1
|
Shen X, Zhang X, Li K, Huang G, Li X, Hou Y, Ge X. Combined bacterial translocation and cholestasis aggravates liver injury by activation pyroptosis in obstructive jaundice. Heliyon 2024; 10:e35793. [PMID: 39220957 PMCID: PMC11363856 DOI: 10.1016/j.heliyon.2024.e35793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
This study explores the mechanism by which obstructive jaundice (OJ) induces liver damage through pyroptosis. We induced OJ in rats via bile duct ligation and assessed liver damage using serum biochemical markers and histological analysis of liver tissue. Pyroptosis was investigated through immunofluorescence, ELISA, Western blot, and quantitative RT-PCR techniques. Additionally, we examined intestinal function and fecal microbiota alterations in the rats using 16S rDNA sequencing. In vitro experiments involved co-culturing Kupffer cells and hepatocytes, which were then exposed to bile and lipopolysaccharide (LPS). Our findings indicated that OJ modified the gut microbiota, increasing LPS levels, which, in conjunction with bile, initiated a cycle of inflammation, fibrosis, and cell death in the liver. Mechanistically, OJ elevated necrotic markers such as ATP, which in turn activated pyroptotic pathways. Increased levels of pyroptosis-related molecules, including NLRP3, caspase-1, gasdermin D, and IL-18, were confirmed. In our co-cultured cell model, bile exposure resulted in cell death and ATP release, leading to the activation of the NLRP3 inflammasome and its downstream effectors, caspase-1 and IL-18. The combination of bile and LPS significantly intensified pyroptotic responses. This study is the first to demonstrate that LPS and bile synergistically exacerbate liver injury by promoting necrosis and pyroptosis, unveiling a novel mechanism of OJ-associated hepatic damage and suggesting avenues for potential preventive or therapeutic interventions.
Collapse
Affiliation(s)
- Xin Shen
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xin Zhang
- Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, 471002, Henan, China
| | - Kaiyu Li
- Department of General Surgery, Heilongjiang Provincial Hospital, 82 Zhongshan Road, Harbin, 150036, Heilongjiang, China
| | - Guangming Huang
- Department of General Surgery, Heilongjiang Provincial Hospital, 82 Zhongshan Road, Harbin, 150036, Heilongjiang, China
| | - Xinyu Li
- Department of General Surgery, Heilongjiang Provincial Hospital, 82 Zhongshan Road, Harbin, 150036, Heilongjiang, China
| | - Yunlong Hou
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, 050000, Hebei, China
| | - Xin Ge
- Department of General Surgery, Heilongjiang Provincial Hospital, 82 Zhongshan Road, Harbin, 150036, Heilongjiang, China
| |
Collapse
|
2
|
Abstract
The introduction into a naïve herd of animals sub-clinically infected with Actinobacillus pleuropneumoniae (App) is frequently the cause of clinical pleuropneumonia and the identification of such infected herds is a priority in the control of disease. Different serological tests for App have been developed and a number of these are routinely used. Some are species-specific whereas others identify more specifically the serotype/serogroup involved which requires updated information about important serotypes recovered from diseased pigs in a given area/country. Serotyping methods based on molecular techniques have been developed lately and are ready to be used by most diagnostic laboratories. When non-conclusive serological results are obtained, direct detection of App from tonsils is sometimes attempted. This review addresses different techniques and approaches used to monitor herds sub-clinically infected by this important pathogen.
Collapse
Affiliation(s)
- Marcelo Gottschalk
- Department of Pathology and Microbiology, Swine and Poultry Infectious Disease Center (CRIPA), Groupe de Recherche sur les Maladies Infectieuses du Porc (GREMIP), Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Québec, Canada J2S 2M2.
| |
Collapse
|
3
|
Host-pathogen interactions of Actinobacillus pleuropneumoniae with porcine lung and tracheal epithelial cells. Infect Immun 2009; 77:1426-41. [PMID: 19139196 DOI: 10.1128/iai.00297-08] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Host-pathogen interactions are of great importance in understanding the pathogenesis of infectious microorganisms. We developed in vitro models to study the host-pathogen interactions of porcine respiratory tract pathogens using two immortalized epithelial cell lines, namely, the newborn pig trachea (NPTr) and St. Jude porcine lung (SJPL) cell lines. We first studied the interactions of Actinobacillus pleuropneumoniae, an important swine pathogen, using these models. Under conditions where cytotoxicity was absent or low, we showed that A. pleuropneumoniae adheres to both cell lines, stimulating the induction of NF-kappaB. The NPTr cells consequently secrete interleukin 8, while the SJPL cells do not, since they are deprived of the NF-kappaB p65 subunit. Cell death ultimately occurs by necrosis, not apoptosis. The transcriptomic profile of A. pleuropneumoniae was determined after contact with the porcine lung epithelial cells by using DNA microarrays. Genes such as tadB and rcpA, members of a putative adhesin locus, and a gene whose product has high homology to the Hsf autotransporter adhesin of Haemophilus influenzae were upregulated, as were the genes pgaBC, involved in biofilm biosynthesis, while capsular polysaccharide-associated genes were downregulated. The in vitro models also proved to be efficient with other swine pathogens, such as Actinobacillus suis, Haemophilus parasuis, and Pasteurella multocida. Our results demonstrate that interactions of A. pleuropneumoniae with host epithelial cells seem to involve complex cross talk which results in regulation of various bacterial genes, including some coding for putative adhesins. Furthermore, our data demonstrate the potential of these in vitro models in studying the host-pathogen interactions of other porcine respiratory tract pathogens.
Collapse
|