, Boulevard du 11 Novembre 1918, Villeurbanne Cedex, 69622, Villeurbanne, France
| | - Sabine Favre-Bonté
- Research Group on « Multi-résistance environnementale et efflux bactérien», UMR 5557 Ecologie Microbienne, CNRS, VetAgro Sup and Université Lyon 1, 43, Boulevard du 11 Novembre 1918, Villeurbanne Cedex, 69622, Villeurbanne, France
| | - Sylvie Nazaret
- Research Group on « Multi-résistance environnementale et efflux bactérien», UMR 5557 Ecologie Microbienne, CNRS, VetAgro Sup and Université Lyon 1, 43, Boulevard du 11 Novembre 1918, Villeurbanne Cedex, 69622, Villeurbanne, France.
| |
Collapse
|
20
|
Dennehy R, Romano M, Ruggiero A, Mohamed YF, Dignam SL, Mujica Troncoso C, Callaghan M, Valvano MA, Berisio R, McClean S. The Burkholderia cenocepacia peptidoglycan-associated lipoprotein is involved in epithelial cell attachment and elicitation of inflammation. Cell Microbiol 2016; 19. [PMID: 27886433 DOI: 10.1111/cmi.12691] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/18/2016] [Accepted: 11/03/2016] [Indexed: 12/26/2022]
Abstract
The Burkholderia cepacia complex (Bcc) is a group of Gram-negative opportunistic pathogens causing infections in people with cystic fibrosis (CF). Bcc is highly antibiotic resistant, making conventional antibiotic treatment problematic. The identification of novel targets for anti-virulence therapies should improve therapeutic options for infected CF patients. We previously identified that the peptidoglycan-associated lipoprotein (Pal) was immunogenic in Bcc infected CF patients; however, its role in Bcc pathogenesis is unknown. The virulence of a pal deletion mutant (Δpal) in Galleria mellonella was 88-fold reduced (p < .001) compared to wild type. The lipopolysaccharide profiles of wild type and Δpal were identical, indicating no involvement of Pal in O-antigen transport. However, Δpal was more susceptible to polymyxin B. Structural elucidation by X-ray crystallography and calorimetry demonstrated that Pal binds peptidoglycan fragments. Δpal showed a 1.5-fold reduced stimulation of IL-8 in CF epithelial cells relative to wild type (p < .001), demonstrating that Pal is a significant driver of inflammation. The Δpal mutant had reduced binding to CFBE41o- cells, but adhesion of Pal-expressing recombinant E. coli to CFBE41o- cells was enhanced compared to wild-type E. coli (p < .0001), confirming that Pal plays a direct role in host cell attachment. Overall, Bcc Pal mediates host cell attachment and stimulation of cytokine secretion, contributing to Bcc pathogenesis.
Collapse
Affiliation(s)
- Ruth Dennehy
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, Ireland
| | - Maria Romano
- National Research Council, Institute of Biostructures and Bioimaging, Naples, Italy
| | - Alessia Ruggiero
- National Research Council, Institute of Biostructures and Bioimaging, Naples, Italy
| | - Yasmine F Mohamed
- Centre for Experimental Medicine, Queen's University, Belfast, Northern Ireland.,Faculty of Pharmacy, Department of Microbiology, Alexandria University, Alexandria, Egypt
| | - Simon L Dignam
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, Ireland
| | | | - Máire Callaghan
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, Ireland
| | - Miguel A Valvano
- Centre for Experimental Medicine, Queen's University, Belfast, Northern Ireland
| | - Rita Berisio
- National Research Council, Institute of Biostructures and Bioimaging, Naples, Italy
| | - Siobhán McClean
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, Ireland
| |
Collapse
|
21
|
Shastri S, Spiewak HL, Sofoluwe A, Eidsvaag VA, Asghar AH, Pereira T, Bull EH, Butt AT, Thomas MS. An efficient system for the generation of marked genetic mutants in members of the genus Burkholderia. Plasmid 2016; 89:49-56. [PMID: 27825973 PMCID: PMC5312678 DOI: 10.1016/j.plasmid.2016.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/24/2016] [Accepted: 11/04/2016] [Indexed: 12/22/2022]
Abstract
To elucidate the function of a gene in bacteria it is vital that targeted gene inactivation (allelic replacement) can be achieved. Allelic replacement is often carried out by disruption of the gene of interest by insertion of an antibiotic-resistance marker followed by subsequent transfer of the mutant allele to the genome of the host organism in place of the wild-type gene. However, due to their intrinsic resistance to many antibiotics only selected antibiotic-resistance markers can be used in members of the genus Burkholderia, including the Burkholderia cepacia complex (Bcc). Here we describe the construction of improved antibiotic-resistance cassettes that specify resistance to kanamycin, chloramphenicol or trimethoprim effectively in the Bcc and related species. These were then used in combination with and/or to construct a series enhanced suicide vectors, pSHAFT2, pSHAFT3 and pSHAFT-GFP to facilitate effective allelic replacement in the Bcc. Validation of these improved suicide vectors was demonstrated by the genetic inactivation of selected genes in the Bcc species Burkholderia cenocepacia and B. lata, and in the non-Bcc species, B. thailandensis. We have constructed antibiotic-resistance cassettes and suicide vectors for use in Burkholderia and related species. These vectors facilitate construction of mutants by gene disruption with antibiotic-resistance markers. We have validated the utility of the vectors for marked genetic inactivation in members of the genus Burkholderia.
Collapse
Affiliation(s)
- Sravanthi Shastri
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Helena L Spiewak
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Aderonke Sofoluwe
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Vigdis A Eidsvaag
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Atif H Asghar
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Tyrone Pereira
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Edward H Bull
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Aaron T Butt
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Mark S Thomas
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK,.
| |
Collapse
|
22
|
Vicenzi FJ, Pillonetto M, Souza HAPHDMD, Palmeiro JK, Riedi CA, Rosario-Filho NA, Dalla-Costa LM. Polyphasic characterisation of Burkholderia cepaciacomplex species isolated from children with cystic fibrosis. Mem Inst Oswaldo Cruz 2016; 111:37-42. [PMID: 26814642 PMCID: PMC4727434 DOI: 10.1590/0074-02760150314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/01/2015] [Indexed: 01/04/2025] Open
Abstract
Cystic fibrosis (CF) patients with Burkholderia cepacia complex
(Bcc) pulmonary infections have high morbidity and mortality. The aim of this study
was to compare different methods for identification of Bcc species isolated from
paediatric CF patients. Oropharyngeal swabs from children with CF were used to obtain
isolates of Bcc samples to evaluate six different tests for strain identification.
Conventional (CPT) and automatised (APT) phenotypic tests, polymerase chain reaction
(PCR)-recA, restriction fragment length
polymorphism-recA, recAsequencing, and
matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) were applied.
Bacterial isolates were also tested for antimicrobial susceptibility.
PCR-recA analysis showed that 36 out of the 54 isolates were Bcc.
Kappa index data indicated almost perfect agreement between CPT and APT, CPT and
PCR-recA, and APT and PCR-recA to identify Bcc,
and MALDI-TOF and recAsequencing to identify Bcc species. The
recAsequencing data and the MALDI-TOF data agreed in 97.2% of the
isolates. Based on recA sequencing, the most common species
identified were Burkholderia cenocepacia IIIA
(33.4%),Burkholderia vietnamiensis (30.6%), B.
cenocepaciaIIIB (27.8%), Burkholderia multivorans
(5.5%), and B. cepacia (2.7%). MALDI-TOF proved to be a useful tool
for identification of Bcc species obtained from CF patients, although it was not able
to identify B. cenocepacia subtypes.
Collapse
Affiliation(s)
| | - Marcelo Pillonetto
- Departamento de Microbiologia, Escola de Saúde e Biociências, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brasil
| | | | - Jussara Kasuko Palmeiro
- Instituto de Pesquisa Pelé Pequeno Principe, Faculdades Pequeno Príncipe, Curitiba, PR, Brasil
| | - Carlos Antônio Riedi
- Departamento de Pediatria, Faculdade de Medicina, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | | | | |
Collapse
|
23
|
Linocin and OmpW Are Involved in Attachment of the Cystic Fibrosis-Associated Pathogen Burkholderia cepacia Complex to Lung Epithelial Cells and Protect Mice against Infection. Infect Immun 2016; 84:1424-1437. [PMID: 26902727 DOI: 10.1128/iai.01248-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/15/2016] [Indexed: 11/20/2022] Open
Abstract
Members of the Burkholderia cepacia complex (Bcc) cause chronic opportunistic lung infections in people with cystic fibrosis (CF), resulting in a gradual lung function decline and, ultimately, patient death. The Bcc is a complex of 20 species and is rarely eradicated once a patient is colonized; therefore, vaccination may represent a better therapeutic option. We developed a new proteomics approach to identify bacterial proteins that are involved in the attachment of Bcc bacteria to lung epithelial cells. Fourteen proteins were reproducibly identified by two-dimensional gel electrophoresis from four Bcc strains representative of two Bcc species: Burkholderia cenocepacia, the most virulent, and B. multivorans, the most frequently acquired. Seven proteins were identified in both species, but only two were common to all four strains, linocin and OmpW. Both proteins were selected based on previously reported data on these proteins in other species. Escherichia coli strains expressing recombinant linocin and OmpW showed enhanced attachment (4.2- and 3.9-fold) to lung cells compared to the control, confirming that both proteins are involved in host cell attachment. Immunoproteomic analysis using serum from Bcc-colonized CF patients confirmed that both proteins elicit potent humoral responses in vivo Mice immunized with either recombinant linocin or OmpW were protected from B. cenocepacia and B. multivorans challenge. Both antigens induced potent antigen-specific antibody responses and stimulated strong cytokine responses. In conclusion, our approach identified adhesins that induced excellent protection against two Bcc species and are promising vaccine candidates for a multisubunit vaccine. Furthermore, this study highlights the potential of our proteomics approach to identify potent antigens against other difficult pathogens.
Collapse
|
24
|
Evaluation of Various Culture Media for Detection of Rapidly Growing Mycobacteria from Patients with Cystic Fibrosis. J Clin Microbiol 2016; 54:1797-1803. [PMID: 27098962 DOI: 10.1128/jcm.00471-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/16/2016] [Indexed: 11/20/2022] Open
Abstract
Isolation of nontuberculous mycobacteria (NTM) from the sputum of patients with cystic fibrosis (CF) is challenging due to overgrowth by rapidly growing species that colonize the lungs of patients with CF. Extended incubation on Burkholderia cepacia selective agar (BCSA) has been recommended as an expedient culture method for the isolation of rapidly growing NTM in this setting. The aim of this study was to assess five selective media designed for the isolation of Burkholderia cepacia complex, along with two media designed for the isolation of mycobacteria (rapidly growing mycobacteria [RGM] medium and Middlebrook 7H11 agar), for their abilities to isolate NTM. All seven media were challenged with 147 isolates of rapidly growing mycobacteria and 185 isolates belonging to other species. RGM medium was then compared with the most selective brand of BCSA for the isolation of NTM from 224 sputum samples from patients with CF. Different agars designed for the isolation of B. cepacia complex varied considerably in their inhibition of other bacteria and fungi. RGM medium supported the growth of all isolates of mycobacteria and was more selective than any other medium. NTM were recovered from 17 of 224 sputum samples using RGM medium, compared with only 7 samples using the most selective brand of BCSA (P = 0.023). RGM medium offers a superior option, compared to other selective agars, for the isolation of rapidly growing mycobacteria from the sputum of patients with CF. Furthermore, the convenience of using RGM medium enables routine screening for rapidly growing NTM in all submitted sputum samples from patients with CF.
Collapse
|
25
|
Peeters C, Depoorter E, Praet J, Vandamme P. Extensive cultivation of soil and water samples yields various pathogens in patients with cystic fibrosis but not Burkholderia multivorans. J Cyst Fibros 2016; 15:769-775. [PMID: 26996269 DOI: 10.1016/j.jcf.2016.02.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND While the epidemiology of Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) patients suggests that Burkholderia multivorans is acquired from environmental sources, this species has rarely been isolated from soil and water samples. METHODS Multiple isolation strategies were applied to water and soil samples that were previously shown to be B. multivorans PCR positive. These included direct plating and liquid enrichment procedures and the use of selective media, acclimatizing recovery and co-cultivation with CF sputum. MALDI-TOF mass spectrometry and sequence analysis of 16S rRNA and housekeeping genes were used to identify all isolates. RESULTS None of the approaches yielded B. multivorans isolates. Other Burkholderia species, several Gram-negative non-fermenting bacteria (including Cupriavidus, Inquilinus, Pandoraea, Pseudomonas and Stenotrophomonas) and rapidly growing mycobacteria (including Mycobacterium chelonae) were all isolated from water and soil samples. CONCLUSIONS The use of Bcc isolation media yielded a surprisingly wide array of rare but often clinically relevant CF pathogens, confirming that soil and water are reservoirs of these infectious agents.
Collapse
Affiliation(s)
- Charlotte Peeters
- Laboratory of Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium.
| | - Eliza Depoorter
- Laboratory of Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium.
| | - Jessy Praet
- Laboratory of Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium.
| | - Peter Vandamme
- Laboratory of Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium.
| |
Collapse
|
26
|
Martinucci M, Roscetto E, Iula VD, Votsi A, Catania MR, De Gregorio E. Accurate identification of members of the Burkholderia cepacia complex in cystic fibrosis sputum. Lett Appl Microbiol 2016; 62:221-9. [PMID: 26671758 DOI: 10.1111/lam.12537] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/11/2015] [Accepted: 12/04/2015] [Indexed: 11/28/2022]
Abstract
UNLABELLED The Burkholderia cepacia complex (BCC) is a group of closely related species which includes opportunistic pathogens causing chronic respiratory infections in immunocompromised patients, or individuals affected by cystic fibrosis (CF). Other Burkholderia species causing infection in the CF population are Burkholderia gladioli and Burkholderia pseudomallei. Traditional phenotypic analyses have been demonstrated to be inadequate for reliable identifications of isolates of BCC and B. gladioli. A pan-genomic analysis approach was used to design species-specific probes for Burkholderia cenocepacia, B. cepacia, Burkholderia multivorans, Burkholderia vietnamiensis, Burkholderia ambifaria, Burkholderia dolosa, Burkholderia pyrrocinia and B. gladioli. Multiplex real-time PCR assay was developed and tested using sputum specimens collected from CF patients spiked with Burkholderia species. The assay exhibited 100% sensitivity for all eight target species and detected 10(2) to 10(3) CFU ml(-1) when applied to spiked sputum. Our PCR assay resulted highly specific for each of the Burkholderia species tested, allowing discrimination among Burkholderia and non-Burkholderia pathogens. Analysis carried out on 200 sputa positive for the presence of Burkholderia revealed that PCR assay and recA sequencing were fully comparable for identification of Burkholderia at the level of species. SIGNIFICANCE AND IMPACT OF THE STUDY Burkholderia cepacia complex (BCC) has a complex taxonomic organization and its identification is a challenge for microbiology laboratories. Nonidentification or misidentification of BCC isolates represent a problem in epidemiology and treatment of cystic fibrosis patients. The high specificity and sensitivity of the multiplex Real-time PCR assay developed in this study indicates its potential to be a rapid and reliable method for the detection of Burkholderia at the level of species from sputum samples of cystic fibrosis patients.
Collapse
Affiliation(s)
- M Martinucci
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - E Roscetto
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - V D Iula
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - A Votsi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - M R Catania
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - E De Gregorio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
| |
Collapse
|
27
|
Murphy MP, Caraher E. Residence in biofilms allows Burkholderia cepacia complex (Bcc) bacteria to evade the antimicrobial activities of neutrophil-like dHL60 cells. Pathog Dis 2015; 73:ftv069. [PMID: 26371179 DOI: 10.1093/femspd/ftv069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2015] [Indexed: 12/14/2022] Open
Abstract
Bacteria of the Burkholderia cepacia complex (Bcc) persist in the airways of people with cystic fibrosis (CF) despite the continuous recruitment of neutrophils. Most members of Bcc are multidrug resistant and can form biofilms. As such, we sought to investigate whether biofilm formation plays a role in protecting Bcc bacteria from neutrophils. Using the neutrophil-like, differentiated cell line, dHL60, we have shown for the first time that Bcc biofilms are enhanced in the presence of these cells. Biofilm biomass was greater following culture in the presence of dHL60 cells than in their absence, likely the result of incorporating dHL60 cellular debris into the biofilm. Moreover, we have demonstrated that mature biofilms (cultured for up to 72 h) induced necrosis in the cells. Established biofilms also acted as a barrier to the migration of the cells and masked the bacteria from being recognized by the cells; dHL60 cells expressed less IL-8 mRNA and secreted significantly less IL-8 when cultured in the presence of biofilms, with respect to planktonic bacteria. Our findings provide evidence that biofilm formation can, at least partly, enable the persistence of Bcc bacteria in the CF airway and emphasize a requirement for anti-biofilm therapeutics.
Collapse
Affiliation(s)
- Mark P Murphy
- Centre for Microbial-Host Interactions, Institute of Technology Tallaght, Dublin 24, Ireland Centre of Applied Science for Health, Institute of Technology Tallaght, Dublin 24, Ireland
| | - Emma Caraher
- Centre for Microbial-Host Interactions, Institute of Technology Tallaght, Dublin 24, Ireland Centre of Applied Science for Health, Institute of Technology Tallaght, Dublin 24, Ireland
| |
Collapse
|
28
|
O'Driscoll C, Konjek J, Heym B, Fitzgibbon MM, Plant BJ, Ní Chróinín M, Mullane D, Lynch-Healy M, Corcoran GD, Schaffer K, Rogers TR, Prentice MB. Molecular epidemiology of Mycobacterium abscessus complex isolates in Ireland. J Cyst Fibros 2015; 15:179-85. [PMID: 26072272 DOI: 10.1016/j.jcf.2015.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/17/2015] [Accepted: 05/17/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND The Mycobacterium abscessus complex are the rapidly growing mycobacteria (RGM) most commonly causing lung disease, especially in cystic fibrosis (CF) patients. Ireland has the world's highest CF incidence. The molecular epidemiology of M. abscessus complex in Ireland is unreported. METHODS We performed rpoB gene sequencing and multi-locus sequence typing (MLST) on M. abscessus complex strains isolated from thirty-six patients in 2006-2012 (eighteen known CF patients). RESULTS Twenty-eight strains (78%) were M. abscessus subsp. abscessus, eight M. abscessus subsp. massiliense, none were M. abscessus subsp. bolletii. Sequence type 1 (ST1) and ST26 (M. abscessus subsp. abscessus) were commonest. Seven M. abscessus subsp. abscessus STs (25%) were novel (two with novel alleles). Seven M. abscessus subsp. massiliense STs were previously reported (88%), including two ST23, the globally successful clone. In 2012, of 552 CF patients screened, eleven were infected with M. abscessus complex strains (2%). CONCLUSIONS The most prevalent M. abscessus subsp. abscessus and M. abscessus subsp. massiliense strains in Ireland belong to widely-distributed STs, but there is evidence of high M. abscessus subsp. abscessus diversity.
Collapse
Affiliation(s)
- C O'Driscoll
- Department of Microbiology, Cork University Hospital, Cork, Ireland
| | - J Konjek
- EA 3647, Université de Versailles Saint-Quentin-en-Yvelines, 2 avenue de la Source de la Biévre, 78180 Montigny-le-Bretonneux, France
| | - B Heym
- EA 3647, Université de Versailles Saint-Quentin-en-Yvelines, 2 avenue de la Source de la Biévre, 78180 Montigny-le-Bretonneux, France; APHP Hôpitaux Universitaires Paris Ile-de-France Ouest, Service de Microbiologie, Hôpital Ambroise Paré, 9 avenue Charles de Gaulle, 92100 Boulogne-Billancourt, France
| | - M M Fitzgibbon
- Irish Mycobacteria Reference Laboratory, St. James Hospital, Dublin, Ireland
| | - B J Plant
- Cork Adult Cystic Fibrosis Centre, University College Cork, Cork University Hospital, Wilton, Cork, Ireland
| | - M Ní Chróinín
- Department of Paediatrics, Cork University Hospital, Wilton, Cork, Ireland
| | - D Mullane
- Department of Paediatrics, Cork University Hospital, Wilton, Cork, Ireland
| | - M Lynch-Healy
- Department of Microbiology, Cork University Hospital, Cork, Ireland
| | - G D Corcoran
- Department of Microbiology, Cork University Hospital, Cork, Ireland
| | - K Schaffer
- Department of Microbiology, St. Vincent's University Hospital, Dublin, Ireland
| | - T R Rogers
- Irish Mycobacteria Reference Laboratory, St. James Hospital, Dublin, Ireland
| | - M B Prentice
- Department of Microbiology, Cork University Hospital, Cork, Ireland; Department of Pathology, University College Cork, Cork, Ireland; Department of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
29
|
Burkholderia gladioli infection isolated from the blood cultures of newborns in the neonatal intensive care unit. Eur J Clin Microbiol Infect Dis 2015; 34:1533-7. [DOI: 10.1007/s10096-015-2382-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/31/2015] [Indexed: 12/31/2022]
|
30
|
Tyrrell J, Whelan N, Wright C, Sá-Correia I, McClean S, Thomas M, Callaghan M. Investigation of the multifaceted iron acquisition strategies of Burkholderia cenocepacia. Biometals 2015; 28:367-80. [DOI: 10.1007/s10534-015-9840-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/18/2015] [Indexed: 10/23/2022]
|
31
|
Abstract
Phage therapy has been proven to be more effective, in some cases, than conventional antibiotics, especially regarding multidrug-resistant biofilm infections. The objective here was to isolate an anti-Enterococcus faecalis bacteriophage and to evaluate its efficacy against planktonic and biofilm cultures. E. faecalis is an important pathogen found in many infections, including endocarditis and persistent infections associated with root canal treatment failure. The difficulty in E. faecalis treatment has been attributed to the lack of anti-infective strategies to eradicate its biofilm and to the frequent emergence of multidrug-resistant strains. To this end, an anti-E. faecalis and E. faecium phage, termed EFDG1, was isolated from sewage effluents. The phage was visualized by electron microscopy. EFDG1 coding sequences and phylogeny were determined by whole genome sequencing (GenBank accession number KP339049), revealing it belongs to the Spounavirinae subfamily of the Myoviridae phages, which includes promising candidates for therapy against Gram-positive pathogens. This analysis also showed that the EFDG1 genome does not contain apparent harmful genes. EFDG1 antibacterial efficacy was evaluated in vitro against planktonic and biofilm cultures, showing effective lytic activity against various E. faecalis and E. faecium isolates, regardless of their antibiotic resistance profile. In addition, EFDG1 efficiently prevented ex vivo E. faecalis root canal infection. These findings suggest that phage therapy using EFDG1 might be efficacious to prevent E. faecalis infection after root canal treatment.
Collapse
|
32
|
Dolan SA, Dowell E, LiPuma JJ, Valdez S, Chan K, James JF. An Outbreak ofBurkholderia cepaciaComplex Associated with Intrinsically Contaminated Nasal Spray. Infect Control Hosp Epidemiol 2015; 32:804-10. [DOI: 10.1086/660876] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective.To determine the source ofBurkholderia cepaciacomplex associated with a hospital outbreak and describe the measures taken to identify and confirm the source.Setting.A 250-bed, tertiary care pediatric hospital in Denver, Colorado.Methods.An epidemiologic investigation was used to identify possible causes for an apparent outbreak ofB. cepaciacomplex in pediatric patients who had new positive cultures with this organism from December 2003 to February 2004. Chart review, microbiology reports, surgical records, site visits, literature review, staff interviews, and cultures of common products and equipment were performed to determine a source of contamination. Random amplified polymorphic DNA and pulsed-field gel electrophoresis typing, performed by 2 independent laboratories, were used for molecular typing of patient and source isolates.Results.Five pediatric patients had new positiveB. cepaciacomplex cultures from either the sinus or the respiratory tract, and all 5 patients had prior exposure to 0.05% oxymetazoline hydrochloride Major Twice-A-Day 12-hour nasal spray (Proforma, Miami, FL). Four of the 5 patients had isolates that were identical to theB. cepaciacomplex isolates recovered from the unopened Twice-A-Day 12-hour nasal spray.Conclusions.Intrinsic contamination of Major Twice-A-Day 12-hour nasal spray withB. cepaciacomplex resulted in nosocomial transmission to 4 patients at our facility and resulted in a voluntary product recall by the manufacturer.B. cepaciacomplex species are common contaminants of an increasing variety of nonsterile medical products. Enhanced culture techniques may be useful in evaluating possible product contamination, suggesting additional measures that should be considered to assure the safety of products that may be used in high-risk patients.
Collapse
|
33
|
Assessment of microbiological diagnostic procedures for respiratory specimens from cystic fibrosis patients in German laboratories by use of a questionnaire. J Clin Microbiol 2014; 52:977-9. [PMID: 24391197 DOI: 10.1128/jcm.02866-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory specimens from cystic fibrosis (CF) patients challenge microbiological laboratories with their complexity of pathogens and atypical variants. We evaluated the diagnostic procedures in German laboratories by use of a questionnaire. Although most laboratories followed guidelines, some of them served only a small number of patients, while others did not use the recommended selective agars to culture the particular CF-relevant species.
Collapse
|
34
|
Stokell JR, Gharaibeh RZ, Steck TR. Rapid emergence of a ceftazidime-resistant Burkholderia multivorans strain in a Cystic Fibrosis patient. J Cyst Fibros 2013; 12:812-6. [DOI: 10.1016/j.jcf.2013.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 10/27/2022]
|
35
|
Shinoy M, Dennehy R, Coleman L, Carberry S, Schaffer K, Callaghan M, Doyle S, McClean S. Immunoproteomic analysis of proteins expressed by two related pathogens, Burkholderia multivorans and Burkholderia cenocepacia, during human infection. PLoS One 2013; 8:e80796. [PMID: 24260482 PMCID: PMC3829912 DOI: 10.1371/journal.pone.0080796] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/07/2013] [Indexed: 11/18/2022] Open
Abstract
Burkholderia cepacia complex (Bcc) is an opportunistic bacterial pathogen that causes chronic infections in people with cystic fibrosis (CF). It is a highly antibiotic resistant organism and Bcc infections are rarely cleared from patients, once they are colonized. The two most clinically relevant species within Bcc are Burkholderia cenocepacia and Burkholderia multivorans. The virulence of these pathogens has not been fully elucidated and the virulence proteins expressed during human infection have not been identified to date. Furthermore, given its antibiotic resistance, prevention of infection with a prophylactic vaccine may represent a better alternative than eradication of an existing infection. We have compared the immunoproteome of two strains each from these two species of Bcc, with the aim of identifying immunogenic proteins which are common to both species. Fourteen immunoreactive proteins were exclusive to both B. cenocepacia strains, while 15 were exclusive to B. multivorans. A total of 15 proteins were immunogenic across both species. DNA-directed RNA polymerase, GroEL, 38kDa porin and elongation factor-Tu were immunoreactive proteins expressed by all four strains examined. Many proteins which were immunoreactive in both species, warrant further investigations in order to aid in the elucidation of the mechanisms of pathogenesis of this difficult organism. In addition, identification of some of these could also allow the development of protective vaccines which may prevent colonisation.
Collapse
Affiliation(s)
- Minu Shinoy
- Centre of Microbial Host Interactions, ITT Dublin, Tallaght, Dublin, Ireland
| | - Ruth Dennehy
- Centre of Microbial Host Interactions, ITT Dublin, Tallaght, Dublin, Ireland
- Centre of Applied Science for Health, ITT Dublin, Tallaght, Dublin, Ireland
| | - Lorraine Coleman
- Centre of Microbial Host Interactions, ITT Dublin, Tallaght, Dublin, Ireland
- Centre of Applied Science for Health, ITT Dublin, Tallaght, Dublin, Ireland
| | - Stephen Carberry
- Department of Biology, National University of Ireland, Maynooth, Co Kildare, Ireland
| | - Kirsten Schaffer
- Department of Microbiology, St. Vincent's University Hospital, Elm Park, Dublin, Ireland
| | - Máire Callaghan
- Centre of Microbial Host Interactions, ITT Dublin, Tallaght, Dublin, Ireland
- Centre of Applied Science for Health, ITT Dublin, Tallaght, Dublin, Ireland
| | - Sean Doyle
- Department of Biology, National University of Ireland, Maynooth, Co Kildare, Ireland
| | - Siobhán McClean
- Centre of Microbial Host Interactions, ITT Dublin, Tallaght, Dublin, Ireland
- Centre of Applied Science for Health, ITT Dublin, Tallaght, Dublin, Ireland
- * E-mail:
| |
Collapse
|
36
|
Correa-Ruiz A, Girón R, Buendía B, Medina-Pascual MJ, Valenzuela C, López-Brea M, Sáez-Nieto JA. Burkholderia cepacia complex infection in an Adult Cystic Fibrosis unit in Madrid. Enferm Infecc Microbiol Clin 2013; 31:649-54. [PMID: 23528342 DOI: 10.1016/j.eimc.2012.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/30/2012] [Accepted: 12/04/2012] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Burkholderia cepacia complex have emerged as significant pathogens in cystic fibrosis (CF) patients due to the risk of cepacia syndrome and the innate multi-resistance of the microorganisms to antibiotics. The aim of this study was to describe the antimicrobial susceptibility profiles, the genotypes and subtypes of BCC, and the clinical evolution of CF patients with BCC. METHODS The lung function and Brasfield and Shwachman score were assessed in 12 patients. BCC were identified and susceptibility was studied by MicroScan (Siemens). Species and genospecies of BCC were confirmed by molecular methods in a Reference Centre (Majadahonda). RESULTS BCC were identified in 12 of 70 patients (17.1%) over a ten year period. The mean age to colonization by BCC was 24.4 years (SD: 7.71). B. cenocepacia was isolated in 4 patients (33.3%), B. contaminans was isolated in 3 patients (25%), both B. vietnamiensis and B. stabilis were isolated in 2 patients (16.7%), and B. cepacia, B. multivorans and B. late were isolated in one patient (8.3%). Among the B. cenocepacia, subtype IIIa was identified in two strains, and subtype IIIb was identified in the other two strains. There was susceptibility to meropenem in 90% of BCC, 80% to cotrimoxazole, 60% to minocycline, 50% to ceftazidime, and 40% to levofloxacin. CONCLUSIONS B. cenocepacia was the most prevalent species among the BCC isolated in CF adult patients, and subtypes IIIa and IIIb were identified in the 50% of the strains. Meropenem and cotrimoxazole showed the best activity.
Collapse
Affiliation(s)
- Ana Correa-Ruiz
- Servicio de Microbiología, Instituto de Investigación Sanitaria, Hospital de La Princesa, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
BACKGROUND To report the clinical presentations, antibiotic sensitivities, and outcomes of Burkholderia cepacia endophthalmitis. METHODS Retrospective, consecutive, noncomparative, interventional case series. We reviewed case records of culture-proven B. cepacia endophthalmitis from the endophthalmitis registry between January 2003 and December 2008. Data collected included the cause of endophthalmitis, time of presentation, presenting visual acuity, initial surgical procedures performed, clinical response, secondary interventions, antibiotic sensitivity of the organism, and final visual acuity. RESULTS Burkholderia cepacia was the causative agent in 14 (1.8%) of the 744 culture-positive cases. Endophthalmitis occurred after cataract surgery in nine, penetrating keratoplasty in one, and trauma in four patients. Acute- and delayed-onset postoperative endophthalmitis presentation was noted in eight and two patients, respectively. Susceptibility of isolates to ceftazidime and ciprofloxacin was 78.6%. Of the isolates, 50% were sensitive to amikacin. Secondary interventions were carried out in 12 eyes. Final best-corrected visual acuity was 20/200 or better in 6 (41.66%) of 14 eyes. CONCLUSION Burkholderia cepacia can present as posttraumatic, acute-onset and delayed-onset postoperative endophthalmitis. Oral ciprofloxacin and intravitreal ceftazidime may be administered while awaiting the sensitivity reports. Recurrence and/or persistence of infection are not uncommon. Like other gram-negative organisms causing endophthalmitis, it is also associated with poor visual outcomes.
Collapse
|
38
|
Lin HH, Chen YS, Li YC, Tseng IL, Hsieh TH, Buu LM, Chen YL. Burkholderia multivorans acts as an antagonist against the growth of Burkholderia pseudomallei in soil. Microbiol Immunol 2012; 55:616-24. [PMID: 21752084 DOI: 10.1111/j.1348-0421.2011.00365.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study, it was demonstrated, by using agar diffusion tests and a Transwell system, that Burkholderia multivorans NKI379 has an antagonistic effect against the growth of B. pseudomallei. Bacterial representatives were isolated from agricultural crop soil and mixed to construct a partial bacterial community structure that was based on the results of reproducible patterns following PCR-denaturing gradient gel electrophoresis analysis of total soil chromosomes. The antagonistic effect of B. multivorans on B. pseudomallei was observed in this imitate community. In a field study of agricultural crop soil, the presence of B. pseudomallei was inversely related to the presence of the antagonistic strains B. multivorans or B. cenocepacia. B. multivorans NKI379 can survive in a broader range of pH, temperatures and salt concentrations than B. pseudomallei, suggesting that B. multivorans can adapt to extreme environmental changes and therefore predominates over B. pseudomallei in natural environments.
Collapse
Affiliation(s)
- Hsi-Hsun Lin
- Department of Infectious Disease, E-DA Hospital/I-Shou University Division of Infectious Diseases, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
39
|
Loutet SA, Valvano MA. Extreme antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. Front Cell Infect Microbiol 2011; 1:6. [PMID: 22919572 PMCID: PMC3417367 DOI: 10.3389/fcimb.2011.00006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/12/2011] [Indexed: 12/12/2022] Open
Abstract
Cationic antimicrobial peptides and polymyxins are a group of naturally occurring antibiotics that can also possess immunomodulatory activities. They are considered a new source of antibiotics for treating infections by bacteria that are resistant to conventional antibiotics. Members of the genus Burkholderia, which includes various human pathogens, are inherently resistant to antimicrobial peptides. The resistance is several orders of magnitude higher than that of other Gram-negative bacteria such as Escherichia coli, Salmonella enterica, or Pseudomonas aeruginosa. This review summarizes our current understanding of antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. These bacteria possess major and minor resistance mechanisms that will be described in detail. Recent studies have revealed that many other emerging Gram-negative opportunistic pathogens may also be inherently resistant to antimicrobial peptides and polymyxins and we propose that Burkholderia sp. are a model system to investigate the molecular basis of the resistance in extremely resistant bacteria. Understanding resistance in these types of bacteria will be important if antimicrobial peptides come to be used regularly for the treatment of infections by susceptible bacteria because this may lead to increased resistance in the species that are currently susceptible and may also open up new niches for opportunistic pathogens with high inherent resistance.
Collapse
Affiliation(s)
- Slade A Loutet
- Centre for Human Immunology, University of Western Ontario London, Ontario, Canada
| | | |
Collapse
|
40
|
Loutet SA, Valvano MA. Extreme antimicrobial Peptide and polymyxin B resistance in the genus burkholderia. Front Microbiol 2011; 2:159. [PMID: 21811491 PMCID: PMC3143681 DOI: 10.3389/fmicb.2011.00159] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/12/2011] [Indexed: 01/04/2023] Open
Abstract
Cationic antimicrobial peptides and polymyxins are a group of naturally occurring antibiotics that can also possess immunomodulatory activities. They are considered a new source of antibiotics for treating infections by bacteria that are resistant to conventional antibiotics. Members of the genus Burkholderia, which includes various human pathogens, are inherently resistant to antimicrobial peptides. The resistance is several orders of magnitude higher than that of other Gram-negative bacteria such as Escherichia coli, Salmonella enterica, or Pseudomonas aeruginosa. This review summarizes our current understanding of antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. These bacteria possess major and minor resistance mechanisms that will be described in detail. Recent studies have revealed that many other emerging Gram-negative opportunistic pathogens may also be inherently resistant to antimicrobial peptides and polymyxins and we propose that Burkholderia sp. are a model system to investigate the molecular basis of the resistance in extremely resistant bacteria. Understanding resistance in these types of bacteria will be important if antimicrobial peptides come to be used regularly for the treatment of infections by susceptible bacteria because this may lead to increased resistance in the species that are currently susceptible and may also open up new niches for opportunistic pathogens with high inherent resistance.
Collapse
Affiliation(s)
- Slade A Loutet
- Centre for Human Immunology, University of Western Ontario London, ON, Canada
| | | |
Collapse
|
41
|
Goldberg JB, Ganesan S, Comstock AT, Zhao Y, Sajjan US. Cable pili and the associated 22 kDa adhesin contribute to Burkholderia cenocepacia persistence in vivo. PLoS One 2011; 6:e22435. [PMID: 21811611 PMCID: PMC3141045 DOI: 10.1371/journal.pone.0022435] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 06/27/2011] [Indexed: 01/02/2023] Open
Abstract
Background Infection by Burkholderia cenocepacia in cystic fibrosis (CF) patients is associated with poor clinical prognosis. Previously, we demonstrated that one of the highly transmissible strains, BC7, expresses cable pili and the associated 22 kDa adhesin, both of which contribute to BC7 binding to airway epithelial cells. However, the contribution of these factors to induce inflammation and bacterial persistence in vivo is not known. Methodology/Principal Findings Wild-type BC7 stimulated higher IL-8 responses than the BC7 cbl and BC7 adhA mutants in both CF and normal bronchial epithelial cells. To determine the role of cable pili and the associated adhesin, we characterized a mouse model of B. cenocepacia, where BC7 are suspended in Pseudomonas aeruginosa alginate. C57BL/6 mice were infected intratracheally with wild-type BC7 suspended in either alginate or PBS and were monitored for lung bacterial load and inflammation. Mice infected with BC7 suspended in PBS completely cleared the bacteria by 3 days and resolved the inflammation. In contrast, mice infected with BC7 suspended in alginate showed persistence of bacteria and moderate lung inflammation up to 5 days post-infection. Using this model, mice infected with the BC7 cbl and BC7 adhA mutants showed lower bacterial loads and mild inflammation compared to mice infected with wild-type BC7. Complementation of the BC7 cblS mutation in trans restored the capacity of this strain to persist in vivo. Immunolocalization of bacteria revealed wild-type BC7 in both airway lumen and alveoli, while the BC7 cbl and BC7 adhA mutants were found mainly in airway lumen and peribronchiolar region. Conclusions and Significance B. cenocepacia suspended in alginate can be used to determine the capacity of bacteria to persist and cause lung inflammation in normal mice. Both cable pili and adhesin contribute to BC7-stimulated IL-8 response in vitro, and BC7 persistence and resultant inflammation in vivo.
Collapse
Affiliation(s)
- Joanna B. Goldberg
- Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Shyamala Ganesan
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Adam T. Comstock
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ying Zhao
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Uma S. Sajjan
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
42
|
Wright C, Pilkington R, Callaghan M, McClean S. Activation of MMP-9 by human lung epithelial cells in response to the cystic fibrosis-associated pathogen Burkholderia cenocepacia reduced wound healing in vitro. Am J Physiol Lung Cell Mol Physiol 2011; 301:L575-86. [PMID: 21743026 DOI: 10.1152/ajplung.00226.2010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Burkholderia cepacia complex is a group of bacterial pathogens that cause opportunistic infections in cystic fibrosis (CF). The most virulent of these is Burkholderia cenocepacia. Matrix metalloproteinases (MMPs) are upregulated in CF patients. The aim of this work was to examine the role of MMPs in the pathogenesis of B. cepacia complex, which has not been explored to date. Real-time PCR analysis showed that B. cenocepacia infection upregulated MMP-2 and MMP-9 genes in the CF lung cell line CFBE41o- within 1 h, whereas MMP-2, -7, and -9 genes were upregulated in the non-CF lung cell line 16HBE14o-. Conditioned media from both cell lines showed increased MMP-9 activation following B. cenocepacia infection. Conditioned media from B. cenocepacia-infected cells significantly reduced the rate of wound healing in confluent lung epithelia (P < 0.05), in contrast to conditioned media from Pseudomonas aeruginosa-infected cells, which showed predominant MMP-2 activation. Treatment of control conditioned media from both cell lines with the MMP activator 4-aminophenylmercuric acetate (APMA) also resulted in clear activation of MMP-9 and to a much lesser extent MMP-2. APMA treatment of control media also delayed the repair of wound healing in confluent epithelial cells. Furthermore, specific inhibition of MMP-9 in medium from cells exposed to B. cenocepacia completely reversed the delay in wound repair. These data suggest that MMP-9 plays a role in the reduced epithelial repair observed in response to B. cenocepacia infection and that its activation following B. cenocepacia infection contributes to the pathogenesis of this virulent pathogen.
Collapse
Affiliation(s)
- Ciara Wright
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, Ireland
| | | | | | | |
Collapse
|
43
|
Bittar F, Rolain JM. Detection and accurate identification of new or emerging bacteria in cystic fibrosis patients. Clin Microbiol Infect 2011; 16:809-20. [PMID: 20880410 DOI: 10.1111/j.1469-0691.2010.03236.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Respiratory infections remain a major threat to cystic fibrosis (CF) patients. The detection and correct identification of the bacteria implicated in these infections is critical for the therapeutic management of patients. The traditional methods of culture and phenotypic identification of bacteria lack both sensitivity and specificity because many bacteria can be missed and/or misidentified. Molecular analyses have recently emerged as useful means to resolve these problems, including molecular methods for accurate identification or detection of bacteria and molecular methods for evaluation of microbial diversity. These recent molecular technologies have increased the list of new and/or emerging pathogens and epidemic strains associated with CF patients. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of intact cells has also emerged recently as a powerful and rapid method for the routine identification of bacteria in clinical microbiology laboratories and will certainly represent the method of choice also for the routine identification of bacteria in the context of CF. Finally, recent data derived from molecular culture-independent analyses indicate the presence of a previously underestimated, complex microbial community in sputa from CF patients. Interestingly, full genome sequencing of some bacteria frequently recovered from CF patients has highlighted the fact that the lungs of CF patients are hotspots for lateral gene transfer and the adaptation of these ecosystems to a specific chronic condition.
Collapse
Affiliation(s)
- F Bittar
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, CNRS-IRD, UMR 6236, Faculté de Médecine et de Pharmacie, Université de la Méditerranée, Marseille Cedex 05, France
| | | |
Collapse
|
44
|
de Vrankrijker AMM, Wolfs TFW, van der Ent CK. Challenging and emerging pathogens in cystic fibrosis. Paediatr Respir Rev 2010; 11:246-54. [PMID: 21109184 DOI: 10.1016/j.prrv.2010.07.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cystic fibrosis (CF) lung disease is characterised by chronic inflammation and infection. Patients are predominantly infected by specific pathogens, of which Staphylococcus aureus and Pseudomonas aeruginosa are the most important. In recent years however there has been an increasing number of reports on potentially emerging and challenging pathogens like Stenotrophomonas maltophilia, Non-tuberculous mycobacteria, highly prevalent P. aeruginosa clones, methicillin resistant Staphylococcus aureus and Burkholderia cepacia. Also, a role for viral infections in the pathogenesis of CF lung disease has increasingly been recognised. It is not always clear whether or how these pathogens influence the progression of CF lung disease and how they should be treated. In this review, the epidemiology and clinical impact of these pathogens is discussed. Furthermore, treatment strategies of these pathogens in a CF setting are reviewed.
Collapse
Affiliation(s)
- A M M de Vrankrijker
- Department of Paediatric Respiratory Medicine, Wilhelmina Children's Hospital University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
45
|
Specific resistance to Pseudomonas aeruginosa infection in zebrafish is mediated by the cystic fibrosis transmembrane conductance regulator. Infect Immun 2010; 78:4542-50. [PMID: 20732993 DOI: 10.1128/iai.00302-10] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by recessive mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and is associated with prevalent and chronic Pseudomonas aeruginosa lung infections. Despite numerous studies that have sought to elucidate the role of CFTR in the innate immune response, the links between CFTR, innate immunity, and P. aeruginosa infection remain unclear. The present work highlights the zebrafish as a powerful model organism for human infectious disease, particularly infection by P. aeruginosa. Zebrafish embryos with reduced expression of the cftr gene (Cftr morphants) exhibited reduced respiratory burst response and directed neutrophil migration, supporting a connection between cftr and the innate immune response. Cftr morphants were infected with P. aeruginosa or other bacterial species that are commonly associated with infections in CF patients, including Burkholderia cenocepacia, Haemophilus influenzae, and Staphylococcus aureus. Intriguingly, the bacterial burden of P. aeruginosa was found to be significantly higher in zebrafish Cftr morphants than in controls, but this phenomenon was not observed with the other bacterial species. Bacterial burden in Cftr morphants infected with a P. aeruginosa ΔLasR mutant, a quorum sensing-deficient strain, was comparable to that in control fish, indicating that the regulation of virulence factors through LasR is required for enhancement of infection in the absence of Cftr. The zebrafish system provides a multitude of advantages for studying the pathogenesis of P. aeruginosa and for understanding the role that innate immune cells, such as neutrophils, play in the host response to acute bacterial infections commonly associated with cystic fibrosis.
Collapse
|
46
|
Unusual distribution of Burkholderia cepacia complex species in Danish cystic fibrosis clinics may stem from restricted transmission between patients. J Clin Microbiol 2010; 48:2981-3. [PMID: 20519474 DOI: 10.1128/jcm.00383-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Forty-four of 48 Burkholderia cepacia complex strains cultured from Danish cystic fibrosis patients were Burkholderia multivorans, a distribution of species that has not been reported before. Although cases of cross infections were demonstrated, no major epidemic clone was found. The species distribution may represent the sporadic acquisition of bacteria from the environment.
Collapse
|
47
|
Makidon PE, Knowlton J, Groom JV, Blanco LP, LiPuma JJ, Bielinska AU, Baker JR. Induction of immune response to the 17 kDa OMPA Burkholderia cenocepacia polypeptide and protection against pulmonary infection in mice after nasal vaccination with an OMP nanoemulsion-based vaccine. Med Microbiol Immunol 2010; 199:81-92. [PMID: 19967396 DOI: 10.1007/s00430-009-0137-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Indexed: 10/20/2022]
Abstract
Burkholderia cepacia complex (Bcc) are opportunistic bacteria associated with life-threatening illness in persons with cystic fibrosis. Once Bcc colonization is established, these antimicrobial-resistant and biofilm-forming bacteria are difficult to eradicate and are associated with increased rates of morbidity and mortality. At present, no vaccines are available to prevent the Bcc infection. There is currently a paucity of published information regarding the development of vaccines designed to prevent Burkholderia colonization. This work expands on the recent studies published by Bertot et al. [Infect Immun 75(6):2740-2752, 2007], where successful protective immune responses were generated in mice using a B. multivorans OMP-based vaccine. Here, we evaluate an experimental mucosal vaccine against Bcc using a novel mucosal adjuvant (nanoemulsion) and a novel B. cenocepacia-based OMP antigen. The OMP antigen derived from B. cenocepacia was mixed with either nanoemulsion or with PBS and delivered intranasally to CD-1 mice. Serum analysis showed robust IgG and mucosal secretory IgA immune responses in vaccinated versus control mice. The antibodies had cross-neutralizing activity against both B. cenocepacia and B. multivorans species. We found that immunized mice were protected against pulmonary colonization with B. cenocepacia. We have also identified that a 17 kDa OmpA-like protein highly conserved between Burkholderia and Ralstonia species as a new immunodominant epitope in mucosal immunization.
Collapse
Affiliation(s)
- P E Makidon
- Michigan Nanotechnology Institute for Medicine and Biological Sciences (MNIMBS), University of Michigan, 9220 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109-5648, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Wright C, Herbert G, Pilkington R, Callaghan M, McClean S. Real-time PCR method for the quantification of Burkholderia cepacia complex attached to lung epithelial cells and inhibition of that attachment. Lett Appl Microbiol 2010; 50:500-6. [PMID: 20337933 DOI: 10.1111/j.1472-765x.2010.02828.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To develop a rapid method to quantify the attachment of the cystic fibrosis pathogen, Burkholderia multivorans, to lung epithelial cells (16HBE14o(-)) using real-time PCR with a view to monitoring potential inhibition of lung cell attachment. METHODS AND RESULTS Mammalian and bacterial DNA were purified from bacteria attached to lung epithelial cells. The relative amount of bacteria attached was determined by amplification of the recA gene relative to the human GAPDH gene, in the presence of SYBR Green. The method was thoroughly validated and shown to correlate well with traditional plating techniques. Inhibition of bacterial attachment with simple sugars was then evaluated by real-time PCR. Of the sugars examined, pre-incubation of B. multivorans with lactose, mannose and xylitol all decreased bacterial adherence to 16HBE14o(-) cells, while glucose and galactose had no significant effect. Pre-incubation with lactose had the greatest effect, resulting in reduced adhesion to 35% of untreated controls. CONCLUSIONS This method can be used to quickly and effectively screen novel agents with higher affinities for bacterial adhesins. SIGNIFICANCE AND IMPACT OF THE STUDY This method will enable the rapid development of novel agents to inhibit colonization by this pathogen from the environment.
Collapse
Affiliation(s)
- C Wright
- Centre of Microbial Host Interactions, Centre of Applied Science for Health, ITT Dublin, Tallaght, Dublin, Ireland
| | | | | | | | | |
Collapse
|
49
|
Carmody LA, Gill JJ, Summer EJ, Sajjan US, Gonzalez CF, Young RF, LiPuma JJ. Efficacy of bacteriophage therapy in a model of Burkholderia cenocepacia pulmonary infection. J Infect Dis 2010; 201:264-71. [PMID: 20001604 DOI: 10.1086/649227] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The therapeutic potential of bacteriophages (phages) in a mouse model of acute Burkholderia cenocepacia pulmonary infection was assessed. Phage treatment was administered by either intranasal inhalation or intraperitoneal injection. Bacterial density, macrophage inflammatory protein 2 (MIP-2), and tumor necrosis factor alpha (TNF-alpha) levels were significantly reduced in lungs of mice treated with intraperitoneal phages (P < .05). No significant differences in lung bacterial density or MIP-2 levels were found between untreated mice and mice treated with intranasal phages, intraperitoneal ultraviolet-inactivated phages, or intraperitoneal lambda phage control mice. Mock-infected mice treated with phage showed no significant increase in lung MIP-2 or TNF-alpha levels compared with mock-infected/mock-treated mice. We have demonstrated the efficacy of phage therapy in an acute B. cenocepacia lung infection model. Systemic phage administration was more effective than inhalational administration, suggesting that circulating phages have better access to bacteria in lungs than do topical phages.
Collapse
Affiliation(s)
- Lisa A Carmody
- Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Pseudomonas aeruginosa alginate promotes Burkholderia cenocepacia persistence in cystic fibrosis transmembrane conductance regulator knockout mice. Infect Immun 2010; 78:984-93. [PMID: 20048042 DOI: 10.1128/iai.01192-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa, a major respiratory pathogen in cystic fibrosis (CF) patients, facilitates infection by other opportunistic pathogens. Burkholderia cenocepacia, which normally infects adolescent patients, encounters alginate elaborated by mucoid P. aeruginosa. To determine whether P. aeruginosa alginate facilitates B. cenocepacia infection in mice, cystic fibrosis transmembrane conductance regulator knockout mice were infected with B. cenocepacia strain BC7 suspended in either phosphate-buffered saline (BC7/PBS) or P. aeruginosa alginate (BC7/alginate), and the pulmonary bacterial load and inflammation were monitored. Mice infected with BC7/PBS cleared all of the bacteria within 3 days, and inflammation was resolved by day 5. In contrast, mice infected with BC7/alginate showed persistence of bacteria and increased cytokine levels for up to 7 days. Histological examination of the lungs indicated that there was moderate to severe inflammation and pneumonic consolidation in isolated areas at 5 and 7 days postinfection in the BC7/alginate group. Further, alginate decreased phagocytosis of B. cenocepacia by professional phagocytes both in vivo and in vitro. P. aeruginosa alginate also reduced the proinflammatory responses of CF airway epithelial cells and alveolar macrophages to B. cenocepacia infection. The observed effects are specific to P. aeruginosa alginate, because enzymatically degraded alginate or other polyuronic acids did not facilitate bacterial persistence. These observations suggest that P. aeruginosa alginate may facilitate B. cenocepacia infection by interfering with host innate defense mechanisms.
Collapse
|