Wang X, Bi Y, Ran X, Tong X, Ni H, Wen X. Mapping a highly conserved linear neutralizing epitope on gD glycoprotein of bovine herpesvirus type I using a monoclonal antibody.
J Vet Med Sci 2019;
81:780-786. [PMID:
30918137 PMCID:
PMC6541860 DOI:
10.1292/jvms.19-0041]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Bovine herpesvirus type 1 (BoHV-1), a member of the Alphaherpesvirinae, causes a variety of diseases, which result in significant economic losses worldwide. Envelope glycoprotein D (gD) of
BoHV-1 plays an important role in viral entry into the permissive cells, and protective immune response. The fine mapping epitope on the gD will contribute to the understanding of viral
pathogenesis and development of alternative vaccines against various diseases associated with BoHV-1. We previously reported the preparation of a monoclonal antibody (MAb) 2B6, which was
raised by a truncated recombinant gD protein, demonstrating a neutralizing activity against BoHV-1 infection in Madin–Darby bovine kidney cells. This study described the identification of a
linear B-cell epitope on gD using MAb 2B6. A series of partially overlapping gD proteins with glutathione S-transferase tag were generated to define the epitope recognized by MAb 2B6. The
amino acid (aa) sequence 323GEPKPGPSPDADRPE337 was recognized by MAb 2B6 using Western blot with the variedly truncated recombinant proteins. Importantly, this epitope
was highly conserved among the typical members of BoHV-1, indicating that the epitope may be utilized in diagnosis of diseases due to BoHV-1 infection. Furthermore, the minimal linear
epitope sequence 323GEPKPGP329 on gD recognized by MAb 2B6 was confirmed using single-aa residue deletion mutation in carboxyl terminal. This finding not only
contributes to our understanding of gD of BoHV-1 virion but also shows a potential for the development of vaccine candidates and diagnostic techniques.
Collapse