1
|
Li H, Zhou L, Zhao Y, Ma L, Zhang H, Liu Y, Liu X, Hu J. Epidemiological analysis of Group A streptococcus infection diseases among children in Beijing, China under COVID-19 pandemic. BMC Pediatr 2023; 23:76. [PMID: 36782167 PMCID: PMC9923647 DOI: 10.1186/s12887-023-03885-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Group A streptococcus is human-restricted gram-positive pathogen, responsible for various clinical presentations from mild epidermis infections to life threatened invasive diseases. Under COVID-19 pandemic,. the characteristics of the epidemic strains of GAS could be different. PURPOSE To investigate epidemiological and molecular features of isolates from GAS infections among children in Beijing, China between January 2020 and December 2021. Antimicrobial susceptibility profiling was performed based on Cinical Laboratory Sandards Institute. Distribution of macrolide-resistance genes, emm types, and superantigens was examined by polymerase chain reaction. RESULTS 114 GAS isolates were collected which were frequent resistance against erythromycin (94.74%), followed by clindamycin (92.98%), tetracycline (87.72%). Emm12 (46.49%), emm1 (25.44%) were dominant emm types. Distribution of ermB, ermA, and mefA gene was 93.85%, 2.63%, and 14.04%, respectively. Frequent superantigenes identified were smeZ (97.39%), speG (95.65%), and speC (92.17%). Emm1 strains possessed smeZ, ssa, and speC, while emm12 possessed smeZ, ssa, speG, and speC. Erythromycin resistance was predominantly mediated by ermB. Scarlet fever strains harbored smeZ (98.81%), speC (94.05%). Impetigo strains harbored smeZ (88.98%), ssa (88.89%), and speC (88.89%). Psoriasis strains harbored smeZ (100%). CONCLUSIONS Under COVID-19 pandemic, our collections of GAS infection cutaneous diseases decreased dramatically. Epidemiological analysis of GAS infections among children during COVID-19 pandemic was not significantly different from our previous study. There was a correlation among emm, superantigen gene and disease manifestations. Long-term surveillance and investigation of emm types and superantigens of GAS prevalence are imperative.
Collapse
Affiliation(s)
- Hongxin Li
- Department of Dermatology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Lin Zhou
- grid.459434.bDepartment of Clinical Laboratory, Children’s Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020 China
| | - Yong Zhao
- grid.414252.40000 0004 1761 8894Department of Reproductive Medicine, Senior Department of Obstetrics & Gynecology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Lijuan Ma
- grid.459434.bDepartment of Clinical Laboratory, Children’s Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020 China
| | - Haihua Zhang
- grid.459434.bDepartment of Dermatology, Children’s Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020 China
| | - Yan Liu
- grid.459434.bDepartment of Dermatology, Children’s Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020 China
| | - Xiaoyan Liu
- grid.459434.bDepartment of Dermatology, Children’s Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020 China
| | - Jin Hu
- grid.459434.bDepartment of Dermatology, Children’s Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020 China
| |
Collapse
|
2
|
Characterization of M-Type-Specific Pilus Expression in Group A Streptococcus. J Bacteriol 2022; 204:e0027022. [PMID: 36286511 PMCID: PMC9664953 DOI: 10.1128/jb.00270-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our ability to characterize how a pathogen infects and causes disease, and consequently our ability to devise approaches to prevent or attenuate such infections, is inhibited by the finding that isolates of a given pathogen often show phenotypic variability, for example, in their ability to adhere to host cells through modulation of cell surface adhesins. Such variability is observed between isolates of group A
Streptococcus
(GAS), and this study investigates the molecular basis for why some GAS isolates produce pili, cell wall-anchored adhesins, in lower abundance than other isolates do.
Collapse
|
3
|
Alves-Barroco C, Caço J, Roma-Rodrigues C, Fernandes AR, Bexiga R, Oliveira M, Chambel L, Tenreiro R, Mato R, Santos-Sanches I. New Insights on Streptococcus dysgalactiae subsp. dysgalactiae Isolates. Front Microbiol 2021; 12:686413. [PMID: 34335512 PMCID: PMC8319831 DOI: 10.3389/fmicb.2021.686413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Streptococcus dysgalactiae subsp. dysgalactiae (SDSD) has been considered a strict animal pathogen. Nevertheless, the recent reports of human infections suggest a niche expansion for this subspecies, which may be a consequence of the virulence gene acquisition that increases its pathogenicity. Previous studies reported the presence of virulence genes of Streptococcus pyogenes phages among bovine SDSD (collected in 2002-2003); however, the identity of these mobile genetic elements remains to be clarified. Thus, this study aimed to characterize the SDSD isolates collected in 2011-2013 and compare them with SDSD isolates collected in 2002-2003 and pyogenic streptococcus genomes available at the National Center for Biotechnology Information (NCBI) database, including human SDSD and S. dysgalactiae subsp. equisimilis (SDSE) strains to track temporal shifts on bovine SDSD genotypes. The very close genetic relationships between humans SDSD and SDSE were evident from the analysis of housekeeping genes, while bovine SDSD isolates seem more divergent. The results showed that all bovine SDSD harbor Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas IIA system. The widespread presence of this system among bovine SDSD isolates, high conservation of repeat sequences, and the polymorphism observed in spacer can be considered indicators of the system activity. Overall, comparative analysis shows that bovine SDSD isolates carry speK, speC, speL, speM, spd1, and sdn virulence genes of S. pyogenes prophages. Our data suggest that these genes are maintained over time and seem to be exclusively a property of bovine SDSD strains. Although the bovine SDSD genomes characterized in the present study were not sequenced, the data set, including the high homology of superantigens (SAgs) genes between bovine SDSD and S. pyogenes strains, may indicate that events of horizontal genetic transfer occurred before habitat separation. All bovine SDSD isolates were negative for genes of operon encoding streptolysin S, except for sagA gene, while the presence of this operon was detected in all SDSE and human SDSD strains. The data set of this study suggests that the separation between the subspecies "dysgalactiae" and "equisimilis" should be reconsidered. However, a study including the most comprehensive collection of strains from different environments would be required for definitive conclusions regarding the two taxa.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology/FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | - João Caço
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology/FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Catarina Roma-Rodrigues
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology/FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology/FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Ricardo Bexiga
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Manuela Oliveira
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Lélia Chambel
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Edifício TecLabs, Lisbon, Portugal
| | - Rogério Tenreiro
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Edifício TecLabs, Lisbon, Portugal
| | - Rosario Mato
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology/FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Ilda Santos-Sanches
- UCIBIO, Departamento de Ciências da Vida, NOVA School of Science and Technology/FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
4
|
The Mobile Genetic Element RD2 Affects Colonization Potential of Different GAS Serotypes. Infect Immun 2021; 89:e0018521. [PMID: 33972369 DOI: 10.1128/iai.00185-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
M-type 28 (M28) Streptococcus pyogenes (group A Streptococcus [GAS]) strains are highly associated with life-threatening puerperal infections. Genome sequencing has revealed a large mobile genetic element, RD2, present in most M28 GAS isolates but not found widely in other serotypes. Previous studies have linked RD2 to the ability of M28 GAS to colonize the vaginal tract. A new study by Roshika and colleagues (R. Roshika, I. Jain, J. Medicielo, J. Wächter, J. L. Danger, P. Sumby, Infect Immun 89:e00722-20, 2021, https://doi.org/10.1128/IAI.00722-20) used gain-of-function mutants in three different GAS serotypes to help determine why RD2 appears to have a serotype preference and what that could mean for GAS mucosal colonization and pathogenesis.
Collapse
|
5
|
The RD2 Pathogenicity Island Modifies the Disease Potential of the Group A Streptococcus. Infect Immun 2021; 89:e0072220. [PMID: 33820819 DOI: 10.1128/iai.00722-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Serotype M28 isolates of the group A Streptococcus (GAS; Streptococcus pyogenes) are nonrandomly associated with cases of puerperal sepsis, a potentially life-threatening infection that can occur in women following childbirth. Previously, we discovered that the 36.3-kb RD2 pathogenicity island, which is present in serotype M28 isolates but lacking from most other isolates, promotes the ability of M28 GAS to colonize the female reproductive tract. Here, we performed a gain-of-function study in which we introduced RD2 into representative serotype M1, M49, and M59 isolates and assessed the phenotypic consequences of RD2 acquisition. All RD2-containing derivatives colonized a higher percentage of mice, and at higher CFU levels, than did the parental isolates in a mouse vaginal colonization model. However, for two additional phenotypes, survival in heparinized whole human blood and adherence to two human vaginal epithelial cell lines, there were serotype-specific differences from RD2 acquisition. Using transcriptomic comparisons, we identified that such differences may be a consequence of RD2 altering the abundance of transcripts from select core genome genes along serotype-specific lines. Our study is the first that interrogates RD2 function in GAS serotypes other than M28 isolates, shedding light on variability in the phenotypic consequences of RD2 acquisition and informing on why this mobile genetic element is not ubiquitous in the GAS population.
Collapse
|
6
|
Weckel A, Guilbert T, Lambert C, Plainvert C, Goffinet F, Poyart C, Méhats C, Fouet A. Streptococcus pyogenes infects human endometrium by limiting the innate immune response. J Clin Invest 2021; 131:130746. [PMID: 33320843 DOI: 10.1172/jci130746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/10/2020] [Indexed: 11/17/2022] Open
Abstract
Group A Streptococcus (GAS), a Gram-positive human-specific pathogen, yields 517,000 deaths annually worldwide, including 163,000 due to invasive infections and among them puerperal fever. Before efficient prophylactic measures were introduced, the mortality rate for mothers during childbirth was approximately 10%; puerperal fever still accounts for over 75,000 maternal deaths annually. Yet, little is known regarding the factors and mechanisms of GAS invasion and establishment in postpartum infection. We characterized the early steps of infection in an ex vivo infection model of the human decidua, the puerperal fever portal of entry. Coordinate analysis of GAS behavior and the immune response led us to demonstrate that (a) GAS growth was stimulated by tissue products; (b) GAS invaded tissue and killed approximately 50% of host cells within 2 hours, and these processes required SpeB protease and streptolysin O (SLO) activities, respectively; and (c) GAS impaired the tissue immune response. Immune impairment occurred both at the RNA level, with only partial induction of the innate immune response, and protein level, in an SLO- and SpeB-dependent manner. Our study indicates that efficient GAS invasion of the decidua and the restricted host immune response favored its propensity to develop rapid invasive infections in a gynecological-obstetrical context.
Collapse
Affiliation(s)
- Antonin Weckel
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France
| | - Thomas Guilbert
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Clara Lambert
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France
| | - Céline Plainvert
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France.,Centre National de Référence des Streptocoques.,Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris
| | - François Goffinet
- Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France.,Faculté de Médecine, Université Paris Descartes, and.,Service de Gynécologie Obstétrique I, Maternité Port Royal, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Claire Poyart
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France.,Centre National de Référence des Streptocoques.,Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris
| | - Céline Méhats
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France
| | - Agnès Fouet
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France.,Centre National de Référence des Streptocoques
| |
Collapse
|
7
|
Li H, Zhou L, Zhao Y, Ma L, Liu X, Hu J. Molecular epidemiology and antimicrobial resistance of group a streptococcus recovered from patients in Beijing, China. BMC Infect Dis 2020; 20:507. [PMID: 32660436 PMCID: PMC7359455 DOI: 10.1186/s12879-020-05241-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Group A streptococcus (GAS) is an important human pathogen responsible for a broad range of infections. Epidemiological surveillance has been crucial to detect changes in the geographical and temporal variation of the disease pattern. The objective of this study was to investigate the molecular epidemiological characteristics and antimicrobial resistance of GAS isolates from patients in Children's Hospital in Beijing. METHODS From 2016 to 2017, pharyngeal swab samples were collected from the outpatients in Children's Hospital, Capital Institute of Pediatrics, who were diagnosed with scarlet fever. Antimicrobial susceptibility test was performed according to the distribution of conventional antibiotics and Clinical and Laboratory Standards Institute (CLSI) recommendations. The distribution of the macrolide-resistance genes (ermB, ermA, mefA), emm (M protein-coding gene) typing, and superantigens (SAg) gene profiling were examined by polymerase chain reaction (PCR). RESULTS A total of 297 GAS isolates were collected. The susceptibility of the isolates to penicillin, ceftriaxone, and levofloxacin was 100%. The resistance rate to erythromycin and clindamycin was 98.3 and 96.6%, respectively. The dominant emm types were emm12 (65.32%), emm1 (27.61%), emm75 (2.69%), and emm89 (1.35%). Of the 297 isolates, 290 (97.64%) carried the ermB gene, and 5 (1.68%) carried the mefA gene, while none carried the ermA gene. The most common superantigen genes identified from GAS isolates were smeZ (96.97%), speC (92.59%), speG (91.58%), ssa (85.52%), speI (54.55%), speH (52.19%), and speA (34.34%). Isolates with the genotype emm1 possessed speA, speC, speG, speJ, speM, ssa, and smeZ, while emm12 possessed speC, speG, speH, speI, speM, ssa, and smeZ superantigens. CONCLUSIONS The prevalent strain of GAS isolates in Beijing has a high resistance rate to macrolides; however, penicillin can still be the preferred antibiotic for treatment. Erythromycin resistance was predominantly mediated by ermB. The common emm types were emm12 and emm1. There was a correlation between emm and the superantigen gene. Thus, long-term monitoring and investigation of the emm types and superantigen genes of GAS prevalence are imperative.
Collapse
Affiliation(s)
- Hongxin Li
- Department of Dermatology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Lin Zhou
- Department of Clinical Laboratory, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yong Zhao
- The Sixth Medical Centre of PLA, General Hospital, Beijing, 100048, China
| | - Lijuan Ma
- Department of Clinical Laboratory, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xiaoyan Liu
- Department of Dermatology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jin Hu
- Department of Dermatology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020, China.
| |
Collapse
|
8
|
Genome-Wide Screens Identify Group A Streptococcus Surface Proteins Promoting Female Genital Tract Colonization and Virulence. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:862-873. [PMID: 32200972 DOI: 10.1016/j.ajpath.2019.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
Group A streptococcus (GAS) is a major pathogen that impacts health and economic affairs worldwide. Although the oropharynx is the primary site of infection, GAS can colonize the female genital tract and cause severe diseases, such as puerperal sepsis, neonatal infections, and necrotizing myometritis. Our understanding of how GAS genes contribute to interaction with the primate female genital tract is limited by the lack of relevant animal models. Using two genome-wide transposon mutagenesis screens, we identified 69 GAS genes required for colonization of the primate vaginal mucosa in vivo and 96 genes required for infection of the uterine wall ex vivo. We discovered a common set of 39 genes important for GAS fitness in both environments. They include genes encoding transporters, surface proteins, transcriptional regulators, and metabolic pathways. Notably, the genes that encode the surface-exclusion protein (SpyAD) and the immunogenic secreted protein 2 (Isp2) were found to be crucial for GAS fitness in the female primate genital tract. Targeted gene deletion confirmed that isogenic mutant strains ΔspyAD and Δisp2 are significantly impaired in ability to colonize the primate genital tract and cause uterine wall pathologic findings. Our studies identified novel GAS genes that contribute to female reproductive tract interaction that warrant translational research investigation.
Collapse
|
9
|
MUSSER JAMESM. MOLECULAR MECHANISMS CONTRIBUTING TO FUZZY EPIDEMICS CAUSED BY GROUP A STREPTOCOCCUS, A FLESH-EATING HUMAN BACTERIAL PATHOGEN. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2020; 131:356-368. [PMID: 32675873 PMCID: PMC7358509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Epidemics caused by microbial pathogens are inherently interesting because they can kill large numbers of our brethren, cause social upheaval, and alter history. Microbial epidemics will likely continue to occur at unpredictable times and result in poorly predictable consequences. Over a 30-year period, we have used the human bacterial pathogen group A streptococcus (also known as Streptococcus pyogenes) as a model organism to gain understanding of the molecular mechanisms contributing to epidemics caused by this pathogen and attendant virulence mechanisms. These epidemics have affected tens of millions of individuals worldwide and were largely unrecognized until revealed by full-genome sequence data from many thousands of isolates from intercontinental sources. Molecular genetic strategies, coupled with extensive use of relevant animal infection models, have delineated precise evolutionary genetic changes that contribute to pathogen clone emergence and successful dissemination among humans. Here, we summarize a few key findings from these studies.
Collapse
Affiliation(s)
- JAMES M. MUSSER
- Correspondence and reprint requests: James M. Musser, MD, PhD, Houston Methodist Research Institute, 6565 Fannin Street, Houston, TX 77030713-441-5890713-441-3886
| |
Collapse
|
10
|
Muhtarova A, Mihova K, Markovska R, Mitov I, Kaneva R, Gergova R. Molecular emm typing of Bulgarian macrolide-resistant Streptococcus pyogenes isolates. Acta Microbiol Immunol Hung 2019; 67:14-17. [PMID: 31833385 DOI: 10.1556/030.66.2019.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/06/2019] [Indexed: 12/19/2022]
Abstract
Group A streptococcus (GAS) is a human pathogen causing a broad range of infections, linked with global morbidity and mortality. Macrolide resistance rates vary significantly in different parts of the world. Driving factors of the emergence and spread of resistant clones are not clearly understood. We investigated 102 macrolide-resistant GAS strains collected during the period 2014-2018 from various clinical specimens from Bulgarian patients. Strains were characterized by the presence of mefA/mefE, ermA, and ermB using polymerase chain reaction and sequencing for mefA/mefE. Resistant strains were studied by emm sequence typing and emm-cluster system. Most prevalent emm types among the macrolide-resistant GAS strains were emm28 (22.55%), emm12 (17.65%), and emm4 (16.66%). Almost all (87.25%) of the macrolide-resistant isolates harboring ermB were emm28. The isolates that carried ermA were predominantly emm12 (38.24%) and emm77 (38.24%), with fewer emm89 (23.53%). The isolates harbored predominantly mefE (49 isolates) and only 9 strains carried mefA. The most prevalent emm clusters among the GAS isolates were E4 (40.20%), A-C4 (17.65%), and E1 (16.66%). The study's results suggest that dissemination of specific clones in GAS population may also be the reason for the increasing macrolide-resistance rate in our country.
Collapse
Affiliation(s)
- Adile Muhtarova
- 1 Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Kalina Mihova
- 2 Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Faculty of Medicine, Medical University, Sofia, Bulgaria
| | - Rumyana Markovska
- 1 Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Ivan Mitov
- 1 Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Radka Kaneva
- 2 Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Faculty of Medicine, Medical University, Sofia, Bulgaria
| | - Raina Gergova
- 1 Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
11
|
McNitt DH, Van De Water L, Marasco D, Berisio R, Lukomski S. Streptococcal Collagen-like Protein 1 Binds Wound Fibronectin: Implications in Pathogen Targeting. Curr Med Chem 2019; 26:1933-1945. [PMID: 30182848 DOI: 10.2174/0929867325666180831165704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/18/2018] [Accepted: 06/28/2018] [Indexed: 02/01/2023]
Abstract
Group A Streptococcus (GAS) infections are responsible for significant morbidity and mortality worldwide. The outlook for an effective global vaccine is reduced because of significant antigenic variation among GAS strains worldwide. Other challenges in GAS therapy include the lack of common access to antibiotics in developing countries, as well as allergy to and treatment failures with penicillin and increasing erythromycin resistance in the industrialized world. At the portal of entry, GAS binds to newly deposited extracellular matrix, which is rich in cellular fibronectin isoforms with extra domain A (EDA, also termed EIIIA) via the surface adhesin, the streptococcal collagen-like protein 1 (Scl1). Recombinant Scl1 constructs, derived from diverse GAS strains, bind the EDA loop segment situated between the C and C' β-strands. Despite the sequence diversity in Scl1 proteins, multiple sequence alignments and secondary structure predictions of Scl1 variants, as well as crystallography and homology modeling studies, point to a conserved mechanism of Scl1-EDA binding. We propose that targeting this interaction may prevent the progression of infection. A synthetic cyclic peptide, derived from the EDA C-C' loop, binds to recombinant Scl1 with a micromolar dissociation constant. This review highlights the current concept of EDA binding to Scl1 and provides incentives to exploit this binding to treat GAS infections and wound colonization.
Collapse
Affiliation(s)
- Dudley H McNitt
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, 2095 Health Sciences North, Morgantown, WV 26506, United States
| | - Livingston Van De Water
- Departments of Surgery and Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States
| | - Daniela Marasco
- Department of Pharmacy, University of Naples Frederico II, Naples, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council, via Mezzocannone, 16, 80134, Naples, Italy
| | - Slawomir Lukomski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, 2095 Health Sciences North, Morgantown, WV 26506, United States
| |
Collapse
|
12
|
Gergova R, Muhtarova A, Mitov I, Setchanova L, Mihova K, Kaneva R, Markovska R. Relation between emm types and virulence gene profiles among Bulgarian Streptococcus pyogenes clinical isolates. Infect Dis (Lond) 2019; 51:668-675. [DOI: 10.1080/23744235.2019.1638964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Raina Gergova
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Adile Muhtarova
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Ivan Mitov
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Lena Setchanova
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Kalina Mihova
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Radka Kaneva
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Rumyana Markovska
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
13
|
Nye TM, Jacob KM, Holley EK, Nevarez JM, Dawid S, Simmons LA, Watson ME. DNA methylation from a Type I restriction modification system influences gene expression and virulence in Streptococcus pyogenes. PLoS Pathog 2019; 15:e1007841. [PMID: 31206562 PMCID: PMC6597129 DOI: 10.1371/journal.ppat.1007841] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/27/2019] [Accepted: 05/14/2019] [Indexed: 11/26/2022] Open
Abstract
DNA methylation is pervasive across all domains of life. In bacteria, the presence of N6-methyladenosine (m6A) has been detected among diverse species, yet the contribution of m6A to the regulation of gene expression is unclear in many organisms. Here we investigated the impact of DNA methylation on gene expression and virulence within the human pathogen Streptococcus pyogenes, or Group A Streptococcus. Single Molecule Real-Time sequencing and subsequent methylation analysis identified 412 putative m6A sites throughout the 1.8 Mb genome. Deletion of the Restriction, Specificity, and Methylation gene subunits (ΔRSM strain) of a putative Type I restriction modification system lost all detectable m6A at the recognition sites and failed to prevent transformation with foreign-methylated DNA. RNA-sequencing identified 20 genes out of 1,895 predicted coding regions with significantly different gene expression. All of the differentially expressed genes were down regulated in the ΔRSM strain relative to the parent strain. Importantly, we found that the presence of m6A DNA modifications affected expression of Mga, a master transcriptional regulator for multiple virulence genes, surface adhesins, and immune-evasion factors in S. pyogenes. Using a murine subcutaneous infection model, mice infected with the ΔRSM strain exhibited an enhanced host immune response with larger skin lesions and increased levels of pro-inflammatory cytokines compared to mice infected with the parent or complemented mutant strains, suggesting alterations in m6A methylation influence virulence. Further, we found that the ΔRSM strain showed poor survival within human neutrophils and reduced adherence to human epithelial cells. These results demonstrate that, in addition to restriction of foreign DNA, gram-positive bacteria also use restriction modification systems to regulate the expression of gene networks important for virulence. DNA methylation is common among many bacterial species, yet the contribution of DNA methylation to the regulation of gene expression is unclear outside of a limited number of gram-negative species. We characterized sites of DNA methylation throughout the genome of the gram-positive pathogen Streptococcus pyogenes or Group A Streptococcus. We determined that the gene products of a functional restriction modification system are responsible for genome-wide m6A. The mutant strain lacking DNA methylation showed altered gene expression compared to the parent strain, with several genes important for causing human disease down regulated. Furthermore, we showed that the mutant strain lacking DNA methylation exhibited altered virulence properties compared to the parent strain using various models of pathogenesis. The mutant strain was attenuated for both survival within human neutrophils and adherence to human epithelial cells, and was unable to suppress the host immune response in a murine subcutaneous infection model. Together, these results show that bacterial m6A contributes to differential gene expression and influences the ability of Group A Streptococcus to cause disease. DNA methylation is a conserved feature among bacteria and may represent a potential target for intervention in effort to interfere with the ability of bacteria to cause human disease.
Collapse
Affiliation(s)
- Taylor M. Nye
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Kristin M. Jacob
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States of America
| | - Elena K. Holley
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States of America
| | - Juan M. Nevarez
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States of America
| | - Suzanne Dawid
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States of America
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Michael E. Watson
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States of America
- * E-mail:
| |
Collapse
|
14
|
RocA Has Serotype-Specific Gene Regulatory and Pathogenesis Activities in Serotype M28 Group A Streptococcus. Infect Immun 2018; 86:IAI.00467-18. [PMID: 30126898 DOI: 10.1128/iai.00467-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022] Open
Abstract
Serotype M28 group A streptococcus (GAS) is a common cause of infections such as pharyngitis ("strep throat") and necrotizing fasciitis ("flesh-eating" disease). Relatively little is known about the molecular mechanisms underpinning M28 GAS pathogenesis. Whole-genome sequencing studies of M28 GAS strains recovered from patients with invasive infections found an unexpectedly high number of missense (amino acid-changing) and nonsense (protein-truncating) polymorphisms in rocA (regulator of Cov), leading us to hypothesize that altered RocA activity contributes to M28 GAS molecular pathogenesis. To test this hypothesis, an isogenic rocA deletion mutant strain was created. Transcriptome sequencing (RNA-seq) analysis revealed that RocA inactivation significantly alters the level of transcripts for 427 and 323 genes at mid-exponential and early stationary growth phases, respectively, including genes for 41 transcription regulators and 21 virulence factors. In contrast, RocA transcriptomes from other GAS M protein serotypes are much smaller and include fewer transcription regulators. The rocA mutant strain had significantly increased secreted activity of multiple virulence factors and grew to significantly higher colony counts under acid stress in vitro RocA inactivation also significantly increased GAS virulence in a mouse model of necrotizing myositis. Our results demonstrate that RocA is an important regulator of transcription regulators and virulence factors in M28 GAS and raise the possibility that naturally occurring polymorphisms in rocA in some fashion contribute to human invasive infections caused by M28 GAS strains.
Collapse
|
15
|
Weckel A, Ahamada D, Bellais S, Méhats C, Plainvert C, Longo M, Poyart C, Fouet A. The N-terminal domain of the R28 protein promotes emm28 group A Streptococcus adhesion to host cells via direct binding to three integrins. J Biol Chem 2018; 293:16006-16018. [PMID: 30150299 DOI: 10.1074/jbc.ra118.004134] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/20/2018] [Indexed: 01/07/2023] Open
Abstract
Group A Streptococcus (GAS) is a human-specific pathogen responsible for a wide range of diseases, ranging from superficial to life-threatening invasive infections, including endometritis, and autoimmune sequelae. GAS strains express a vast repertoire of virulence factors that varies depending on the strain genotype, and many adhesin proteins that enable GAS to adhere to host cells are restricted to some genotypes. GAS emm28 is the third most prevalent genotype in invasive infections in France and is associated with gyneco-obstetrical infections. emm28 strains harbor R28, a cell wall-anchored surface protein that has previously been reported to promote adhesion to cervical epithelial cells. Here, using cellular and biochemical approaches, we sought to determine whether R28 supports adhesion also to other cells and to characterize its cognate receptor. We show that through its N-terminal domain, R28Nt, R28 promotes bacterial adhesion to both endometrial-epithelial and endometrial-stromal cells. R28Nt was further subdivided into two domains, and we found that both are involved in cell binding. R28Nt and both subdomains interacted directly with the laminin-binding α3β1, α6β1, and α6β4 integrins; interestingly, these bindings events did not require divalent cations. R28 is the first GAS adhesin reported to bind directly to integrins that are expressed in most epithelial cells. Finally, R28Nt also promoted binding to keratinocytes and pulmonary epithelial cells, suggesting that it may be involved in supporting the prevalence in invasive infections of the emm28 genotype.
Collapse
Affiliation(s)
- Antonin Weckel
- From the INSERM U1016, Institut Cochin.,CNRS UMR 8104, and.,Université Paris Descartes, UMR-S1016 Paris, France and
| | - Dorian Ahamada
- From the INSERM U1016, Institut Cochin.,CNRS UMR 8104, and.,Université Paris Descartes, UMR-S1016 Paris, France and
| | - Samuel Bellais
- From the INSERM U1016, Institut Cochin.,CNRS UMR 8104, and.,Université Paris Descartes, UMR-S1016 Paris, France and
| | - Céline Méhats
- From the INSERM U1016, Institut Cochin.,CNRS UMR 8104, and.,Université Paris Descartes, UMR-S1016 Paris, France and
| | - Céline Plainvert
- From the INSERM U1016, Institut Cochin.,CNRS UMR 8104, and.,Université Paris Descartes, UMR-S1016 Paris, France and.,the Centre National de Référence des Streptocoques and.,the Hôpitaux Universitaires Paris Centre, Institut Cochin, Assistance Publique Hôpitaux de Paris, 75014 Paris, France
| | - Magalie Longo
- From the INSERM U1016, Institut Cochin.,CNRS UMR 8104, and.,Université Paris Descartes, UMR-S1016 Paris, France and
| | - Claire Poyart
- From the INSERM U1016, Institut Cochin.,CNRS UMR 8104, and.,Université Paris Descartes, UMR-S1016 Paris, France and.,the Centre National de Référence des Streptocoques and.,the Hôpitaux Universitaires Paris Centre, Institut Cochin, Assistance Publique Hôpitaux de Paris, 75014 Paris, France
| | - Agnès Fouet
- From the INSERM U1016, Institut Cochin, .,CNRS UMR 8104, and.,Université Paris Descartes, UMR-S1016 Paris, France and.,the Centre National de Référence des Streptocoques and
| |
Collapse
|
16
|
Interleukin-17A Contributes to the Control of Streptococcus pyogenes Colonization and Inflammation of the Female Genital Tract. Sci Rep 2016; 6:26836. [PMID: 27241677 PMCID: PMC4886215 DOI: 10.1038/srep26836] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/09/2016] [Indexed: 12/20/2022] Open
Abstract
Postpartum women are at increased risk of developing puerperal sepsis caused by group A Streptococcus (GAS). Specific GAS serotypes, including M1 and M28, are more commonly associated with puerperal sepsis. However, the mechanisms of GAS genital tract infection are not well understood. We utilized a murine genital tract carriage model to demonstrate that M1 and M28 GAS colonization triggers TNF-α, IL-1β, and IL-17A production in the female genital tract. GAS-induced IL-17A significantly influences streptococcal carriage and alters local inflammatory responses in two genetically distinct inbred strains of mice. An absence of IL-17A or the IL-1 receptor was associated with reduced neutrophil recruitment to the site of infection; and clearance of GAS was significantly attenuated in IL-17A(-/-) mice and Rag1(-/-) mice (that lack mature lymphocytes) but not in mice deficient for the IL-1 receptor. Together, these findings support a role for IL-17A in contributing to the control of streptococcal mucosal colonization and provide new insight into the inflammatory mediators regulating host-pathogen interactions in the female genital tract.
Collapse
|
17
|
Complete Genome Sequence of emm28 Type Streptococcus pyogenes MEW123, a Streptomycin-Resistant Derivative of a Clinical Throat Isolate Suitable for Investigation of Pathogenesis. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00136-16. [PMID: 26988051 PMCID: PMC4796130 DOI: 10.1128/genomea.00136-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
We present here the complete genome sequence of Streptococcus pyogenes type emm28 strain MEW123, a streptomycin-resistant derivative of a pediatric throat isolate. The genome length is 1,878,699 bp, with 38.29% G+C% content. The genome sequence adds value to this virulent emm28 representative strain and will aid in the investigation of streptococcal pathogenesis.
Collapse
|
18
|
An Outbreak of Severe Group A Streptococcus Infections Associated with Podiatric Application of a Biologic Dermal Substitute. Infect Control Hosp Epidemiol 2015; 37:306-12. [PMID: 26673775 DOI: 10.1017/ice.2015.306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To describe an outbreak of severe Group A Streptococcus (GAS) infections that appeared to be associated with use of a biologic dermal substitute on foot wounds DESIGN Retrospective cohort study of cases and similar uninfected patients SETTING/PATIENTS Patients attending the podiatry clinic at a Veterans Affairs Medical Center between July 2011 and November 2011 INTERVENTIONS: Microbiology laboratory data were reviewed for the calendar year, a case definition was established and use of the biologic dermal substitute was discontinued. Staff were cultured to identify potentially colonized employees. A case-cohort study was designed to investigate risk factors for disease. Emm typing and pulsed field gel electrophoresis (PFGE) were performed to identify strain similarity. RESULTS In 10 months, 14 cases were identified, and 4 of these patients died. All strains were emm type 28 and were identical according to PFGE. Discontinuation of biologic dermal substitute use halted the outbreak. A prior stroke was more common in the case cohort vs uninfected patient cohorts. The number of patients attending the clinic on 13 probable transmission days was significantly higher than on nontransmission days. We identified 2 patients who were present in the clinic on all but 1 probable transmission day. Surveillance cultures of podiatry clinic staff and cultures of the same lot of retained graft material were negative. CONCLUSIONS A carrier was not identified, and we believe the outbreak was associated with inter-patient transmission likely due to lapses in infection control techniques. No additional cases have been identified in >3 years following the resumption of dermal substitute use in May 2012.
Collapse
|
19
|
Okada R, Matsumoto M, Zhang Y, Isaka M, Tatsuno I, Hasegawa T. Emergence of type I restriction modification system-negative emm1 type Streptococcus pyogenes clinical isolates in Japan. APMIS 2014; 122:914-21. [PMID: 25356467 DOI: 10.1111/apm.12230] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Streptococcus pyogenes emm1 type is the dominant cause of streptococcal toxic shock syndrome (STSS) in Japan and many other developed countries. Recently, the number of STSS patients in Japan was reported to be increasing. Hence, we analyzed the S. pyogenes clinical isolates detected in Japan after 2005. We found that the regions encoding the Spy1908–1910 two-component regulatory system and the adjacent type I restriction modification system were deleted in some emm1 type isolates. The isolates with the deletion were detected only in the emm1 strains that were isolated between 2010 and 2013, but not before 2010. Twenty-six of 46 (56.5%) emm1 type isolates were isolated in 2010–2013, and among these isolates, five of seven (71.4%) emm1 type STSS isolates were shown to have that deletion. PFGE and PCR analysis for the presence of several pyrogenic exotoxin-related genes suggested that the emm1 isolates with and without the deletion shared the same genetic background. The emm1 isolates with the deletion could incorporate exogenous plasmids by experimental electroporation transformation far more efficiently. These results suggested that the novel emm1 isolates have occupied a fairly large part of total emm1 isolates.
Collapse
|
20
|
Abstract
The human oral cavity is home to a large and diverse community of viruses that have yet to be characterized in patients with periodontal disease. We recruited and sampled saliva and oral biofilm from a cohort of humans either periodontally healthy or with mild or significant periodontal disease to discern whether there are differences in viral communities that reflect their oral health status. We found communities of viruses inhabiting saliva and the subgingival and supragingival biofilms of each subject that were composed largely of bacteriophage. While there were homologous viruses common to different subjects and biogeographic sites, for most of the subjects, virome compositions were significantly associated with the oral sites from which they were derived. The largest distinctions between virome compositions were found when comparing the subgingival and supragingival biofilms to those of planktonic saliva. Differences in virome composition were significantly associated with oral health status for both subgingival and supragingival biofilm viruses but not for salivary viruses. Among the differences identified in virome compositions was a significant expansion of myoviruses in subgingival biofilm, suggesting that periodontal disease favors lytic phage. We also characterized the bacterial communities in each subject at each biogeographic site by using the V3 hypervariable segment of the 16S rRNA and did not identify distinctions between oral health and disease similar to those found in viral communities. The significantly altered ecology of viruses of oral biofilm in subjects with periodontal disease compared to that of relatively periodontally healthy ones suggests that viruses may serve as useful indicators of oral health status. Little is known about the role or the constituents of viruses as members of the human microbiome. We investigated the composition of human oral viral communities in a group of relatively periodontally healthy subjects or significant periodontitis to determine whether health status may be associated with differences in viruses. We found that most of the viruses present were predators of bacteria. The viruses inhabiting dental plaque were significantly different on the basis of oral health status, while those present in saliva were not. Dental plaque viruses in periodontitis were predicted to be significantly more likely to kill their bacterial hosts than those found in healthy mouths. Because oral diseases such as periodontitis have been shown to have altered bacterial communities, we believe that viruses and their role as drivers of ecosystem diversity are important contributors to the human oral microbiome in health and disease states.
Collapse
|
21
|
Oliver-Kozup H, Martin KH, Schwegler-Berry D, Green BJ, Betts C, Shinde AV, Van De Water L, Lukomski S. The group A streptococcal collagen-like protein-1, Scl1, mediates biofilm formation by targeting the extra domain A-containing variant of cellular fibronectin expressed in wounded tissue. Mol Microbiol 2012; 87:672-89. [PMID: 23217101 DOI: 10.1111/mmi.12125] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2012] [Indexed: 11/28/2022]
Abstract
Wounds are known to serve as portals of entry for group A Streptococcus (GAS). Subsequent tissue colonization is mediated by interactions between GAS surface proteins and host extracellular matrix components. We recently reported that the streptococcal collagen-like protein-1, Scl1, selectively binds the cellular form of fibronectin (cFn) and also contributes to GAS biofilm formation on abiotic surfaces. One structural feature of cFn, which is predominantly expressed in response to tissue injury, is the presence of a spliced variant containing extra domain A (EDA/EIIIA). We now report that GAS biofilm formation is mediated by the Scl1 interaction with EDA-containing cFn. Recombinant Scl1 proteins that bound cFn also bound recombinant EDA within the C-C' loop region recognized by the α(9)β(1) integrin. The extracellular 2-D matrix derived from human dermal fibroblasts supports GAS adherence and biofilm formation. Altogether, this work identifies and characterizes a novel molecular mechanism by which GAS utilizes Scl1 to specifically target an extracellular matrix component that is predominantly expressed at the site of injury in order to secure host tissue colonization.
Collapse
Affiliation(s)
- Heaven Oliver-Kozup
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Identification and cluster analysis of Streptococcus pyogenes by MALDI-TOF mass spectrometry. PLoS One 2012; 7:e47152. [PMID: 23144803 PMCID: PMC3492366 DOI: 10.1371/journal.pone.0047152] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 09/10/2012] [Indexed: 12/26/2022] Open
Abstract
Background Whole-cell matrix–assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has been successfully applied for bacterial identification and typing of many pathogens. The fast and reliable qualities of MALDI-TOF MS make it suitable for clinical diagnostics. MALDI-TOF MS for the identification and cluster analysis of Streptococcus pyogenes, however, has not been reported. The goal of our study was to evaluate this approach for the rapid identification and typing of S. pyogenes. Methods 65 S. pyogenes isolates were obtained from the hospital. The samples were prepared and MALDI-TOF MS measurements were conducted as previously reported. Identification of unknown spectra was performed via a pattern recognition algorithm with a reference spectra and a dendrogram was constructed using the statistical toolbox in Matlab 7.1 integrated in the MALDI Biotyper 2.0 software. Results For identification, 61 of 65 S. pyogenes isolates could be identified correctly by MALDI-TOF MS with BioType 2.0 when compared to biochemical identification (API Strep), with an accuracy of 93.85%. In clustering analysis, 44 of 65 isolates were in accordance with those established by M typing, with a matching rate of 67.69%. When only the M type prevalence in China was considered, 41 of 45 isolates were in agreement with M typing, with a matching rate of 91.1%. Conclusions It was here shown that MALDI-TOF MS with Soft Biotype 2.0 and its database could facilitate rapid identification of S. pyogenes. It may present an attractive alternative to traditional biochemical methods of identification. However, for classification, more isolates and advances in the MALDI-TOF MS technology are needed to improve accuracy.
Collapse
|
23
|
Human disease isolates of serotype m4 and m22 group a streptococcus lack genes required for hyaluronic acid capsule biosynthesis. mBio 2012; 3:e00413-12. [PMID: 23131832 PMCID: PMC3487777 DOI: 10.1128/mbio.00413-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group A streptococcus (GAS) causes human pharyngitis and invasive infections and frequently colonizes individuals asymptomatically. Many lines of evidence generated over decades have shown that the hyaluronic acid capsule is a major virulence factor contributing to these infections. While conducting a whole-genome analysis of the in vivo molecular genetic changes that occur in GAS during longitudinal human pharyngeal interaction, we discovered that serotypes M4 and M22 GAS strains lack the hasABC genes necessary for hyaluronic acid capsule biosynthesis. Using targeted PCR, we found that all 491 temporally and geographically diverse disease isolates of these two serotypes studied lack the hasABC genes. Consistent with the lack of capsule synthesis genes, none of the strains produced detectable hyaluronic acid. Despite the lack of a hyaluronic acid capsule, all strains tested multiplied extensively ex vivo in human blood. Thus, counter to the prevailing concept in GAS pathogenesis research, strains of these two serotypes do not require hyaluronic acid to colonize the upper respiratory tract or cause abundant mucosal or invasive human infections. We speculate that serotype M4 and M22 GAS have alternative, compensatory mechanisms that promote virulence. A century of study of the antiphagocytic hyaluronic acid capsule made by group A streptococcus has led to the concept that it is a major virulence factor contributing to human pharyngeal and invasive infections. However, the discovery that some strains that cause abundant human infections lack hyaluronic acid biosynthetic genes and fail to produce this capsule provides a new stimulus for research designed to understand the group A streptococcus factors contributing to pharyngeal infection and invasive disease episodes.
Collapse
|
24
|
Analysis of a Streptococcus pyogenes puerperal sepsis cluster by use of whole-genome sequencing. J Clin Microbiol 2012; 50:2224-8. [PMID: 22518858 DOI: 10.1128/jcm.00675-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Between June and November 2010, a concerning rise in the number of cases of puerperal sepsis, a postpartum pelvic bacterial infection contracted by women after childbirth, was observed in the New South Wales, Australia, hospital system. Group A streptococcus (GAS; Streptococcus pyogenes) isolates PS001 to PS011 were recovered from nine patients. Pulsed-field gel electrophoresis and emm sequence typing revealed that GAS of emm1.40, emm75.0, emm77.0, emm89.0, and emm89.9 were each recovered from a single patient, ruling out a single source of infection. However, emm28.8 GAS were recovered from four different patients. To investigate the relatedness of these emm28 isolates, whole-genome sequencing was undertaken and the genome sequences were compared to the genome sequence of the emm28.4 reference strain, MGAS6180. A total of 186 single nucleotide polymorphisms were identified, for which the phylogenetic reconstruction indicated an outbreak of a polyclonal nature. While two isolates collected from different hospitals were not closely related, isolates from two puerperal sepsis patients from the same hospital were indistinguishable, suggesting patient-to-patient transmission or infection from a common source. The results of this study indicate that traditional typing protocols, such as pulsed-field gel electrophoresis, may not be sensitive enough to allow fine epidemiological discrimination of closely related bacterial isolates. Whole-genome sequencing presents a valid alternative that allows accurate fine-scale epidemiological investigation of bacterial infectious disease.
Collapse
|
25
|
Oliver-Kozup HA, Elliott M, Bachert BA, Martin KH, Reid SD, Schwegler-Berry DE, Green BJ, Lukomski S. The streptococcal collagen-like protein-1 (Scl1) is a significant determinant for biofilm formation by group A Streptococcus. BMC Microbiol 2011; 11:262. [PMID: 22168784 PMCID: PMC3268755 DOI: 10.1186/1471-2180-11-262] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/14/2011] [Indexed: 01/06/2023] Open
Abstract
Background Group A Streptococcus (GAS) is a human-specific pathogen responsible for a number of diseases characterized by a wide range of clinical manifestations. During host colonization GAS-cell aggregates or microcolonies are observed in tissues. GAS biofilm, which is an in vitro equivalent of tissue microcolony, has only recently been studied and little is known about the specific surface determinants that aid biofilm formation. In this study, we demonstrate that surface-associated streptococcal collagen-like protein-1 (Scl1) plays an important role in GAS biofilm formation. Results Biofilm formation by M1-, M3-, M28-, and M41-type GAS strains, representing an intraspecies breadth, were analyzed spectrophotometrically following crystal violet staining, and characterized using confocal and field emission scanning electron microscopy. The M41-type strain formed the most robust biofilm under static conditions, followed by M28- and M1-type strains, while the M3-type strains analyzed here did not form biofilm under the same experimental conditions. Differences in architecture and cell-surface morphology were observed in biofilms formed by the M1- and M41-wild-type strains, accompanied by varying amounts of deposited extracellular matrix and differences in cell-to-cell junctions within each biofilm. Importantly, all Scl1-negative mutants examined showed significantly decreased ability to form biofilm in vitro. Furthermore, the Scl1 protein expressed on the surface of a heterologous host, Lactococcus lactis, was sufficient to induce biofilm formation by this organism. Conclusions Overall, this work (i) identifies variations in biofilm formation capacity among pathogenically different GAS strains, (ii) identifies GAS surface properties that may aid in biofilm stability and, (iii) establishes that the Scl1 surface protein is an important determinant of GAS biofilm, which is sufficient to enable biofilm formation in the heterologous host Lactococcus. In summary, the GAS surface adhesin Scl1 may have an important role in biofilm-associated pathogenicity.
Collapse
Affiliation(s)
- Heaven A Oliver-Kozup
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Korczynska JE, Turkenburg JP, Taylor EJ. The structural characterization of a prophage-encoded extracellular DNase from Streptococcus pyogenes. Nucleic Acids Res 2011; 40:928-38. [PMID: 21948797 PMCID: PMC3258162 DOI: 10.1093/nar/gkr789] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The pathogenic bacterium Group A Streptococcus pyogenes produces several extracellular DNases that have been shown to facilitate invasive infection by evading the human host immune system. DNases degrade the chromatin in neutrophil extracellular traps, enabling the bacterium to evade neutrophil capture. Spd1 is a type I, nonspecific ββα/metal-dependent nuclease from Streptococcus pyogenes, which is encoded by the SF370.1 prophage and is likely to be expressed as a result of prophage induction. We present here the X-ray structure of this DNase in the wild-type and Asn145Ala mutant form. Through structural and sequence alignments as well as mutagenesis studies, we have identified the key residues His121, Asn145 and Glu164, which are crucial for Spd1 nucleolytic activity and shown the active site constellation. Our wild-type structure alludes to the possibility of a catalytically blocked dimeric form of the protein. We have investigated the multimeric nature of Spd1 using size-exclusion chromatography with multi-angle light scattering (SEC-MALLS) in the presence and absence of the divalent metal ion Mg(2+), which suggests that Spd1 exists in a monomeric form in solution.
Collapse
Affiliation(s)
- Justyna E Korczynska
- Department of Chemistry, Structural Biology Laboratory, The University of York, YO10 5YW, UK
| | | | | |
Collapse
|
27
|
Livezey J, Perez L, Suciu D, Yu X, Robinson B, Bush D, Merrill G. Analysis of group A Streptococcus gene expression in humans with pharyngitis using a microarray. J Med Microbiol 2011; 60:1725-1733. [PMID: 21799202 DOI: 10.1099/jmm.0.022939-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pharyngitis caused by group A streptococci (GAS) is one of the most common infections around the world. However, relatively little is known about which genes are expressed and which genes regulate expression during acute infection. Due to their ability to provide genome-wide views of gene expression at one time, microarrays are increasingly being incorporated in GAS research. In this study, a novel electrochemical detection-based microarray was used to identify gene expression patterns among humans with culture-confirmed GAS pharyngitis. Using 14 samples (11 GAS-positive and three GAS-negative) obtained from subjects seen at the Brooke Army Medical Center paediatric clinic, this study demonstrated two different clusters of gene expression patterns. One cluster expressed a larger number of genes related to phages, immune-system evasion and survival among competing oral flora, signifying a potentially more virulent pattern of gene expression. The other cluster showed a greater number of genes related to nutrient acquisition and protein expression. This in vivo genome-wide analysis of GAS gene expression in humans with pharyngitis evaluated global gene expression in terms of virulence factors.
Collapse
Affiliation(s)
- Jeffrey Livezey
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| | - Luis Perez
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| | - Dominic Suciu
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| | - Xin Yu
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| | - Brian Robinson
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| | - David Bush
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| | - Gerald Merrill
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| |
Collapse
|
28
|
Virulence gene pool detected in bovine group C Streptococcus dysgalactiae subsp. dysgalactiae isolates by use of a group A S. pyogenes virulence microarray. J Clin Microbiol 2011; 49:2470-9. [PMID: 21525223 DOI: 10.1128/jcm.00008-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A custom-designed microarray containing 220 virulence genes of Streptococcus pyogenes (group A Streptococcus [GAS]) was used to test group C Streptococcus dysgalactiae subsp. dysgalactiae (GCS) field strains causing bovine mastitis and group C or group G Streptococcus dysgalactiae subsp. equisimilis (GCS/GGS) isolates from human infections, with the latter being used for comparative purposes, for the presence of virulence genes. All bovine and all human isolates carried a fraction of the 220 genes (23% and 39%, respectively). The virulence genes encoding streptolysin S, glyceraldehyde-3-phosphate dehydrogenase, the plasminogen-binding M-like protein PAM, and the collagen-like protein SclB were detected in the majority of both bovine and human isolates (94 to 100%). Virulence factors, usually carried by human beta-hemolytic streptococcal pathogens, such as streptokinase, laminin-binding protein, and the C5a peptidase precursor, were detected in all human isolates but not in bovine isolates. Additionally, GAS bacteriophage-associated virulence genes encoding superantigens, DNase, and/or streptodornase were detected in bovine isolates (72%) but not in the human isolates. Determinants located in non-bacteriophage-related mobile elements, such as the gene encoding R28, were detected in all bovine and human isolates. Several virulence genes, including genes of bacteriophage origin, were shown to be expressed by reverse transcriptase PCR (RT-PCR). Phylogenetic analysis of superantigen gene sequences revealed a high level (>98%) of identity among genes of bovine GCS, of the horse pathogen Streptococcus equi subsp. equi, and of the human pathogen GAS. Our findings indicate that alpha-hemolytic bovine GCS, an important mastitis pathogen and considered to be a nonhuman pathogen, carries important virulence factors responsible for virulence and pathogenesis in humans.
Collapse
|
29
|
Sitkiewicz I, Green NM, Guo N, Mereghetti L, Musser JM. Lateral gene transfer of streptococcal ICE element RD2 (region of difference 2) encoding secreted proteins. BMC Microbiol 2011; 11:65. [PMID: 21457552 PMCID: PMC3083328 DOI: 10.1186/1471-2180-11-65] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 04/01/2011] [Indexed: 11/10/2022] Open
Abstract
Background The genome of serotype M28 group A Streptococcus (GAS) strain MGAS6180 contains a novel genetic element named Region of Difference 2 (RD2) that encodes seven putative secreted extracellular proteins. RD2 is present in all serotype M28 strains and strains of several other GAS serotypes associated with female urogenital infections. We show here that the GAS RD2 element is present in strain MGAS6180 both as an integrative chromosomal form and a circular extrachromosomal element. RD2-like regions were identified in publicly available genome sequences of strains representing three of the five major group B streptococcal serotypes causing human disease. Ten RD2-encoded proteins have significant similarity to proteins involved in conjugative transfer of Streptococcus thermophilus integrative chromosomal elements (ICEs). Results We transferred RD2 from GAS strain MGAS6180 (serotype M28) to serotype M1 and M4 GAS strains by filter mating. The copy number of the RD2 element was rapidly and significantly increased following treatment of strain MGAS6180 with mitomycin C, a DNA damaging agent. Using a PCR-based method, we also identified RD2-like regions in multiple group C and G strains of Streptococcus dysgalactiae subsp.equisimilis cultured from invasive human infections. Conclusions Taken together, the data indicate that the RD2 element has disseminated by lateral gene transfer to genetically diverse strains of human-pathogenic streptococci.
Collapse
Affiliation(s)
- Izabela Sitkiewicz
- Department of Pathology, The Methodist Hospital, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
30
|
In vitro antibacterial activity of modithromycin, a novel 6,11-bridged bicyclolide, against respiratory pathogens, including macrolide-resistant Gram-positive cocci. Antimicrob Agents Chemother 2011; 55:1588-93. [PMID: 21220534 DOI: 10.1128/aac.01469-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The in vitro activities of modithromycin against Gram-positive and -negative respiratory pathogens, including macrolide-resistant cocci with different resistance mechanisms, were compared with those of other macrolide and ketolide agents. MICs were determined by the broth microdilution method. All 595 test strains used in this study were isolated from Japanese medical facilities. The erm (ribosome methylase) and/or mef (efflux pump) gene, which correlated with resistance to erythromycin as well as clarithromycin and azithromycin, was found in 81.8%, 21.3%, and 23.2% of Streptococcus pneumoniae, Streptococcus pyogenes, and methicillin-susceptible Staphylococcus aureus (MSSA) strains, respectively. Modithromycin showed MIC(90)s of 0.125 μg/ml against these three cocci, including macrolide-resistant strains. In particular, the MIC of modithromycin against ermB-carrying S. pyogenes was ≥ 32-fold lower than that of telithromycin. The activities of modithromycin as well as telithromycin were little affected by the presence of mefA or mefE in both streptococci. Against Gram-negative pathogens, modithromycin showed MIC(90)s of 0.5, 8, and 0.031 μg/ml against Moraxella catarrhalis, Haemophilus influenzae, and Legionella spp., respectively. The MICs of modithromycin against M. catarrhalis and H. influenzae were higher than those of telithromycin and azithromycin. However, modithromycin showed the most potent anti-Legionella activity among the macrolide and ketolide agents tested. These results suggested that the bicyclolide agent modithromycin is a novel class of macrolides with improved antibacterial activity against Gram-positive cocci, including telithromycin-resistant streptococci and intracellular Gram-negative bacteria of the Legionella species.
Collapse
|
31
|
Kittang BR, Skrede S, Langeland N, Haanshuus CG, Mylvaganam H. emm gene diversity, superantigen gene profiles and presence of SlaA among clinical isolates of group A, C and G streptococci from western Norway. Eur J Clin Microbiol Infect Dis 2010; 30:423-33. [PMID: 21103900 PMCID: PMC3034890 DOI: 10.1007/s10096-010-1105-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 10/19/2010] [Indexed: 11/28/2022]
Abstract
In order to investigate molecular characteristics of beta-hemolytic streptococcal isolates from western Norway, we analysed the entire emm gene sequences, obtained superantigen gene profiles and determined the prevalence of the gene encoding streptococcal phospholipase A2 (SlaA) of 165 non-invasive and 34 contemporary invasive group A, C and G streptococci (GAS, GCS and GGS). Among the 25 GAS and 26 GCS/GGS emm subtypes identified, only emm3.1 was significantly associated with invasive disease. M protein size variation within GAS and GCS/GGS emm types was frequently identified. Two non-invasive and one invasive GGS possessed emm genes that translated to truncated M proteins as a result of frameshift mutations. Results suggestive of recombinations between emm or emm-like gene segments were found in isolates of emm4 and stG485 types. One non-invasive GGS possessed speC, speG, speH, speI and smeZ, and another non-invasive GGS harboured SlaA. speA and SlaA were over-represented among invasive GAS, probably because they were associated with emm3. speGdys was identified in 83% of invasive and 63% of non-invasive GCS/GGS and correlated with certain emm subtypes. Our results indicate the invasive potential of isolates belonging to emm3, and show substantial emm gene diversity and possible lateral gene transfers in our streptococcal population.
Collapse
Affiliation(s)
- B R Kittang
- Institute of Medicine, University of Bergen, 5021, Bergen, Norway.
| | | | | | | | | |
Collapse
|
32
|
Feng L, Lin H, Ma Y, Yang Y, Zheng Y, Fu Z, Yu S, Yao K, Shen X. Macrolide-resistant Streptococcus pyogenes from Chinese pediatric patients in association with Tn916 transposons family over a 16-year period. Diagn Microbiol Infect Dis 2010; 67:369-75. [DOI: 10.1016/j.diagmicrobio.2010.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/16/2010] [Accepted: 03/30/2010] [Indexed: 12/30/2022]
|
33
|
Group A Streptococcus virulence and host factors in two toddlers with rheumatic fever following toxic shock syndrome. Int J Infect Dis 2010; 14:e403-9. [DOI: 10.1016/j.ijid.2009.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/17/2009] [Accepted: 06/20/2009] [Indexed: 11/20/2022] Open
|
34
|
Abstract
BACKGROUND For more than 100 years, group A Streptococcus has been identified as a cause of severe and, in many cases, fatal infections of the female urogenital tract. Due to advances in hospital hygiene and the advent of antibiotics, this type of infection has been virtually eradicated. However, within the last three decades there has been an increase in severe intra- and post-partum infections attributed to GAS. METHODOLOGY We hypothesized that GAS alters its transcriptome to survive in human amniotic fluid (AF) and cause disease. To identify genes that were up or down regulated in response to growth in AF, GAS was grown in human AF or standard laboratory media (THY) and samples for expression microarray analysis were collected during mid-logarithmic, late-logarithmic, and stationary growth phases. Microarray analysis was performed using a custom Affymetrix chip and normalized hybridization values derived from three biological replicates were collected at each growth point. Ratios of AF/THY above a 2-fold change and P-value <0.05 were considered significant. PRINCIPAL FINDINGS The majority of changes in the GAS transcriptome involved down regulation of multiple adhesins and virulence factors and activation of the stress response. We observed significant changes in genes involved in the arginine deiminase pathway and in the nucleotide de novo synthesis pathway. CONCLUSIONS/SIGNIFICANCE Our work provides new insight into how pathogenic bacteria respond to their environment to establish infection and cause disease.
Collapse
|
35
|
Rato MG, Bexiga R, Nunes SF, Vilela CL, Santos-Sanches I. Human group A streptococci virulence genes in bovine group C streptococci. Emerg Infect Dis 2010; 16:116-9. [PMID: 20031055 PMCID: PMC2874356 DOI: 10.3201/eid1601.090632] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Phage-encoded virulence genes of group A streptococci were detected in 10 (55.6%) of 18 isolates of group C streptococci that had caused bovine mastitis. Bovine isolates carried other genetic determinants, such as composite transposon Tn1207.3/Φ10394.4 (100%) and antimicrobial drug resistance genes erm(B)/erm(A) (22.2%), linB (16.6%), and tet(M)/tet(O) (66.7%), located on mobile elements.
Collapse
Affiliation(s)
- Márcia G Rato
- Universidade Nova de Lisboa, , 2829-516 Caparica, Portugal
| | | | | | | | | |
Collapse
|
36
|
Molecular characteristics of pharyngeal and invasive emm3 Streptococcus pyogenes strains from Norway, 1988–2003. Eur J Clin Microbiol Infect Dis 2009; 29:31-43. [DOI: 10.1007/s10096-009-0814-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
|
37
|
Byrne JLB, Aagaard-Tillery KM, Johnson JL, Wright LJ, Silver RM. Group A streptococcal puerperal sepsis: initial characterization of virulence factors in association with clinical parameters. J Reprod Immunol 2009; 82:74-83. [PMID: 19682751 DOI: 10.1016/j.jri.2009.06.126] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Revised: 03/30/2009] [Accepted: 06/10/2009] [Indexed: 12/01/2022]
Abstract
Group A beta-hemolytic streptococcus (GAS) is an uncommon but potentially fatal source of postpartum infection. Pathogenesis in invasive GAS infections has been linked to bacterial virulence factors. In this study, we sought to provide an initial description of potential virulence factors in association with puerperal morbidity by virtue of specific M-protein type antigens. Women with confirmed GAS puerperal infection in the Salt Lake City region were prospectively identified over a 6-year interval (1991-1997). From this cohort, GAS isolates were analyzed with respect to M-serotype and presence of genes encoding the Streptococcal Pyogenic Exotoxins A and B (SPE-A and SPE-B). Bacterial isolates from 18 subjects with GAS puerperal infection underwent M-serotyping and PCR-based genotyping for the speA and speB genes. Among these, 8/18 subjects manifest criteria of severe disease. All 18 isolate strains expressed speB; 6/18 isolates expressed speA. Of the M-serotypes, 8/8 severe disease isolates expressed M-types 1 (N=3) or 28 (N=5). Pulse-field gel electrophoresis did not indicate an outbreak strain among similar isolates. We conclude that in this initial characterization, morbidity among women with GAS puerperal infection is associated with M-types 1 and 28, but not speB genotype.
Collapse
Affiliation(s)
- Janice L B Byrne
- Department of Obstetrics and Gynecology, University of Utah Health Sciences Center, Salt Lake City, USA
| | | | | | | | | |
Collapse
|
38
|
Panchaud A, Guy L, Collyn F, Haenni M, Nakata M, Podbielski A, Moreillon P, Roten CAH. M-protein and other intrinsic virulence factors of Streptococcus pyogenes are encoded on an ancient pathogenicity island. BMC Genomics 2009; 10:198. [PMID: 19397826 PMCID: PMC2683870 DOI: 10.1186/1471-2164-10-198] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 04/27/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The increasing number of completely sequenced bacterial genomes allows comparing their architecture and genetic makeup. Such new information highlights the crucial role of lateral genetic exchanges in bacterial evolution and speciation. RESULTS Here we analyzed the twelve sequenced genomes of Streptococcus pyogenes by a naïve approach that examines the preferential nucleotide usage along the chromosome, namely the usage of G versus C (GC-skew) and T versus A (TA-skew). The cumulative GC-skew plot presented an inverted V-shape composed of two symmetrical linear segments, where the minimum and maximum corresponded to the origin and terminus of DNA replication. In contrast, the cumulative TA-skew presented a V-shape, which segments were interrupted by several steep slopes regions (SSRs), indicative of a different nucleotide composition bias. Each S. pyogenes genome contained up to nine individual SSRs, encompassing all described strain-specific prophages. In addition, each genome contained a similar unique non-phage SSR, the core of which consisted of 31 highly homologous genes. This core includes the M-protein, other mga-related factors and other virulence genes, totaling ten intrinsic virulence genes. In addition to a high content in virulence-related genes and to a peculiar nucleotide bias, this SSR, which is 47 kb-long in a M1GAS strain, harbors direct repeats and a tRNA gene, suggesting a mobile element. Moreover, its complete absence in a M-protein negative group A Streptococcus natural isolate demonstrates that it could be spontaneously lost, but in vitro deletion experiments indicates that its excision occurred at very low rate. The stability of this SSR, combined to its presence in all sequenced S. pyogenes sequenced genome, suggests that it results from an ancient acquisition. CONCLUSION Thus, this non-phagic SSR is compatible with a pathogenicity island, acquired before S. pyogenes speciation. Its potential excision might bear relevance for vaccine development, because vaccines targeting M-protein might select for M-protein-negative variants that still carry other virulence determinants.
Collapse
Affiliation(s)
- Alexandre Panchaud
- Department of Fundamental Microbiology, University of Lausanne, Quartier UNIL-Sorge, Bâtiment Biophore, Lausanne, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Distribution of phage-associated virulence genes in pharyngeal group a streptococcal strains isolated in Italy. J Clin Microbiol 2009; 47:1575-7. [PMID: 19279174 DOI: 10.1128/jcm.00925-08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The presence and assortment of 16 known virulence/resistance genetic determinants carried by prophages or prophage-like elements were tested in 212 clinical group A Streptococcus (GAS) strains and related to available data from SmaI macrorestriction/pulsed-field gel electrophoresis analysis and emm typing. A strong correlation existed among the three analyses. This finding supports the substantial contribution to the evolution and diversification of the GAS genome attributed to phages.
Collapse
|
40
|
Characterization of emm types and superantigens of Streptococcus pyogenes isolates from children during two sampling periods. Epidemiol Infect 2009; 137:1414-9. [PMID: 19243651 DOI: 10.1017/s0950268809002118] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The characteristics of 359 group A streptococcal (GAS) isolates collected from Chinese paediatric patients in two periods (1993-1994, 2005-2006) were studied. Isolates were assigned to emm types and assayed for eight superantigen (SAg) genes (speA, speC, speH, speI, speG, speJ, ssa, SMEZ). Types emm1 and emm12 were consistently the most prevalent during the two periods, while others varied in frequency. GAS isolates carrying six or more SAg genes increased from 46.53% (1993-1994) to 78.39% (2005-2006); ssa, speH and speJ genes (P<0.05) increased but speA declined (P<0.05). SAg gene profiles were closely associated with the emm type, but strains of the same emm type sometimes carried different SAg genes in the two periods. No significant difference in emm-type distribution and SAg gene profile was noted between isolates from different diseases. These data may contribute towards the development of a GAS vaccine in China.
Collapse
|
41
|
Genetic analysis of group A streptococcus isolates recovered during acute glomerulonephritis outbreaks in Guizhou Province of China. J Clin Microbiol 2008; 47:715-20. [PMID: 19116348 DOI: 10.1128/jcm.00747-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, 68 group A streptococcus (GAS) isolates associated with two outbreaks of acute glomerulonephritis (AGN) in China were analyzed by emm typing. A total of 11 different emm types were identified. Analysis of emm type distribution suggested that AGN outbreaks in two counties were caused by emm60.1- and emm63.0-type GAS. These two types were further characterized by pulsed-field gel electrophoresis, multilocus sequence typing, sof sequence typing, and PCR-based identification of streptococcal pyrogenic exotoxin A, B, and C (speA, speB, and speC) genes. In antimicrobial susceptibility tests, all outbreak strains were resistant to erythromycin and tetracycline, and the rates of resistance of nonoutbreak strains to the two antibiotics were 63.6% and 90.9%. This study is also the first to report a nephritogenic M63 GAS strain.
Collapse
|
42
|
Orsi RH, Borowsky ML, Lauer P, Young SK, Nusbaum C, Galagan JE, Birren BW, Ivy RA, Sun Q, Graves LM, Swaminathan B, Wiedmann M. Short-term genome evolution of Listeria monocytogenes in a non-controlled environment. BMC Genomics 2008; 9:539. [PMID: 19014550 PMCID: PMC2642827 DOI: 10.1186/1471-2164-9-539] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 11/13/2008] [Indexed: 12/23/2022] Open
Abstract
Background While increasing data on bacterial evolution in controlled environments are available, our understanding of bacterial genome evolution in natural environments is limited. We thus performed full genome analyses on four Listeria monocytogenes, including human and food isolates from both a 1988 case of sporadic listeriosis and a 2000 listeriosis outbreak, which had been linked to contaminated food from a single processing facility. All four isolates had been shown to have identical subtypes, suggesting that a specific L. monocytogenes strain persisted in this processing plant over at least 12 years. While a genome sequence for the 1988 food isolate has been reported, we sequenced the genomes of the 1988 human isolate as well as a human and a food isolate from the 2000 outbreak to allow for comparative genome analyses. Results The two L. monocytogenes isolates from 1988 and the two isolates from 2000 had highly similar genome backbone sequences with very few single nucleotide (nt) polymorphisms (1 – 8 SNPs/isolate; confirmed by re-sequencing). While no genome rearrangements were identified in the backbone genome of the four isolates, a 42 kb prophage inserted in the chromosomal comK gene showed evidence for major genome rearrangements. The human-food isolate pair from each 1988 and 2000 had identical prophage sequence; however, there were significant differences in the prophage sequences between the 1988 and 2000 isolates. Diversification of this prophage appears to have been caused by multiple homologous recombination events or possibly prophage replacement. In addition, only the 2000 human isolate contained a plasmid, suggesting plasmid loss or acquisition events. Surprisingly, besides the polymorphisms found in the comK prophage, a single SNP in the tRNA Thr-4 prophage represents the only SNP that differentiates the 1988 isolates from the 2000 isolates. Conclusion Our data support the hypothesis that the 2000 human listeriosis outbreak was caused by a L. monocytogenes strain that persisted in a food processing facility over 12 years and show that genome sequencing is a valuable and feasible tool for retrospective epidemiological analyses. Short-term evolution of L. monocytogenes in non-controlled environments appears to involve limited diversification beyond plasmid gain or loss and prophage diversification, highlighting the importance of phages in bacterial evolution.
Collapse
Affiliation(s)
- Renato H Orsi
- Department of Food Science, Cornell University, Ithaca, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
The intrinsic immunoglobulin g endopeptidase activity of streptococcal Mac-2 proteins implies a unique role for the enzymatically impaired Mac-2 protein of M28 serotype strains. Infect Immun 2008; 76:2183-8. [PMID: 18332209 DOI: 10.1128/iai.01422-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IdeS, a secreted cysteine protease of the important human pathogen Streptococcus pyogenes, interferes with phagocytic killing by specifically cleaving the heavy chain of immunoglobulin G (IgG). Two allelic variants of the enzyme have been described, the IgG-specific endopeptidase, IdeS (or Mac-1) and Mac-2, a protein with only weak IgG endopeptidase activity, which has been suggested to interfere with opsonophagocytosis by blocking Fcgamma receptors of phagocytic cells. However, despite the fact that Mac-2 proteins interact with Fcgamma receptors, no inhibition of reactive oxygen species (ROS) production, opsonophagocytosis, or streptococcal killing by Mac-2 has been reported. In the present study, Mac-2 proteins are shown to contain IgG endopeptidase activity indistinguishable from the enzymatic activity exhibited by IdeS/Mac-1 proteins. The earlier reported weak IgG endopeptidase activity appears to be unique to Mac-2 of M28 serotype strains (Mac-2(M28)) and is most likely due to the formation of a disulfide bond between the catalytic site cysteine and a cysteine residue in position 257 of Mac-2(M28). Furthermore, Mac-2 proteins are shown to inhibit ROS production ex vivo, independently of the IgG endopeptidase activity of the proteins. Inhibition of ROS generation per se, however, was not sufficient to mediate streptococcal survival in bactericidal assays. Thus, in contrast to earlier studies, implicating separate functions for IdeS and Mac-2 protein variants, the current study suggests that Mac-2 and IdeS are bifunctional proteins, combining Fcgamma receptor binding and IgG endopeptidase activity. This finding implies a unique role for Mac-2 proteins of the M28 serotype, since this serotype has evolved and retained a Mac-2 protein lacking IgG endopeptidase activity.
Collapse
|
44
|
Hoe NP, Lukomska E, Musser JM, Lukomski S. Characterization of the immune response to collagen-like proteins Scl1 and Scl2 of serotype M1 and M28 group AStreptococcus. FEMS Microbiol Lett 2007; 277:142-9. [DOI: 10.1111/j.1574-6968.2007.00955.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
45
|
Beres SB, Musser JM. Contribution of exogenous genetic elements to the group A Streptococcus metagenome. PLoS One 2007; 2:e800. [PMID: 17726530 PMCID: PMC1949102 DOI: 10.1371/journal.pone.0000800] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 07/31/2007] [Indexed: 11/29/2022] Open
Abstract
Variation in gene content among strains of a bacterial species contributes to biomedically relevant differences in phenotypes such as virulence and antimicrobial resistance. Group A Streptococcus (GAS) causes a diverse array of human infections and sequelae, and exhibits a complex pathogenic behavior. To enhance our understanding of genotype-phenotype relationships in this important pathogen, we determined the complete genome sequences of four GAS strains expressing M protein serotypes (M2, M4, and 2 M12) that commonly cause noninvasive and invasive infections. These sequences were compared with eight previously determined GAS genomes and regions of variably present gene content were assessed. Consistent with the previously determined genomes, each of the new genomes is ∼1.9 Mb in size, with ∼10% of the gene content of each encoded on variably present exogenous genetic elements. Like the other GAS genomes, these four genomes are polylysogenic and prophage encode the majority of the variably present gene content of each. In contrast to most of the previously determined genomes, multiple exogenous integrated conjugative elements (ICEs) with characteristics of conjugative transposons and plasmids are present in these new genomes. Cumulatively, 242 new GAS metagenome genes were identified that were not present in the previously sequenced genomes. Importantly, ICEs accounted for 41% of the new GAS metagenome gene content identified in these four genomes. Two large ICEs, designated 2096-RD.2 (63 kb) and 10750-RD.2 (49 kb), have multiple genes encoding resistance to antimicrobial agents, including tetracycline and erythromycin, respectively. Also resident on these ICEs are three genes encoding inferred extracellular proteins of unknown function, including a predicted cell surface protein that is only present in the genome of the serotype M12 strain cultured from a patient with acute poststreptococcal glomerulonephritis. The data provide new information about the GAS metagenome and will assist studies of pathogenesis, antimicrobial resistance, and population genomics.
Collapse
Affiliation(s)
- Stephen B. Beres
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - James M. Musser
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, Houston, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Darenberg J, Luca-Harari B, Jasir A, Sandgren A, Pettersson H, Schalén C, Norgren M, Romanus V, Norrby-Teglund A, Normark BH. Molecular and Clinical Characteristics of Invasive Group A Streptococcal Infection in Sweden. Clin Infect Dis 2007; 45:450-8. [PMID: 17638193 DOI: 10.1086/519936] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 05/07/2007] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The incidence and severity of invasive group A streptococcal infection demonstrate great variability over time, which at least, in part, seems to be related to group A streptococcal type distribution among the human population. METHODS An enhanced surveillance study of invasive group A streptococcal infection (746 isolates) was performed in Sweden from April 2002 through December 2004. Noninvasive isolates from either the throat or skin (773 isolates) were collected in parallel for comparison. Clinical and epidemiological data were obtained from 88% of patients with invasive disease and were related to isolate characteristics, including T type, emm sequence type, and the presence of 9 superantigen genes, as well as pulsed-field gel electrophoresis pattern comparisons of selected isolates. RESULTS The annual incidence was 3.0 cases per 100,000 population. Among the patients with invasive disease, 11% developed streptococcal toxic shock syndrome, and 9.5% developed necrotizing fasciitis. The overall case-fatality rate was 14.5%, and 39% of the patients with streptococcal toxic shock syndrome died (P<.001). The T3/13/B3264 cluster accounted for 33% of invasive and 25% of noninvasive isolates. Among this most prevalent type cluster, emm types 89 and 81 dominated. Combined results from pulsed-field gel electrophoresis, emm typing, and superantigen gene profiling identified subgroups within specific emm types that are significantly more prone to cause invasive disease than were other isolates of the same type. CONCLUSIONS This study revealed a changing epidemiology of invasive group A streptococcal infection in Sweden, with emergence of new emm types that were previously not described. The results also suggest that some clones may be particularly prone to cause invasive disease.
Collapse
Affiliation(s)
- Jessica Darenberg
- Department of Bacteriology, Swedish Institute for Infectious Disease Control, Solna, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Siljander T, Toropainen M, Muotiala A, Hoe NP, Musser JM, Vuopio-Varkila J. emm typing of invasive T28 group A streptococci, 1995-2004, Finland. J Med Microbiol 2006; 55:1701-1706. [PMID: 17108274 DOI: 10.1099/jmm.0.46690-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A total of 985 group A streptococcus (GAS) bacteraemia isolates collected in Finland during 1995-2004 were T-serotyped, and of these, 336 isolates of serotype T28 were subjected to further emm typing. The total number of isolates referred per year showed an increase within the study period, from 43 in 1995 to 130 in 2004. The annual incidence of invasive GAS (iGAS) bacteraemia showed a general increase during the study period, from 1.1 to 2.5 per 100 000 population. Serotype T28 remained among the most common serotypes, in addition to serotypes TB3264 and T1. The serotype T28 isolates were found to be distributed across six distinct emm types: emm28, emm77, emm53 (including subtypes 53.2 and 53.4), emm87, emm2 and emm4. The serotype distribution and the emm type distribution of serotype T28 fluctuated over time. Within the study period, the proportion of T28/emm28 isolates became the most prominent. During periods of low emm28 incidence, emm types 77 and 53 seemed to show a resurgence. emm typing revealed T28 isolates to be a genetically heterogeneous group harbouring a variety of distinct M proteins. This study confirms that T serotyping alone is not a sufficient method for epidemiological surveillance of iGAS.
Collapse
Affiliation(s)
- Tuula Siljander
- Hospital Bacteria Laboratory, Department of Bacterial and Inflammatory Diseases, National Public Health Institute, Mannerheimintie 166, FIN-00300, Helsinki, Finland
| | - Maija Toropainen
- Hospital Bacteria Laboratory, Department of Bacterial and Inflammatory Diseases, National Public Health Institute, Mannerheimintie 166, FIN-00300, Helsinki, Finland
| | - Anna Muotiala
- Hospital Bacteria Laboratory, Department of Bacterial and Inflammatory Diseases, National Public Health Institute, Mannerheimintie 166, FIN-00300, Helsinki, Finland
| | - Nancy P Hoe
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT 59840, USA
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, 6565 Fannin Street, Houston, TX 77030, USA
| | - Jaana Vuopio-Varkila
- Hospital Bacteria Laboratory, Department of Bacterial and Inflammatory Diseases, National Public Health Institute, Mannerheimintie 166, FIN-00300, Helsinki, Finland
| |
Collapse
|