Brooks JB, Melton AR. Electron capture gas-liquid chromatographic study of metabolites produced by some arthritic transudate-associated organisms in vitro and in vivo in rabbit models.
J Clin Microbiol 1978;
8:402-9. [PMID:
721944 PMCID:
PMC275260 DOI:
10.1128/jcm.8.4.402-409.1978]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Computerized, frequency-pulsed, modulated electron capture gas-liquid chromatography was used to study the acid metabolites produced in vitro in fetal calf serum and in vivo in an animal chamber model. Several strains of Diplostreptococcus agalactiae, Propionibacterium acnes, Staphylococcus aureus, and Streptococcus serogroups A, B, and G were studied. All of these organisms have been reported to be associated with arthritic transudates in humans. Metabolites were detected by this method from derivatized extracts of both spent fetal calf serum and chamber fluids. Since there was little host response to the organisms cultured in the chambers, it is highly probable that the products detected represent metabolites produced in an in vivo type of environment. The metabolic patterns were reproducible and exhibited many similarities in vitro and in vivo. Production of the acids detected was reproducible, and these acids were useful identification markers. The data support published reports (J. B. Brooks, C. C. Alley, and J. A. Liddle, Anal. Chem. 46: 1930-1934, 1974; J. B. Brooks, G. Choudhary, R. B. Craven, D. Edman, C. C. Alley, and J. A. Liddle, J. Clin. Microbiol. 5:625-628, 1977; J. B. Brooks, R. B. Craven, A. R. Melton, and C. C. Alley, in H. H. Johnson and W. B. Newson, ed., Second International Symposium on Rapid Methods and Automation on Microbiology, 1976; J. B. Brooks, R. B. Craven, D. Schlossberg, C. C. Alley, and F. M. Pitts, J. Clin. Microbiol. 8:203-208, 1978; J. B. Brooks, D. S. Kellogg, C. C. Alley, H. B. Short, and H. H. Handsfield, J. Infect. Dis. 129:660-668, 1974) that bacterial metabolites might be detectable in diseased body fluids. The growth characteristics of the organisms in the animal model and fetal calf serum are discussed, and a moderately priced computer for performing data manipulations is evaluated.
Collapse