1
|
Trivic A, Milovanovic J, Kablar D, Tomic A, Folic M, Jotic A, Tomanovic N, Tomic AM, Djoric I, Jankovic M. Friend or Foe? Exploring the Role of Cytomegalovirus (HCMV) Infection in Head and Neck Tumors. Biomedicines 2024; 12:872. [PMID: 38672226 PMCID: PMC11048144 DOI: 10.3390/biomedicines12040872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Although not regarded as an oncogenic pathogen, the human cytomegalovirus (HCMV) has been associated with a wide array of malignancies. Conversely, a number of studies report on possible anti-tumor properties of the virus, apparently mediated via HCMV-galvanized T-cell tumor killing; these were recently being investigated in clinical trials for the purposes of anti-cancer treatment by means of dendritic cell vaccines and HCMV-specific cytotoxic T cells. In the present study, we have analyzed the relation between a complement of head-and-neck tumors and HCMV infection across 73 countries worldwide using Spearman correlation, univariate and multivariate regression analysis. Intriguingly, HCMV was found to be pro-oncogenic in patients with nasopharyngeal carcinoma; contrarywise, the virus manifested an inverse (i.e., anti-tumor) association with the tumors of the lip/oral region and the salivary glands. Although this putative protective effect was noted initially for thyroid neoplasia and hypopharyngeal tumors as well, after multivariate regression analysis the connection did not hold. There was no association between laryngeal cancer and HCMV infection. It would appear that, depending on the tissue, HCMV may exert both protective and oncogenic effects. The globally observed protective feature of the virus could potentially be utilized in future therapeutic approaches for salivary tumors and neoplasia in the lip/oral region. As correlation does not necessarily imply causation, more in-depth molecular analyses from comprehensive clinical studies are warranted to substantiate our findings.
Collapse
Affiliation(s)
- Aleksandar Trivic
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center of Serbia, 2 Pasterova Street, 11000 Belgrade, Serbia; (A.T.); (J.M.); (M.F.); (A.J.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.T.); (A.M.T.); (I.D.)
| | - Jovica Milovanovic
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center of Serbia, 2 Pasterova Street, 11000 Belgrade, Serbia; (A.T.); (J.M.); (M.F.); (A.J.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.T.); (A.M.T.); (I.D.)
| | - Djurdjina Kablar
- Department for Pathology, Pathohistology and Medical Cytology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia;
| | - Ana Tomic
- Center for Radiology Imaging, University Clinical Center of Serbia, 2 Pasterova Street, 11000 Belgrade, Serbia;
| | - Miljan Folic
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center of Serbia, 2 Pasterova Street, 11000 Belgrade, Serbia; (A.T.); (J.M.); (M.F.); (A.J.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.T.); (A.M.T.); (I.D.)
| | - Ana Jotic
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center of Serbia, 2 Pasterova Street, 11000 Belgrade, Serbia; (A.T.); (J.M.); (M.F.); (A.J.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.T.); (A.M.T.); (I.D.)
| | - Nada Tomanovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.T.); (A.M.T.); (I.D.)
- Institute of Pathology, 1 Dr. Subotica Street, 11000 Belgrade, Serbia
| | - Ana Marija Tomic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.T.); (A.M.T.); (I.D.)
- Institute of Pathology, 1 Dr. Subotica Street, 11000 Belgrade, Serbia
| | - Igor Djoric
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.T.); (A.M.T.); (I.D.)
- Clinic of Neurosurgery, University Clinical Center of Serbia, Institute of Radiology, 4 Dr. Koste Todorovića Street, 11000 Belgrade, Serbia
| | - Marko Jankovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.T.); (A.M.T.); (I.D.)
- Department of Virology, Institute of Microbiology and Immunology, 1 Dr. Subotica Street, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Jankovic M, Knezevic T, Tomic A, Milicevic O, Jovanovic T, Djunic I, Mihaljevic B, Knezevic A, Todorovic-Balint M. Human Cytomegalovirus Oncoprotection across Diverse Populations, Tumor Histologies, and Age Groups: The Relevance for Prospective Vaccinal Therapy. Int J Mol Sci 2024; 25:3741. [PMID: 38612552 PMCID: PMC11012084 DOI: 10.3390/ijms25073741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
The oncogenicity of the human cytomegalovirus (CMV) is currently being widely debated. Most recently, mounting clinical evidence suggests an anti-cancer effect via CMV-induced T cell-mediated tumor destruction. However, the data were mostly obtained from single-center studies and in vitro experiments. Broad geographic coverage is required to offer a global perspective. Our study examined the correlation between country-specific CMV seroprevalence (across 73 countries) and the age-standardized incidence rate (of 34 invasive tumors). The populations studied were stratified according to decadal age periods as the immunologic effects of CMV seropositivity may depend upon age at initial infection. The International Agency for Research on Cancer of the World Health Organization (IARC WHO) database was used. The multivariate linear regression analysis revealed a worldwide inverse correlation between CMV seroprevalence and the incidences of 62.8% tumors. Notably, this inverse link persists for all cancers combined (Spearman's ρ = -0.732, p < 0.001; β = -0.482, p < 0.001, adjusted R2 = 0.737). An antithetical and significant correlation was also observed in particular age groups for the vast majority of tumors. Our results corroborate the conclusions of previous studies and indicate that this oncopreventive phenomenon holds true on a global scale. It applies to a wide spectrum of cancer histologies, additionally supporting the idea of a common underlying mechanism-CMV-stimulated T cell tumor targeting. Although these results further advance the notion of CMV-based therapies, in-depth investigation of host-virus interactions is still warranted.
Collapse
Affiliation(s)
- Marko Jankovic
- Department of Virology, Institute of Microbiology and Immunology, 1 Dr Subotica Street, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
| | - Tara Knezevic
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
| | - Ana Tomic
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
| | - Ognjen Milicevic
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
- Institute of Medical Statistics and Informatics, 15 Dr Subotica Street, 11000 Belgrade, Serbia
| | - Tanja Jovanovic
- Institute for Biocides and Medical Ecology, 16 Trebevicka Street, 11000 Belgrade, Serbia;
| | - Irena Djunic
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
- Clinic of Hematology, University Clinical Centre of Serbia, 2 Dr Koste Todorovica Street, 11000 Belgrade, Serbia
| | - Biljana Mihaljevic
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
- Clinic of Hematology, University Clinical Centre of Serbia, 2 Dr Koste Todorovica Street, 11000 Belgrade, Serbia
| | - Aleksandra Knezevic
- Department of Virology, Institute of Microbiology and Immunology, 1 Dr Subotica Street, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
| | - Milena Todorovic-Balint
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
- Clinic of Hematology, University Clinical Centre of Serbia, 2 Dr Koste Todorovica Street, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Peredo-Harvey I, Bartek J, Ericsson C, Yaiw KC, Nistér M, Rahbar A, Söderberg-Naucler C. Higher Human Cytomegalovirus (HCMV) Specific IgG Antibody Levels in Plasma Samples from Patients with Metastatic Brain Tumors Are Associated with Longer Survival. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1248. [PMID: 37512060 PMCID: PMC10384986 DOI: 10.3390/medicina59071248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/04/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Background: Human cytomegalovirus (HCMV) has been detected in tissue samples from patients with glioblastoma but little is known about the systemic immunological response to HCMV in these patients. Objectives: To investigate the presence and clinical significance of HCMV antibodies levels in plasma samples obtained from patients with brain tumors. Materials and Methods: HCMV-specific IgG and IgM antibody levels were determined in 59 plasma samples collected from brain tumor patients included in a prospective study and in 114 healthy individuals. We examined if the levels of HCMV specific antibodies varied in patients with different brain tumor diagnoses compared to healthy individuals, and if antibody levels were predictive for survival time. Results: HCMV specific IgG antibodies were detected by ELISA in 80% and 89% of patients with GBM and astrocytoma grades II-III, respectively, in all samples (100%) from patients with secondary GBM and brain metastases, as well as in 80% of healthy donors (n = 114). All plasma samples were negative for HCMV-IgM. Patients with brain metastases who had higher plasma HCMV-IgG titers had longer survival times (p = 0.03). Conclusions: HCMV specific IgG titers were higher among all brain tumor patient groups compared with healthy donors, except for patients with secondary GBM. Higher HCMV specific IgG levels in patients with brain metastases but not in patients with primary brain tumors were associated with prolonged survival time.
Collapse
Affiliation(s)
- Inti Peredo-Harvey
- Department of Neurosurgery, Karolinska University Hospital, SE-17176 Stockholm, Sweden
- Department of Medicine Solna, Microbial Pathogenesis Unit, BioClinicum, Karolinska Institutet, SE-17164 Solna, Sweden
| | - Jiri Bartek
- Department of Neurosurgery, Karolinska University Hospital, SE-17176 Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
- Department of Neurosurgery, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | | | - Koon-Chu Yaiw
- Department of Medicine Solna, Microbial Pathogenesis Unit, BioClinicum, Karolinska Institutet, SE-17164 Solna, Sweden
- Division of Neurology, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Monica Nistér
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, SE-17164 Solna, Sweden
| | - Afsar Rahbar
- Department of Medicine Solna, Microbial Pathogenesis Unit, BioClinicum, Karolinska Institutet, SE-17164 Solna, Sweden
- Division of Neurology, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Cecilia Söderberg-Naucler
- Department of Medicine Solna, Microbial Pathogenesis Unit, BioClinicum, Karolinska Institutet, SE-17164 Solna, Sweden
- Division of Neurology, Karolinska University Hospital, SE-17176 Stockholm, Sweden
- Institute of Biomedicine, Infection and Immunology Unit, MediCity Research Laboratory, Turku University, FI-20014 Turku, Finland
| |
Collapse
|
4
|
Human cytomegalovirus hijacks host stress response fueling replication stress and genome instability. Cell Death Differ 2022; 29:1639-1653. [PMID: 35194187 PMCID: PMC9346009 DOI: 10.1038/s41418-022-00953-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 01/01/2023] Open
Abstract
Viral infections enhance cancer risk and threaten host genome integrity. Although human cytomegalovirus (HCMV) proteins have been detected in a wide spectrum of human malignancies and HCMV infections have been implicated in tumorigenesis, the underlying mechanisms remain poorly understood. Here, we employed a range of experimental approaches, including single-molecule DNA fiber analysis, and showed that infection by any of the four commonly used HCMV strains: AD169, Towne, TB40E or VR1814 induced replication stress (RS), as documented by host-cell replication fork asymmetry and formation of 53BP1 foci. The HCMV-evoked RS triggered an ensuing host DNA damage response (DDR) and chromosomal instability in both permissive and non-permissive human cells, the latter being particularly relevant in the context of tumorigenesis, as such cells can survive and proliferate after HCMV infection. The viral major immediate early enhancer and promoter (MIEP) that controls expression of the viral genes IE72 (IE-1) and IE86 (IE-2), contains transcription-factor binding sites shared by promoters of cellular stress-response genes. We found that DNA damaging insults, including those relevant for cancer therapy, enhanced IE72/86 expression. Thus, MIEP has been evolutionary shaped to exploit host DDR. Ectopically expressed IE72 and IE86 also induced RS and increased genomic instability. Of clinical relevance, we show that undergoing standard-of-care genotoxic radio-chemotherapy in patients with HCMV-positive glioblastomas correlated with elevated HCMV protein markers after tumor recurrence. Collectively, these results are consistent with our proposed concept of HCMV hijacking transcription-factor binding sites shared with host stress-response genes. We present a model to explain the potential oncomodulatory effects of HCMV infections through enhanced replication stress, subverted DNA damage response and induced genomic instability.
Collapse
|
5
|
Ahn J, Shin C, Kim YS, Park JS, Jeun SS, Ahn S. Cytomegalovirus-Specific Immunotherapy for Glioblastoma Treatments. Brain Tumor Res Treat 2022; 10:135-143. [PMID: 35929110 PMCID: PMC9353163 DOI: 10.14791/btrt.2022.0010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/25/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022] Open
Abstract
Over the last two decades, numerous studies have investigated the presence of human cytomegalovirus (CMV) within glioblastoma or gliomas; however, the results are severely conflicting. While a few researchers have suggested the potential benefits of cytotoxic T lymphocyte or dendritic cell-based vaccines for recurrent or newly diagnosed glioblastoma patients, several studies did not at all agree with the existence of CMV in glioblastoma cells. In this review, we summarized the conflicting results and issues about the detection of CMV in glioblastoma or glioma patients. We also provided the clinical data of published and unpublished clinical trials using CMV-specific immunotherapy for glioblastomas.
Collapse
Affiliation(s)
- Jaehyun Ahn
- College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Christopher Shin
- College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeo Song Kim
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jae-Sung Park
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
6
|
Daei Sorkhabi A, Sarkesh A, Saeedi H, Marofi F, Ghaebi M, Silvestris N, Baradaran B, Brunetti O. The Basis and Advances in Clinical Application of Cytomegalovirus-Specific Cytotoxic T Cell Immunotherapy for Glioblastoma Multiforme. Front Oncol 2022; 12:818447. [PMID: 35515137 PMCID: PMC9062077 DOI: 10.3389/fonc.2022.818447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/24/2022] [Indexed: 01/28/2023] Open
Abstract
A high percentage of malignant gliomas are infected by human cytomegalovirus (HCMV), and the endogenous expression of HCMV genes and their products are found in these tumors. HCMV antigen expression and its implications in gliomagenesis have emerged as a promising target for adoptive cellular immunotherapy (ACT) strategies in glioblastoma multiforme (GB) patients. Since antigen-specific T cells in the tumor microenvironments lack efficient anti-tumor immune response due to the immunosuppressive nature of glioblastoma, CMV-specific ACT relies on in vitro expansion of CMV-specific CD8+ T cells employing immunodominant HCMV antigens. Given the fact that several hurdles remain to be conquered, recent clinical trials have outlined the feasibility of CMV-specific ACT prior to tumor recurrence with minimal adverse effects and a substantial improvement in median overall survival and progression-free survival. This review discusses the role of HCMV in gliomagenesis, disease prognosis, and recent breakthroughs in harnessing HCMV-induced immunogenicity in the GB tumor microenvironment to develop effective CMV-specific ACT.
Collapse
Affiliation(s)
- Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Ghaebi
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| |
Collapse
|
7
|
Haidar Ahmad S, Pasquereau S, El Baba R, Nehme Z, Lewandowski C, Herbein G. Distinct Oncogenic Transcriptomes in Human Mammary Epithelial Cells Infected With Cytomegalovirus. Front Immunol 2022; 12:772160. [PMID: 35003089 PMCID: PMC8727587 DOI: 10.3389/fimmu.2021.772160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus is being recognized as a potential oncovirus beside its oncomodulation role. We previously isolated two clinical isolates, HCMV-DB (KT959235) and HCMV-BL (MW980585), which in primary human mammary epithelial cells promoted oncogenic molecular pathways, established anchorage-independent growth in vitro, and produced tumorigenicity in mice models, therefore named high-risk oncogenic strains. In contrast, other clinical HCMV strains such as HCMV-FS, KM, and SC did not trigger such traits, therefore named low-risk oncogenic strains. In this study, we compared high-risk oncogenic HCMV-DB and BL strains (high-risk) with low-risk oncogenic strains HCMV-FS, KM, and SC (low-risk) additionally to the prototypic HCMV-TB40/E, knowing that all strains infect HMECs in vitro. Numerous pro-oncogenic features including enhanced expression of oncogenes, cell survival, proliferation, and epithelial-mesenchymal transition genes were observed with HCMV-BL. In vitro, mammosphere formation was observed only in high-risk strains. HCMV-TB40/E showed an intermediate transcriptome landscape with limited mammosphere formation. Since we observed that Ki67 gene expression allows us to discriminate between high and low-risk HCMV strains in vitro, we further tested its expression in vivo. Among HCMV-positive breast cancer biopsies, we only detected high expression of the Ki67 gene in basal tumors which may correspond to the presence of high-risk HCMV strains within tumors. Altogether, the transcriptome of HMECs infected with HCMV clinical isolates displays an “oncogenic gradient” where high-risk strains specifically induce a prooncogenic environment which might participate in breast cancer development.
Collapse
Affiliation(s)
- Sandy Haidar Ahmad
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Sébastien Pasquereau
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Ranim El Baba
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Zeina Nehme
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Clara Lewandowski
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Georges Herbein
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France.,Department of Virology, Centre Hospitalier Universitaire (CHU) Besançon, Besançon, France
| |
Collapse
|
8
|
Metabolic Reprogramming of Glioblastoma Cells during HCMV Infection Induces Secretome-Mediated Paracrine Effects in the Microenvironment. Viruses 2022; 14:v14010103. [PMID: 35062307 PMCID: PMC8777757 DOI: 10.3390/v14010103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive primary central nervous system neoplasia with limited therapeutic options and poor prognosis. Following reports of cytomegalovirus (HCMV) in GBM tumors, the anti-viral drug Valganciclovir was administered and found to significantly increase the longevity of GBM patients. While these findings suggest a role for HCMV in GBM, the relationship between them is not clear and remains controversial. Treatment with anti-viral drugs may prove clinically useful; however, their results do not explain the underlying mechanism between HCMV infection and GBM progression. We hypothesized that HCMV infection would metabolically reprogram GBM cells and that these changes would allow for increased tumor progression. We infected LN-18 GBM cells and employed a Seahorse Bioanalyzer to characterize cellular metabolism. Increased mitochondrial respiration and glycolytic rates were observed following infection. These changes were accompanied by elevated production of reactive oxygen species and lactate. Due to lactate’s numerous tumor-promoting effects, we examined the impact of paracrine signaling of HCMV-infected GBM cells on uninfected stromal cells. Our results indicated that, independent of viral transmission, the secretome of HCMV-infected GBM cells was able to alter the expression of key metabolic proteins and epigenetic markers. This suggests a mechanism of action where reprogramming of GBM cells alters the surrounding tumor microenvironment to be permissive to tumor progression in a manner akin to the Reverse-Warburg Effect. Overall, this suggests a potential oncomodulatory role for HCMV in the context of GBM.
Collapse
|
9
|
Drug Repurposing for Glioblastoma and Current Advances in Drug Delivery-A Comprehensive Review of the Literature. Biomolecules 2021; 11:biom11121870. [PMID: 34944514 PMCID: PMC8699739 DOI: 10.3390/biom11121870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/19/2021] [Accepted: 12/03/2021] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults with an extremely poor prognosis. There is a dire need to develop effective therapeutics to overcome the intrinsic and acquired resistance of GBM to current therapies. The process of developing novel anti-neoplastic drugs from bench to bedside can incur significant time and cost implications. Drug repurposing may help overcome that obstacle. A wide range of drugs that are already approved for clinical use for the treatment of other diseases have been found to target GBM-associated signaling pathways and are being repurposed for the treatment of GBM. While many of these drugs are undergoing pre-clinical testing, others are in the clinical trial phase. Since GBM stem cells (GSCs) have been found to be a main source of tumor recurrence after surgery, recent studies have also investigated whether repurposed drugs that target these pathways can be used to counteract tumor recurrence. While several repurposed drugs have shown significant efficacy against GBM cell lines, the blood–brain barrier (BBB) can limit the ability of many of these drugs to reach intratumoral therapeutic concentrations. Localized intracranial delivery may help to achieve therapeutic drug concentration at the site of tumor resection while simultaneously minimizing toxicity and side effects. These strategies can be considered while repurposing drugs for GBM.
Collapse
|
10
|
Peredo-Harvey I, Rahbar A, Söderberg-Nauclér C. Presence of the Human Cytomegalovirus in Glioblastomas-A Systematic Review. Cancers (Basel) 2021; 13:cancers13205051. [PMID: 34680198 PMCID: PMC8533734 DOI: 10.3390/cancers13205051] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Whether the human cytomegalovirus (HCMV) is present in samples obtained from patients with glioblastoma (GBM) has been a matter under debate during the last two decades. Many investigators have demonstrated the presence of HCMV proteins and nucleic acids in GBM tumors, while some have not been able to detect it. It is important to evaluate current data and resolve these issues to clarify the possible role of the HCMV in GBM tumorigenesis and if this virus can serve as a potential target of therapy for these patients. In the present systematic review, we aim to review published research studies with a focus to identify differences and similarities in methods used for the detection of the HCMV in GBM samples found to be positive or negative for HCMV. Our data suggest that the HCMV is highly prevalent in glioblastomas and that optimized immunohistochemistry techniques are required to detect it. Abstract Glioblastoma is a malignant brain tumor with a dismal prognosis. The standard treatment has not changed in the past 15 years as clinical trials of new treatment protocols have failed. A high prevalence of the human cytomegalovirus (HCMV) in glioblastomas was first reported in 2002. The virus was found only in the tumor and not in the surrounding healthy brain tissue. Many groups have confirmed the presence of the HCMV in glioblastomas, but others could not. To resolve this discrepancy, we systematically reviewed 645 articles identified in different databases. Of these, 81 studies included results from 247 analyses of 9444 clinical samples (7024 tumor samples and 2420 blood samples) by different techniques, and 81 articles included 191 studies that identified the HCMV in 2529 tumor samples (36% of all tumor samples). HCMV proteins were often detected, whereas HCMV nucleic acids were not reliably detected by PCR methods. Optimized immunohistochemical techniques identified the virus in 1391 (84,2%) of 1653 samples. These data suggest that the HCMV is highly prevalent in glioblastomas and that optimized immunohistochemistry techniques are required to detect it.
Collapse
Affiliation(s)
- Inti Peredo-Harvey
- Department of Neurosurgery, Karolinska University Hospital, 171 76 Stockholm, Sweden;
- Department of Medicine, Solna, BioClinicum, Karolinska Institutet, 171 64 Stockholm, Sweden;
| | - Afsar Rahbar
- Department of Medicine, Solna, BioClinicum, Karolinska Institutet, 171 64 Stockholm, Sweden;
- Department of Neurology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Cecilia Söderberg-Nauclér
- Department of Medicine, Solna, BioClinicum, Karolinska Institutet, 171 64 Stockholm, Sweden;
- Department of Neurology, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Correspondence:
| |
Collapse
|
11
|
Krenzlin H, Zdioruk M, Nowicki MO, Finkelberg T, Keric N, Lemmermann N, Skubal M, Chiocca EA, Cook CH, Lawler SE. Cytomegalovirus infection of glioblastoma cells leads to NF-κB dependent upregulation of the c-MET oncogenic tyrosine kinase. Cancer Lett 2021; 513:26-35. [PMID: 33989707 PMCID: PMC8209659 DOI: 10.1016/j.canlet.2021.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/18/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022]
Abstract
Cytomegalovirus (CMV) is widespread in humans and has been implicated in glioblastoma (GBM) and other tumors. However, the role of CMV in GBM remains poorly understood and the mechanisms involved are not well-defined. The goal of this study was to identify candidate pathways relevant to GBM that may be modulated by CMV. Analysis of RNAseq data after CMV infection of patient-derived GBM cells showed significant upregulation of GBM-associated transcripts including the MET oncogene, which is known to play a role in a subset of GBM patients. These findings were validated in vitro in both mouse and human GBM cells. Using immunostaining and RT-PCR in vivo, we confirmed c-MET upregulation in a mouse model of CMV-driven GBM progression and in human GBM. siRNA knockdown showed that MET upregulation was dependent on CMV-induced upregulation of NF-κB signaling. Finally, proneural GBM xenografts overexpressing c-MET grew much faster in vivo than controls, suggesting a mechanism by which CMV infection of tumor cells could induce a more aggressive mesenchymal phenotype. These studies implicate the CMV-induced upregulation of c-MET as a potential mechanism involved in the effects of CMV on GBM growth.
Collapse
Affiliation(s)
- Harald Krenzlin
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, University Hospital Mainz, Gutenberg University, Mainz, Germany
| | - Mykola Zdioruk
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michal O Nowicki
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tomer Finkelberg
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Naureen Keric
- Department of Neurosurgery, University Hospital Mainz, Gutenberg University, Mainz, Germany
| | - Niels Lemmermann
- Institute of Virology, University Hospital Mainz, Gutenberg University, Mainz, Germany
| | - Magdalena Skubal
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - E Antonio Chiocca
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charles H Cook
- Department of Surgery, Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, USA.
| | - Sean E Lawler
- Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Oronsky B, Reid TR, Oronsky A, Sandhu N, Knox SJ. A Review of Newly Diagnosed Glioblastoma. Front Oncol 2021; 10:574012. [PMID: 33614476 PMCID: PMC7892469 DOI: 10.3389/fonc.2020.574012] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma is an aggressive and inevitably recurrent primary intra-axial brain tumor with a dismal prognosis. The current mainstay of treatment involves maximally safe surgical resection followed by radiotherapy over a 6-week period with concomitant temozolomide chemotherapy followed by temozolomide maintenance. This review provides a summary of the epidemiological, clinical, histologic and genetic characteristics of newly diagnosed disease as well as the current standard of care and potential future therapeutic prospects.
Collapse
Affiliation(s)
- Bryan Oronsky
- Department of Clinical Research, EpicentRx, San Diego, CA, United States
| | - Tony R. Reid
- Department of Medical Oncology, UC San Diego School of Medicine, San Diego, CA, United States
| | - Arnold Oronsky
- Department of Clinical Research, InterWest Partners, Menlo Park, CA, United States
| | - Navjot Sandhu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
| | - Susan J. Knox
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
13
|
Fulkerson HL, Nogalski MT, Collins-McMillen D, Yurochko AD. Overview of Human Cytomegalovirus Pathogenesis. Methods Mol Biol 2021; 2244:1-18. [PMID: 33555579 DOI: 10.1007/978-1-0716-1111-1_1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human cytomegalovirus (HCMV) is a betaherpesvirus with a global seroprevalence of 60-90%. HCMV is the leading cause of congenital infections and poses a great health risk to immunocompromised individuals. Although HCMV infection is typically asymptomatic in the immunocompetent population, infection can result in mononucleosis and has also been associated with the development of certain cancers, as well as chronic inflammatory diseases such as various cardiovascular diseases. In immunocompromised patients, including AIDS patients, transplant recipients, and developing fetuses, HCMV infection is associated with increased rates of morbidity and mortality. Currently there is no vaccine for HCMV and there is a need for new pharmacological treatments. Ongoing research seeks to further define the complex aspects of HCMV pathogenesis, which could potentially lead to the generation of new therapeutics to mitigate the disease states associated with HCMV infection. The following chapter reviews the advancements in our understanding of HCMV pathogenesis in the immunocompetent and immunocompromised hosts.
Collapse
Affiliation(s)
- Heather L Fulkerson
- Department of Microbiology & Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Maciej T Nogalski
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Andrew D Yurochko
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA.
| |
Collapse
|
14
|
Tu J, Fang Y, Han D, Tan X, Jiang H, Gong X, Wang X, Hong W, Wei W. Activation of nuclear factor-κB in the angiogenesis of glioma: Insights into the associated molecular mechanisms and targeted therapies. Cell Prolif 2020; 54:e12929. [PMID: 33300633 PMCID: PMC7848966 DOI: 10.1111/cpr.12929] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
Glioma is the most commonly observed primary intracranial tumour and is associated with massive angiogenesis. Glioma neovascularization provides nutrients for the growth and metabolism of tumour tissues, promotes tumour cell division and proliferation, and provides conditions ideal for the infiltration and migration of tumour cells to distant places. Growing evidence suggests that there is a correlation between the activation of nuclear factor (NF)‐κB and the angiogenesis of glioma. In this review article, we highlighted the functions of NF‐κB in the angiogenesis of glioma, showing that NF‐κB activation plays a pivotal role in the growth and progression of glioma angiogenesis and is a rational therapeutic target for antiangiogenic strategies aimed at glioma.
Collapse
Affiliation(s)
- Jiajie Tu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Yilong Fang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Dafei Han
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xuewen Tan
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Haifeng Jiang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xun Gong
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xinming Wang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenming Hong
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
HSATII RNA is induced via a noncanonical ATM-regulated DNA damage response pathway and promotes tumor cell proliferation and movement. Proc Natl Acad Sci U S A 2020; 117:31891-31901. [PMID: 33257565 DOI: 10.1073/pnas.2017734117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pericentromeric human satellite II (HSATII) repeats are normally silent but can be actively transcribed in tumor cells, where increased HSATII copy number is associated with a poor prognosis in colon cancer, and in human cytomegalovirus (HCMV)-infected fibroblasts, where the RNA facilitates viral replication. Here, we report that HCMV infection or treatment of ARPE-19 diploid epithelial cells with DNA-damaging agents, etoposide or zeocin, induces HSATII RNA expression, and a kinase-independent function of ATM is required for the induction. Additionally, various breast cancer cell lines growing in adherent, two-dimensional cell culture express HSATII RNA at different levels, and levels are markedly increased when cells are infected with HCMV or treated with zeocin. High levels of HSATII RNA expression correlate with enhanced migration of breast cancer cells, and knockdown of HSATII RNA reduces cell migration and the rate of cell proliferation. Our investigation links high expression of HSATII RNA to the DNA damage response, centered on a noncanonical function of ATM, and demonstrates a role for the satellite RNA in tumor cell proliferation and movement.
Collapse
|
16
|
Yuan Z, Ye X, Zhu L, Zhang N, An Z, Zheng WJ. Virome assembly and annotation in brain tissue based on next-generation sequencing. Cancer Med 2020; 9:6776-6790. [PMID: 32738030 PMCID: PMC7520322 DOI: 10.1002/cam4.3325] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/20/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
The glioblastoma multiforme (GBM) is one of the deadliest tumors. It has been speculated that virus plays a role in GBM but the evidences are controversy. Published researches are mainly limited to studies on the presence of human cytomegalovirus (HCMV) in GBM. No comprehensive assessment of the brain virome, the collection of viral material in the brain, based on recently sequenced data has been performed. Here, we characterized the virome from 111 GBM samples and 57 normal brain samples from eight projects in the SRA database by a tested and comprehensive assembly approach. The annotation of the assembled contigs showed that most viral sequences in the brain belong to the viral family Retroviridae. In some GBM samples, we also detected full genome sequence of a novel picornavirus recently discovered in invertebrates. Unlike previous reports, our study did not detect herpes virus such as HCMV in GBM from the data we used. However, some contigs that cannot be annotated with any known genes exhibited antibody epitopes in their sequences. These findings provide several avenues for potential cancer therapy: the newly discovered picornavirus could be a starting point to engineer novel oncolytic virus; and the exhibited antibody epitopes could be a source to explore potential drug targets for immune cancer therapy. By characterizing the virosphere in GBM and normal brain at a global level, the results from this study strengthen the link between GBM and viral infection which warrants the further investigation.
Collapse
Affiliation(s)
- Zihao Yuan
- School of Biomedical InformaticsUniversity of Texas Health Science Center at HoustonHoustonTXUSA
- Texas Therapeutics InstituteInstitute of Molecular MedicineMcGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTXUSA
| | - Xiaohua Ye
- Texas Therapeutics InstituteInstitute of Molecular MedicineMcGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTXUSA
| | - Lisha Zhu
- School of Biomedical InformaticsUniversity of Texas Health Science Center at HoustonHoustonTXUSA
| | - Ningyan Zhang
- Texas Therapeutics InstituteInstitute of Molecular MedicineMcGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTXUSA
| | - Zhiqiang An
- Texas Therapeutics InstituteInstitute of Molecular MedicineMcGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTXUSA
| | - W. Jim Zheng
- School of Biomedical InformaticsUniversity of Texas Health Science Center at HoustonHoustonTXUSA
| |
Collapse
|
17
|
Limam S, Missaoui N, Hmissa S, Yacoubi MT, Krifa H, Mokni M, Selmi B. Investigation of Human Cytomegalovirus and Human Papillomavirus in Glioma. Cancer Invest 2020; 38:394-405. [PMID: 32643440 DOI: 10.1080/07357907.2020.1793352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The study investigated the human cytomegalovirus (HCMV) and human papillomavirus (HPV) in gliomas. A retrospective study was conducted on 112 samples. HCMV was investigated by PCR, in situ hybridization (ISH) and immunohistochemistry. HPV was tested by PCR and DNA ISH. HCMV was identified in 60 gliomas, including 55 GBM. However, RNA ISH and immunohistochemistry failed to detect HCMV positivity. HPV was identified in 44 GBM. No significant relationship was identified between HCMV and HPV and tumour characteristics (p > 0.05). Our findings support the HCMV and HPV presence in gliomas. Further assays are required to more explore the potential efficient antiviral management.
Collapse
Affiliation(s)
- Sarra Limam
- Pathology Department, Farhet Hached University Hospital, Sousse, Tunisia
| | - Nabiha Missaoui
- Research Unit UR14ES17, Medicine Faculty, Sousse University, Sousse, Tunisia.,Faculty of Sciences and Techniques of Sidi Bouzid, Kairouan University, Kairouan, Tunisia.,Pathology Department, Sahloul University Hospital, Sousse, Tunisia
| | - Sihem Hmissa
- Pathology Department, Sahloul University Hospital, Sousse, Tunisia
| | | | - Hedi Krifa
- Department of Neurosurgery, Sahloul University Hospital, Sousse, Tunisia
| | - Moncef Mokni
- Pathology Department, Farhet Hached University Hospital, Sousse, Tunisia
| | - Boulbeba Selmi
- Higher Institute of Biotechnology, Monastir University, Monastir, Tunisia
| |
Collapse
|
18
|
Lin Y, Chen Z, Hu C, Chen ZS, Zhang L. Recent progress in antitumor functions of the intracellular antibodies. Drug Discov Today 2020; 25:1109-1120. [DOI: 10.1016/j.drudis.2020.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/10/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
|
19
|
Maleki F, Sadigh ZA, Sadeghi F, Muhammadnejad A, Farahmand M, Parvin M, Shirkoohi R. Human cytomegalovirus infection in Iranian glioma patients correlates with aging and tumor aggressiveness. J Med Virol 2020; 92:1266-1276. [PMID: 31944314 DOI: 10.1002/jmv.25673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/08/2020] [Indexed: 12/18/2022]
Abstract
Human cytomegalovirus (HCMV), as a ubiquitous and opportunistic virus, is a matter for consideration in broad-spectrum diseases, specifically in immunocompromised individuals. In recent decades, many studies that have evaluated the role of HCMV in inflammation and malignancies, especially in high-grade gliomas, have reported inconsistent results. Thus, this study was conducted to analyze 97 primary gliomas for human CMV UL83 gene and protein through TaqMan real-time polymerase chain reaction and immunohistochemistry, respectively. The results were positive for the UL83 gene and pp65 protein in 71% and 24% of samples, respectively. The frequency of HCMV was significantly higher in glioblastomas than other glioma grades (P < .01 and P < .05 for the UL83 gene and protein, respectively). In addition, the association between the prevalence of HCMV and aging strengthened the virus reactivation hypothesis in gliomas. In conclusion, a high frequency of HCMV infection was found in gliomas that correlated with tumor aggressiveness and age. This study recommends a thorough investigation to determine HCMV infection in gliomas to improve the existing knowledge of its role in glial tumors, its prognostic value, and possible efficient antiviral target therapy.
Collapse
Affiliation(s)
- Faezeh Maleki
- Human Viral Vaccine Department, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Alborz Province, Iran
| | - Zohreh-Azita Sadigh
- Human Viral Vaccine Department, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Alborz Province, Iran
| | - Farzin Sadeghi
- Department of Microbiology, Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ahad Muhammadnejad
- Department of Molecular Genetics, Cancer Biology Research Center, Cancer Institute of Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farahmand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Tehran Province, Iran
| | - Mahmoud Parvin
- Department of Pathology, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Tehran Province, Iran
| | - Reza Shirkoohi
- Department of Molecular Genetics, Cancer Biology Research Center, Cancer Institute of Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.,Department of Molecular Genetics, Cancer Research Center, Cancer Institute of Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Singh P, Neumann DM. Persistent HCMV infection of a glioblastoma cell line contributes to the development of resistance to temozolomide. Virus Res 2019; 276:197829. [PMID: 31790777 DOI: 10.1016/j.virusres.2019.197829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/26/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of primary human gliomas. While chemotherapy using the DNA alkylating agent temozolomide (TMZ) is a first line treatment for GBMs, the development of resistance to TMZ is a common limitation to successful treatment. Human Cytomegalovirus (HCMV) is a ubiquitous β-herpesvirus that establishes a lifelong infection latent infection in host haematopoetic cells, where lytic replication of the virus is silenced. HCMV can also establish a persistent infection in hosts, where low levels of virus are lytically produced. Furthermore, multiple studies have identified HCMV DNA and/or proteins in human GBM samples, and have shown that acute infection with HCMV confers a glioblastoma stem cell (GSC) phenotype, further supporting an oncomodulatory role for HCMV in GBM progression and severity. In this current study, we examined the long-term effects of HCMV persistence to cell viability, cell proliferation, and the development of TMZ resistance over time using a glioblastoma cell line known as LN-229. Persistent HCMV infections were established and maintained in this cell line for 30 weeks without the addition of new virus. Here, we report that HCMV persistence in this cell line resulted in increased cell viability, increased cell proliferation, and a marked resistance to the DNA alkylating agent, TMZ, over time, suggesting that low levels of lytically replicating HCMV could contribute to tumor progression in GBM.
Collapse
Affiliation(s)
- Pankaj Singh
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Donna M Neumann
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
21
|
Nauclér CS, Geisler J, Vetvik K. The emerging role of human cytomegalovirus infection in human carcinogenesis: a review of current evidence and potential therapeutic implications. Oncotarget 2019; 10:4333-4347. [PMID: 31303966 PMCID: PMC6611507 DOI: 10.18632/oncotarget.27016] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022] Open
Abstract
It is well-established that infections with viruses harboring oncogenic potential increase the cancer risk. Virus induced oncogenic processes are influenced by a complex and unique combination of host and environmental risk factors that are currently not fully understood. Many of the oncogenic viruses exhibit a prolonged, asymptomatic latency after a primary infection, and cause cancer in only a minority of carriers. From an epidemiologic point of view, it is therefore difficult to determine their role in cancer development. However, recent evidence suggests a neoplastic potential of one additional ubiquitous virus; human Cytomegalovirus (HCMV). Emerging data presents HCMV as a plausible cancer-causing virus by demonstrating its presence in >90% of common tumor types, while being absent in normal tissue surrounding the tumor. HCMV targets many cell types in tumor tissues, and can cause all the ten proposed hallmarks of cancer. This virus exhibits cellular tumor-promoting and immune-evasive strategies, hijacks proangiogenic and anti-apoptotic mechanisms and induces immunosuppressive effects in the tumor micro-environment. Recognizing new cancer-causing mechanisms may increase the therapeutic potential and prophylactic options for virus associated cancer forms. Such approaches could limit viral spread, and promote anti-viral and immune controlling strategies if given as add on to standard therapy to potentially improve the prognosis of cancer patients. This review will focus on HCMV-related onco-viral mechanisms and the potential of HCMV as a new therapeutic target in HCMV positive cancer forms.
Collapse
Affiliation(s)
- Cecilia Söderberg Nauclér
- Department of Medicine, Unit of Microbial Pathogenesis, Center for Molecular Medicine, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital (AHUS), Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Katja Vetvik
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Breast and Endocrine Surgery, AHUS, Lørenskog, Norway
| |
Collapse
|
22
|
Zhao R, Hu M, Liang S, Wang B, Yu B, Yang G, Qian D. IE86 Inhibits the apoptosis and promotes the cell proliferation of glioma cells via the hnRNP A2/B1-mediated alternative splicing of Bcl-x. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2775-2785. [PMID: 31934113 PMCID: PMC6949557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/23/2019] [Indexed: 06/10/2023]
Abstract
Human cytomegalovirus (HCMV), a ubiquitous pathogen, can cause severe illness in immunocompromised individuals. Typically, glioma is one of the most common malignant primary brain tumors and originates in the central nervous system. The IE86 gene of HCMV exerts a major role in regulating virus replication. By using coimmunoprecipitation combined with mass spectrometry, the components of the IE86 complex were identified, and the heterogeneous ribonucleoprotein A2/B1 (hnRNP A2/B1) was recognized as one of the IE86 complex components. hnRNP A2/B1 is highly expressed in U251 cells, and the data suggest that IE86 can promote hnRNP A2/B1 expression. Furthermore, the knockdown of hnRNP A2/B1 significantly attenuates IE86-mediated apoptosis and cell proliferation. Importantly, IE86 can also inhibit the alternative splicing of Bcl-x by decreasing the Bcl-xS/Bcl-xL ratio, which is closely related to apoptosis. Meanwhile, the knockdown of hnRNP A2/B1 can mitigate the inhibitory effect of IE86 on the alternative splicing of Bcl-x. In conclusion, the inhibition of apoptosis and enhancement of cell proliferation by IE86 may be related to the hnRNP A2/B1-mediated alternative splicing of Bcl-x.
Collapse
Affiliation(s)
- Rou Zhao
- Department of Microbiology, Qingdao University Life Science CollegeQingdao, Shandong, P. R. China
| | - Ming Hu
- Basic Medical College, Qingdao University Medical CollegeQingdao, Shandong, P. R. China
| | - Shuzhen Liang
- Basic Medical College, Qingdao University Medical CollegeQingdao, Shandong, P. R. China
| | - Bin Wang
- Basic Medical College, Qingdao University Medical CollegeQingdao, Shandong, P. R. China
| | - Bo Yu
- Basic Medical College, Qingdao University Medical CollegeQingdao, Shandong, P. R. China
| | - Guimei Yang
- Second Affiliated Hospital of Shandong University of Traditional Chinese MedicineJinan, Shandong, P. R. China
| | - Dongmeng Qian
- Department of Microbiology, Qingdao University Life Science CollegeQingdao, Shandong, P. R. China
| |
Collapse
|
23
|
Brown MP, Ebert LM, Gargett T. Clinical chimeric antigen receptor-T cell therapy: a new and promising treatment modality for glioblastoma. Clin Transl Immunology 2019; 8:e1050. [PMID: 31139410 PMCID: PMC6526894 DOI: 10.1002/cti2.1050] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 12/27/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is now approved in the United States and Europe as a standard treatment for relapsed/refractory B-cell malignancies. It has also been approved recently by the Therapeutic Goods Administration in Australia and may soon be publicly reimbursed. This advance has accentuated scientific, clinical and commercial interest in adapting this exciting technology for the treatment of solid cancers where it is widely recognised that the challenges of overcoming a hostile tumor microenvironment are most acute. Indeed, CAR-T cell technology may be of the greatest value for those cancers that lack pre-existing immunity because they are immunologically 'cold', or have a low somatic tumor mutation load, or both. These cancers are generally not amenable to therapeutic immune checkpoint blockade, but CAR-T cell therapy may be effective because it provides an abundant supply of autologous tumor-specific T cells. This is achieved by using genetic engineering to re-direct autologous T-cell cytotoxicity towards a tumor-associated antigen, bypassing endogenous T-cell requirements for antigen processing, MHC-dependent antigen presentation and co-stimulation. One of the most challenging solid cancers is glioblastoma, which has among the least permissive immunological milieu of any cancer, and which is almost always fatal. Here, we argue that CAR-T cell technology may counter some glioblastoma defences and provide a beachhead for furthering our eventual therapeutic aims of restoring effective antitumor immunity. Although clinical investigation of CAR-T cell therapy for glioblastoma is at an early stage, we discuss three recently published studies, which feature significant differences in target antigen, CAR-T cell phenotype, route of administration and tumor response. We discuss the lessons, which may be learned from these studies and which may guide further progress in the field.
Collapse
Affiliation(s)
- Michael P Brown
- Translational Oncology Laboratory Centre for Cancer Biology University of South Australia and SA Pathology Adelaide SA Australia.,Cancer Clinical Trials Unit Royal Adelaide Hospital Adelaide SA Australia.,School of Medicine University of Adelaide Adelaide SA Australia
| | - Lisa M Ebert
- Translational Oncology Laboratory Centre for Cancer Biology University of South Australia and SA Pathology Adelaide SA Australia
| | - Tessa Gargett
- Translational Oncology Laboratory Centre for Cancer Biology University of South Australia and SA Pathology Adelaide SA Australia
| |
Collapse
|
24
|
Krenzlin H, Behera P, Lorenz V, Passaro C, Zdioruk M, Nowicki MO, Grauwet K, Zhang H, Skubal M, Ito H, Zane R, Gutknecht M, Griessl MB, Ricklefs F, Ding L, Peled S, Rooj A, James CD, Cobbs CS, Cook CH, Chiocca EA, Lawler SE. Cytomegalovirus promotes murine glioblastoma growth via pericyte recruitment and angiogenesis. J Clin Invest 2019; 129:1671-1683. [PMID: 30855281 DOI: 10.1172/jci123375] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 02/05/2019] [Indexed: 12/15/2022] Open
Abstract
Cytomegalovirus (CMV) has been implicated in glioblastoma (GBM); however, a mechanistic connection in vivo has not been established. The purpose of this study is to characterize the effects of murine CMV (MCMV) on GBM growth in murine models. Syngeneic GBM models were established in mice perinatally infected with MCMV. We found that tumor growth was markedly enhanced in MCMV+ mice, with a significant reduction in overall survival compared with that of controls (P < 0.001). We observed increased angiogenesis and tumor blood flow in MCMV+ mice. MCMV reactivation was observed in intratumoral perivascular pericytes and tumor cells in mouse and human GBM specimens, and pericyte coverage of tumor vasculature was strikingly augmented in MCMV+ mice. We identified PDGF-D as a CMV-induced factor essential for pericyte recruitment, angiogenesis, and tumor growth. The antiviral drug cidofovir improved survival in MCMV+ mice, inhibiting MCMV reactivation, PDGF-D expression, pericyte recruitment, and tumor angiogenesis. These data show that MCMV potentiates GBM growth in vivo by increased pericyte recruitment and angiogenesis due to alterations in the secretome of CMV-infected cells. Our model provides evidence for a role of CMV in GBM growth and supports the application of antiviral approaches for GBM therapy.
Collapse
Affiliation(s)
| | - Prajna Behera
- Department of Neurosurgery, Brigham and Women's Hospital
| | - Viola Lorenz
- Division of Newborn Medicine, Boston Children's Hospital, and
| | | | - Mykola Zdioruk
- Department of Neurosurgery, Brigham and Women's Hospital
| | | | | | - Hong Zhang
- Department of Neurosurgery, Brigham and Women's Hospital
| | | | - Hirotaka Ito
- Department of Neurosurgery, Brigham and Women's Hospital
| | - Rachel Zane
- Department of Neurosurgery, Brigham and Women's Hospital
| | - Michael Gutknecht
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Marion B Griessl
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Franz Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lai Ding
- Program for Interdisciplinary Neuroscience, NeuroTechnology Studio, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Sharon Peled
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Arun Rooj
- Department of Neurosurgery, Brigham and Women's Hospital
| | - C David James
- Department of Neurosurgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Charles S Cobbs
- Swedish Neuroscience Institute, Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Seattle, Washington, USA
| | - Charles H Cook
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Sean E Lawler
- Department of Neurosurgery, Brigham and Women's Hospital
| |
Collapse
|
25
|
Curtis NL, Bolanos-Garcia VM. The Anaphase Promoting Complex/Cyclosome (APC/C): A Versatile E3 Ubiquitin Ligase. Subcell Biochem 2019; 93:539-623. [PMID: 31939164 DOI: 10.1007/978-3-030-28151-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
In the present chapter we discuss the essential roles of the human E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C) in mitosis as well as the emerging evidence of important APC/C roles in cellular processes beyond cell division control such as regulation of genomic integrity and cell differentiation of the nervous system. We consider the potential incipient role of APC/C dysregulation in the pathophysiology of the neurological disorder Alzheimer's disease (AD). We also discuss how certain Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA) viruses take control of the host's cell division regulatory system through harnessing APC/C ubiquitin ligase activity and hypothesise the plausible molecular mechanisms underpinning virus manipulation of the APC/C. We also examine how defects in the function of this multisubunit protein assembly drive abnormal cell proliferation and lastly argue the potential of APC/C as a promising therapeutic target for the development of innovative therapies for the treatment of chronic malignancies such as cancer.
Collapse
Affiliation(s)
- Natalie L Curtis
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, England, UK
| | - Victor M Bolanos-Garcia
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, England, UK.
| |
Collapse
|
26
|
Rahman M, Dastmalchi F, Karachi A, Mitchell D. The role of CMV in glioblastoma and implications for immunotherapeutic strategies. Oncoimmunology 2018; 8:e1514921. [PMID: 30546954 PMCID: PMC6287786 DOI: 10.1080/2162402x.2018.1514921] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/09/2018] [Accepted: 08/17/2018] [Indexed: 12/27/2022] Open
Abstract
Controversy surrounds the role of cytomegalovirus (CMV) in glioblastoma (GBM). However, several studies have shown that CMV nucleic acids and proteins are present within GBM tumor tissue. CMV has been implicated in GBM pathogenesis by affecting tumor stem cell factors, angiogenesis and immune pathways. Anti-viral therapy has not been found to definitively improve outcomes for patients with GBM. Several studies have leveraged CMV by targeting CMV antigens using ex-vivo expanded T cells or dendritic cell vaccines. The initial results from these studies are promising and larger studies are underway.
Collapse
Affiliation(s)
- Maryam Rahman
- Lillian S. Wells Department of Neurosurgery, UF Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Farhad Dastmalchi
- Lillian S. Wells Department of Neurosurgery, UF Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Aida Karachi
- Lillian S. Wells Department of Neurosurgery, UF Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Duane Mitchell
- Lillian S. Wells Department of Neurosurgery, UF Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
27
|
The transcriptome of human mammary epithelial cells infected with the HCMV-DB strain displays oncogenic traits. Sci Rep 2018; 8:12574. [PMID: 30135434 PMCID: PMC6105607 DOI: 10.1038/s41598-018-30109-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/21/2018] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence indicates that human cytomegalovirus (HCMV) populations under the influence of host environment, can either be stable or rapidly differentiating, leading to tissue compartment colonization. We isolated previously from a 30-years old pregnant woman, a clinical isolate of HCMV, that we refered to as the HCMV-DB strain (accession number KT959235). The HCMV-DB clinical isolate demonstrated its ability to infect primary macrophages and to upregulate the proto-oncogene Bcl-3. We observed in this study that the genome of HCMV-DB strain is close to the genomes of other primary clinical isolates including the Toledo and the JP strains with the later having been isolated from a glandular tissue, the prostate. Using a phylogenetic analysis to compare the genes involved in virus entry, we observed that the HCMV-DB strain is close to the HCMV strain Merlin, the prototype HCMV strain. HCMV-DB infects human mammary epithelial cells (HMECs) which in turn display a ER−/PR−/HER2− phenotype, commonly refered to as triple negative. The transcriptome of HCMV-DB-infected HMECs presents the characteristics of a pro-oncogenic cellular environment with upregulated expression of numerous oncogenes, enhanced activation of pro-survival genes, and upregulated markers of cell proliferation, stemcellness and epithelial mesenchymal transition (EMT) that was confirmed by enhanced cellular proliferation and tumorsphere formation in vitro. Taken together our data indicate that some clinical isolates could be well adapted to the mammary tissue environment, as it is the case for the HCMV-DB strain. This could influence the viral fitness, ultimately leading to breast cancer development.
Collapse
|
28
|
Krishna BA, Miller WE, O'Connor CM. US28: HCMV's Swiss Army Knife. Viruses 2018; 10:E445. [PMID: 30127279 PMCID: PMC6116241 DOI: 10.3390/v10080445] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/08/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
US28 is one of four G protein coupled receptors (GPCRs) encoded by human cytomegalovirus (HCMV). The US28 protein (pUS28) is a potent signaling molecule that alters a variety of cellular pathways that ultimately alter the host cell environment. This viral GPCR is expressed not only in the context of lytic replication but also during viral latency, highlighting its multifunctional properties. pUS28 is a functional GPCR, and its manipulation of multiple signaling pathways likely impacts HCMV pathogenesis. Herein, we will discuss the impact of pUS28 on both lytic and latent infection, pUS28-mediated signaling and its downstream consequences, and the influence this viral GPCR may have on disease states, including cardiovascular disease and cancer. We will also discuss the potential for and progress towards exploiting pUS28 as a novel therapeutic to combat HCMV.
Collapse
Affiliation(s)
- Benjamin A Krishna
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - William E Miller
- Department of Molecular Genetics, Biochemistry, & Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA.
| | - Christine M O'Connor
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
29
|
Deshpande RP, Panigrahi M, Y B V K C, Babu PP. Profiling of microRNAs modulating cytomegalovirus infection in astrocytoma patients. Neurol Sci 2018; 39:1895-1902. [PMID: 30090984 DOI: 10.1007/s10072-018-3518-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/31/2018] [Indexed: 01/23/2023]
Abstract
Astrocytoma is recognized as the most common neoplasm of the brain with aggressive progression. The therapeutic regime for glioblastoma, the most aggressive astrocytoma, often consists of aggressive chemo and radiotherapy. The present holistic approaches, however, have failed to influence the quality life of patients. Therefore, it is necessary to understand the underlying mechanisms of its progression for updated therapeutic evaluation. Human cytomegalovirus (HCMV) is reported to be associated with glioblastoma progression. The hypothesis still remains controversial due to the lack of concrete evidences. Here, we report the profile of miRNAs encoded by human host and the cytomegalovirus (CMV) involved in modulation of CMV infection in surgically resected human astrocytoma tissue samples of various malignancy grades (n = 24). Total RNA from the control brain and tumor tissues was extracted by TriZol reagent. The expression levels of the mature form of miRNA were detected by real-time PCR. Primarily, we found the upregulation of miR-210-3p, miR-155-5p, miR-UL-112-3p, miR-183-5p, and miR-223-5p in high-grade astrocytic tumors as compared with low-grade tumor tissues. miR-214-3p is significantly expressed in control brain tissues and its expression decreased with astrocytoma grade progression. This miRNA was reported to be associated with antiviral proprieties. Among CMV-encoded miRNA, miR-UL-112-3p was significantly upregulated in glioblastoma tissue samples and may be involved in providing immune escape to the virus as well as involved in modulating the immune microenvironment of glioblastoma. Taken together, we conclude the possible involvement of miRNAs in modulating the CMV dependent astrocytoma progression.
Collapse
Affiliation(s)
- Ravindra Pramod Deshpande
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India
| | - Manas Panigrahi
- Krishna Institute of Medical Sciences, Secunderabad, Telangana State, India
| | | | - Phanithi Prakash Babu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India.
| |
Collapse
|
30
|
Dos Santos CJ, Ferreira Castro FL, de Aguiar RB, Menezes IG, Santos AC, Paulus C, Nevels M, Carlan da Silva MC. Impact of human cytomegalovirus on glioblastoma cell viability and chemotherapy treatment. J Gen Virol 2018; 99:1274-1285. [PMID: 30045780 DOI: 10.1099/jgv.0.001118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The relationship between human cytomegalovirus (HCMV) and tumours has been extensively investigated, mainly in glioblastoma multiforme (GBM), a malignant tumour of the central nervous system with low overall survival rates. Several reports have demonstrated the presence of HCMV in GBM, although typically restricted to a low number of cells, and studies have indicated that viral proteins have the ability to dysregulate cellular processes and increase tumour malignancy. Treatment of GBM involves the use of the chemotherapeutic agents temozolomide (TMZ) and carmustine (bis-chloroethylnitrosourea, BCNU), which lead to the attachment of adducts to the DNA backbone, causing errors during replication and consequent cell death. It is known that HCMV infection can modulate DNA repair pathways, but what effects the virus may exhibit during chemotherapy are unknown. Here we approach this question by analysing HCMV infection and viral protein accumulation in GBM cell lines with different genotypes and their response to TMZ and BCNU in the presence of the virus. We demonstrate that A172, TP365MG and U251MG GBM cells are efficiently infected by both low-passage (TB40E) and high-passage (AD169) HCMV strains. However, the GBM cell lines vary widely in their permissiveness to viral gene expression and exhibit very different patterns of immediate early, early and late protein accumulation. HCMV reduces the viability of permissive GBM cells in a multiplicity-dependent manner in both the absence and presence of TMZ or BNCU. In sum, we demonstrate that GBM cell lines are equally susceptible but differentially permissive to infection by both low- and high-passage strains of HCMV. This observation not only indicates that viral replication is largely controlled by cellular factors in this system, but also provides a possible explanation for why viral gene products are only found in a subset of cells in GBM tumours. Furthermore, we conclude that the virus does not confer increased resistance to chemotherapeutic drugs in various GBM cell lines, but instead reduces tumour cell viability. These results highlight that the oncomodulatory potential of HCMV is not limited to cancer-promoting activities, but also includes adverse effects on tumour cell proliferation or survival.
Collapse
Affiliation(s)
- Claudia Januário Dos Santos
- 1Center for Natural and Humanities Sciences, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| | | | - Rodrigo Barbosa de Aguiar
- 2Department of Biophysics, Paulista Medical School, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Isabela Godoy Menezes
- 1Center for Natural and Humanities Sciences, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| | - Ana Carolina Santos
- 1Center for Natural and Humanities Sciences, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| | - Christina Paulus
- 3Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| | - Michael Nevels
- 3Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| | | |
Collapse
|
31
|
Heukers R, Fan TS, de Wit RH, van Senten JR, De Groof TWM, Bebelman MP, Lagerweij T, Vieira J, de Munnik SM, Smits-de Vries L, van Offenbeek J, Rahbar A, van Hoorick D, Söderberg-Naucler C, Würdinger T, Leurs R, Siderius M, Vischer HF, Smit MJ. The constitutive activity of the virally encoded chemokine receptor US28 accelerates glioblastoma growth. Oncogene 2018; 37:4110-4121. [PMID: 29706656 PMCID: PMC6062493 DOI: 10.1038/s41388-018-0255-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/04/2018] [Accepted: 03/14/2018] [Indexed: 01/10/2023]
Abstract
Glioblastoma (GBM) is the most aggressive and an incurable type of brain cancer. Human cytomegalovirus (HCMV) DNA and encoded proteins, including the chemokine receptor US28, have been detected in GBM tumors. US28 displays constitutive activity and is able to bind several human chemokines, leading to the activation of various proliferative and inflammatory signaling pathways. Here we show that HCMV, through the expression of US28, significantly enhanced the growth of 3D spheroids of U251− and neurospheres of primary glioblastoma cells. Moreover, US28 expression accelerated the growth of glioblastoma cells in an orthotopic intracranial GBM-model in mice. We developed highly potent and selective US28-targeting nanobodies, which bind to the extracellular domain of US28 and detect US28 in GBM tissue. The nanobodies inhibited chemokine binding and reduced the constitutive US28-mediated signaling with nanomolar potencies and significantly impaired HCMV/US28-mediated tumor growth in vitro and in vivo. This study emphasizes the oncomodulatory role of HCMV-encoded US28 and provides a potential therapeutic approach for HCMV-positive tumors using the nanobody technology.
Collapse
Affiliation(s)
- Raimond Heukers
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Tian Shu Fan
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Raymond H de Wit
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Jeffrey R van Senten
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Timo W M De Groof
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Maarten P Bebelman
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Tonny Lagerweij
- Neuro-oncology Research Group, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
| | - Joao Vieira
- Ablynx N.V., Technologiepark 21, Zwijnaarde, 9052, Belgium
| | - Sabrina M de Munnik
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Laura Smits-de Vries
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Jody van Offenbeek
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Afsar Rahbar
- Department of Medicine Solna, Experimental Cardiovascular Research Unit and Department of Medicine and Neurology, Center for Molecular Medicine, Karolinska Institute, Stockholm, 171 77, Sweden
| | | | - Cecilia Söderberg-Naucler
- Department of Medicine Solna, Experimental Cardiovascular Research Unit and Department of Medicine and Neurology, Center for Molecular Medicine, Karolinska Institute, Stockholm, 171 77, Sweden
| | - Thomas Würdinger
- Neuro-oncology Research Group, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
| | - Rob Leurs
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Marco Siderius
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Henry F Vischer
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands
| | - Martine J Smit
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, Amsterdam, 1081 HZ, The Netherlands.
| |
Collapse
|
32
|
Kumar A, Tripathy MK, Pasquereau S, Al Moussawi F, Abbas W, Coquard L, Khan KA, Russo L, Algros MP, Valmary-Degano S, Adotevi O, Morot-Bizot S, Herbein G. The Human Cytomegalovirus Strain DB Activates Oncogenic Pathways in Mammary Epithelial Cells. EBioMedicine 2018; 30:167-183. [PMID: 29628341 PMCID: PMC5952350 DOI: 10.1016/j.ebiom.2018.03.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 12/31/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) establishes a persistent life-long infection and increasing evidence indicates HCMV infection can modulate signaling pathways associated with oncogenesis. Breast milk is an important route of HCMV transmission in humans and we hypothesized that mammary epithelial cells could be one of the main cellular targets of HCMV infection. Methods The infectivity of primary human mammary epithelial cells (HMECs) was assessed following infection with the HCMV-DB strain, a clinical isolate with a marked macrophage-tropism. The impact of HCMV-DB infection on expression of p53 and retinoblastoma proteins, telomerase activity and oncogenic pathways (c-Myc, Akt, Ras, STAT3) was studied. Finally the transformation of HCMV-DB infected HMECs was evaluated using soft agar assay. CTH cells (CMV Transformed HMECs) were detected in prolonged cultures of infected HMECs. Tumor formation was observed in NOD/SCID Gamma (NSG) mice injected with CTH cells. Detection of long non coding RNA4.9 (lncRNA4.9) gene was assessed in CTH cells, tumors isolated from xenografted NSG mice and biopsies of patients with breast cancer using qualitative and quantitative PCR. Results We found that HCMV, especially a clinical strain named HCMV-DB, infects HMECs in vitro. The clinical strain HCMV-DB replicates productively in HMECs as evidenced by detection of early and late viral transcripts and proteins. Following infection of HMECs with HCMV-DB, we observed the inactivation of retinoblastoma and p53 proteins, the activation of telomerase activity, the activation of the proto-oncogenes c-Myc and Ras, the activation of Akt and STAT3, and the upregulation of cyclin D1 and Ki67 antigen. Colony formation was observed in soft agar seeded with HCMV-DB-infected HMECs. Prolonged culture of infected HMECs resulted in the development of clusters of spheroid cells that we called CTH cells (CMV Transformed HMECs). CTH cells when injected in NOD/SCID Gamma (NSG) mice resulted in the development of tumors. We detected in CTH cells the presence of a HCMV signature corresponding to a sequence of the long noncoding RNA4.9 (lncRNA4.9) gene. We also found the presence of the HCMV lncRNA4.9 sequence in tumors isolated from xenografted NSG mice injected with CTH cells and in biopsies of patients with breast cancer using qualitative and quantitative PCR. Conclusions Our data indicate that key molecular pathways involved in oncogenesis are activated in HCMV-DB-infected HMECs that ultimately results in the transformation of HMECs in vitro with the appearance of CMV-transformed HMECs (CTH cells) in culture. CTH cells display a HCMV signature corresponding to a lncRNA4.9 genomic sequence and give rise to fast growing triple-negative tumors in NSG mice. A similar lncRNA4.9 genomic sequence was detected in tumor biopsies of patients with breast cancer. The infection of primary human mammary epithelial cells (HMECs) with the HCMV-DB strain results in a pro-oncogenic cellular environment. HCMV-DB transforms primary HMECs in vitro as measured by a soft agar assay. Prolonged culture of HMECs infected with HCMV-DB results in the appearance of clusters of spheroid cells that we called CTH cells (CMV Transformed HMECs). CTH cells when injected in NOD/SCID Gamma mice resulted in the development of breast tumor. The HCMV lncRNA4.9 sequence was detected in CTH cells, in tumors isolated from xenografted NSG mice injected with CTH cells and in biopsies of patients with breast cancer.
Research in Context: Worldwide breast cancer is the most common cancer diagnosed among women. Etiological factors involved in breast cancer include genetic and environmental risk factors and among these latter viruses could be involved with close to one-fifth of all cancers in the world caused by infectious agents. We found that the cytomegalovirus strain DB, a member of the herpesvirus family, activates oncogenic pathways in infected mammary epithelial cells, transforms these cells in culture and favors the appearance of tumors in xenografted mice. Our findings might lead to a better understanding of the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Amit Kumar
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France
| | - Manoj Kumar Tripathy
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France
| | - Sébastien Pasquereau
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France.
| | - Fatima Al Moussawi
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France; Lebanese University, Beyrouth, Lebanon
| | | | - Laurie Coquard
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France
| | - Kashif Aziz Khan
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France
| | - Laetitia Russo
- Department of Pathology, CHRU Besançon, F-25030 Besançon, France
| | | | | | - Olivier Adotevi
- INSERM UMR1098, University of Bourgogne Franche-Comté, Besançon, France; Department of Medical Oncology, CHRU Besancon, F-25030 Besancon, France.
| | | | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France; Department of Virology, CHRU Besancon, F-25030 Besancon, France.
| |
Collapse
|
33
|
Korbecki J, Gutowska I, Kojder I, Jeżewski D, Goschorska M, Łukomska A, Lubkowska A, Chlubek D, Baranowska-Bosiacka I. New extracellular factors in glioblastoma multiforme development: neurotensin, growth differentiation factor-15, sphingosine-1-phosphate and cytomegalovirus infection. Oncotarget 2018; 9:7219-7270. [PMID: 29467963 PMCID: PMC5805549 DOI: 10.18632/oncotarget.24102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/02/2018] [Indexed: 11/25/2022] Open
Abstract
Recent years have seen considerable progress in understanding the biochemistry of cancer. For example, more significance is now assigned to the tumor microenvironment, especially with regard to intercellular signaling in the tumor niche which depends on many factors secreted by tumor cells. In addition, great progress has been made in understanding the influence of factors such as neurotensin, growth differentiation factor-15 (GDF-15), sphingosine-1-phosphate (S1P), and infection with cytomegalovirus (CMV) on the 'hallmarks of cancer' in glioblastoma multiforme. Therefore, in the present work we describe the influence of these factors on the proliferation and apoptosis of neoplastic cells, cancer stem cells, angiogenesis, migration and invasion, and cancer immune evasion in a glioblastoma multiforme tumor. In particular, we discuss the effect of neurotensin, GDF-15, S1P (including the drug FTY720), and infection with CMV on tumor-associated macrophages (TAM), microglial cells, neutrophil and regulatory T cells (Treg), on the tumor microenvironment. In order to better understand the role of the aforementioned factors in tumoral processes, we outline the latest models of intratumoral heterogeneity in glioblastoma multiforme. Based on the most recent reports, we discuss the problems of multi-drug therapy in treating glioblastoma multiforme.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland.,Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biała, 43-309 Bielsko-Biała, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Ireneusz Kojder
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland.,Department of Neurosurgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Dariusz Jeżewski
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland.,Department of Neurosurgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Agnieszka Łukomska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
34
|
Garcia-Martinez A, Alenda C, Irles E, Ochoa E, Quintanar T, Rodriguez-Lescure A, Soto JL, Barbera VM. Lack of cytomegalovirus detection in human glioma. Virol J 2017; 14:216. [PMID: 29116009 PMCID: PMC5678593 DOI: 10.1186/s12985-017-0885-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/31/2017] [Indexed: 12/19/2022] Open
Abstract
Gliomas are the most common brain tumors and include a variety of histologic types and grades of malignancy. They arise from glial cells and represent approximately 70% of the primary brain tumors. According to the criteria of the World Health Organization (WHO), the majority of gliomas can be classified into four grades of malignancy (I-IV). Virus infection, especially by DNA viruses and retroviruses, which may cause insertion of viral DNA sequences into the host genome, often triggers the host defense mechanisms. Particularly, the DNA methylation machinery can be activated to cause the methylation of foreign movable viral sequences and, therefore, silence viral gene expression. Several studies have shown the presence of Human Cytomegalovirus (HCMV) in glioblastoma, suggesting that the virus may participate in tumor pathogenesis. But this relationship is controversial because many other studies did not detect HCMV in these tumors. This study aims to detect the presence of HCMV in several samples of human glioma (94 formalin-fixed, paraffin-embedded samples and 28 snap-frozen samples) by different sensitive techniques. We have been unable to detect HCMV DNA and proteins in glioma samples. Therefore, arguments used so far to conclude that HCMV is an oncomodulator virus in gliomas must be, in our view, seriously reconsidered.
Collapse
Affiliation(s)
- Araceli Garcia-Martinez
- Molecular Genetics Laboratory, Elche University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL - FISABIO Foundation), Alicante, Spain
| | - Cristina Alenda
- Department of Pathology, Alicante University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL - FISABIO Foundation), Alicante, Spain
| | - Esperanza Irles
- Molecular Genetics Laboratory, Elche University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL - FISABIO Foundation), Alicante, Spain
| | - Enrique Ochoa
- Molecular Biopathology Unit, Provincial Hospital of Castellón, Castellón, Spain
| | - Teresa Quintanar
- Medical Oncology Department, Elche University General Hospital, Elche, Spain
| | | | - Jose L Soto
- Molecular Genetics Laboratory, Elche University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL - FISABIO Foundation), Alicante, Spain
| | - Victor M Barbera
- Molecular Genetics Laboratory, Elche University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL - FISABIO Foundation), Alicante, Spain.
| |
Collapse
|
35
|
Detection of human cytomegalovirus in glioblastoma among Taiwanese subjects. PLoS One 2017; 12:e0179366. [PMID: 28594901 PMCID: PMC5464665 DOI: 10.1371/journal.pone.0179366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/30/2017] [Indexed: 02/07/2023] Open
Abstract
The relationship between human cytomegalovirus (HCMV) and glioblastoma (GBM) has been debated for more than a decade. We investigated the presence of HCMV genes, RNA and protein in GBMs and their relationships with tumor progression. Results of quantitative PCR for HCMV UL73, nested PCR for HCMV UL144, in situ hybridization (ISH) for RNA transcript, and immunohistochemistry (IHC) for protein expression and their relationship to the prognosis of 116 patients with GBM were evaluated. Nine (7.8%) cases revealed a low concentration of HCMV UL73, and only 2 of the 9 (1.7%) cases showed consistent positivity on repeat PCR testing. HCMV UL144, ISH and IHC assays were all negative. The HCMV UL73 positive cases did not show significant difference in the clinicopathological characters including age, gender, Karnofsky performance status, extent of resection, bevacizumab treatment, isocitrate dehydrogenase 1 mutation, O6-methylguanine-DNA-methyltranferase status and Ki67 labeling index, and did not reveal prognostic significance. As only one HCMV gene was detected at low concentration in 7.8% of GBMs and there was no evidence of transcription, protein expression or prognostic impact, we cannot conclude a relationship between HCMV and GBM in Taiwanese patients.
Collapse
|
36
|
Affiliation(s)
- Philip E Pellett
- Department of Microbiology, Immunology, and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
37
|
Luisi K, Sharma M, Yu D. Development of a vaccine against cytomegalovirus infection and disease. Curr Opin Virol 2017; 23:23-29. [DOI: 10.1016/j.coviro.2017.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/16/2017] [Indexed: 12/15/2022]
|
38
|
Cytomegalovirus as an oncomodulatory agent in the progression of glioma. Cancer Lett 2017; 384:79-85. [DOI: 10.1016/j.canlet.2016.10.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 12/12/2022]
|
39
|
Lee S, Chung YH, Lee C. US28, a Virally-Encoded GPCR as an Antiviral Target for Human Cytomegalovirus Infection. Biomol Ther (Seoul) 2017; 25:69-79. [PMID: 28035083 PMCID: PMC5207464 DOI: 10.4062/biomolther.2016.208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/19/2016] [Accepted: 11/22/2016] [Indexed: 11/05/2022] Open
Abstract
Viruses continue to evolve a new strategy to take advantage of every aspect of host cells in order to maximize their survival. Due to their central roles in transducing a variety of transmembrane signals, GPCRs seem to be a prime target for viruses to pirate for their own use. Incorporation of GPCR functionality into the genome of herpesviruses has been demonstrated to be essential for pathogenesis of many herpesviruses-induced diseases. Here, we introduce US28 of human cytomegalovirus (HCMV) as the best-studied example of virally-encoded GPCRs to manipulate host GPCR signaling. In this review, we wish to summarize a number of US28-related topics including its regulation of host signaling pathways, its constitutive internalization, its structural and functional analysis, its roles in HCMV biology and pathogenesis, its proliferative activities and role in oncogenesis, and pharmacological modulation of its biological activities. This review will aid in our understanding of how pathogenic viruses usurp the host GPCR signaling for successful viral infection. This kind of knowledge will enable us to build a better strategy to control viral infection by normalizing the virally-dysregulated host GPCR signaling.
Collapse
Affiliation(s)
- Sungjin Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Choongho Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| |
Collapse
|
40
|
Holdhoff M, Guner G, Rodriguez FJ, Hicks JL, Zheng Q, Forman MS, Ye X, Grossman SA, Meeker AK, Heaphy CM, Eberhart CG, De Marzo AM, Arav-Boger R. Absence of Cytomegalovirus in Glioblastoma and Other High-grade Gliomas by Real-time PCR, Immunohistochemistry, and In Situ Hybridization. Clin Cancer Res 2016; 23:3150-3157. [PMID: 28034905 DOI: 10.1158/1078-0432.ccr-16-1490] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/23/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022]
Abstract
Purpose: Reports of cytomegalovirus (CMV) detection in high-grade gliomas (HGG)/glioblastoma have been conflicting. We undertook a comprehensive approach to determine the presence or absence of CMV in tissue, plasma, and serum of HGG patients.Experimental Design: In a retrospective arm, 25 fresh frozen tissues from glioblastoma patients were tested for CMV by real-time PCR. Tissue microarrays from 70 HGG patients were tested by IHC and 20 formalin-fixed paraffin-embedded (FFPE) glioblastoma tissues by IHC and chromogenic in situ hybridization (CISH), targeting CMV-encoded IE1/2 and pp65. In a prospective arm, 18 patients with newly diagnosed HGG provided tissue and blood samples.Results: All retrospectively collected tissues were negative for CMV by all methods. In the prospective cohort, 18 patients with newly diagnosed HGG provided blood samples at the time of diagnosis and during follow-up. Of 38 plasma specimens, CMV DNA was detected in 3 of 18 samples at baseline and 1 of 20 follow-up samples. Serum CMV IgG was positive in 8 of 15 (53%) of patients. Among the FFPE samples tested in the prospective arm, all were negative for CMV by IHC, CISH, and PCR.Conclusions: Utilizing 6 highly sensitive assays with three orthogonal technologies on multiple specimens and specimen types, no evidence for CMV in glioblastoma tissues was found. Our findings call for multicenter blinded analyses of samples collected from different geographical areas with agreed upon study designs and determination of causality or lack thereof of CMV in HGG/glioblastoma for future guidance on the necessary antiviral and/or CMV-based therapies. Clin Cancer Res; 23(12); 3150-7. ©2016 AACR.
Collapse
Affiliation(s)
- Matthias Holdhoff
- Brain Cancer Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gunes Guner
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Fausto J Rodriguez
- Brain Cancer Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jessica L Hicks
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qizhi Zheng
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael S Forman
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xiaobu Ye
- Brain Cancer Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Neurosurgery, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stuart A Grossman
- Brain Cancer Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alan K Meeker
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher M Heaphy
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Charles G Eberhart
- Brain Cancer Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Angelo M De Marzo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ravit Arav-Boger
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
41
|
Wang Z, Hao Y, Zhang C, Wang Z, Liu X, Li G, Sun L, Liang J, Luo J, Zhou D, Chen R, Jiang T. The Landscape of Viral Expression Reveals Clinically Relevant Viruses with Potential Capability of Promoting Malignancy in Lower-Grade Glioma. Clin Cancer Res 2016; 23:2177-2185. [PMID: 27864420 DOI: 10.1158/1078-0432.ccr-16-1495] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/31/2016] [Accepted: 11/08/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Zheng Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Genome Atlas Network, Beijing, China
| | - Yajing Hao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chuanbao Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Genome Atlas Network, Beijing, China
| | - Zhiliang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Genome Atlas Network, Beijing, China
| | - Xing Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Genome Atlas Network, Beijing, China
| | - Guanzhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Genome Atlas Network, Beijing, China
| | - Lihua Sun
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Genome Atlas Network, Beijing, China
| | - Jingshan Liang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Genome Atlas Network, Beijing, China
| | - Jianjun Luo
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dabiao Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Genome Atlas Network, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
42
|
Xing Y, Wang Y, Wang S, Wang X, Fan D, Zhou D, An J. Human cytomegalovirus infection contributes to glioma disease progression via upregulating endocan expression. Transl Res 2016; 177:113-126. [PMID: 27474433 DOI: 10.1016/j.trsl.2016.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 06/06/2016] [Accepted: 06/22/2016] [Indexed: 12/19/2022]
Abstract
The etiology of malignant glioma remains unclear. To examine the association between glioma and human cytomegalovirus (HCMV) infection and the possible mechanism through which HCMV contributes to malignant glioma, we investigated the expression of HCMV components and an angiogenesis marker, endocan, in 79 glioma specimens and 8 control brain samples. HCMV pp65 protein and DNA were detected in 65.8% (52 of 79) and 54.4% (43 of 79) of glioma specimens, respectively. The positive rate and expression levels of pp65 were significantly correlated with the glioma grades. The endocan expression was detected in 78.5% (62 of 79) of glioma specimens, and elevated endocan immunoreactivity was also significantly associated with high-grade glioma. The pp65 was predominantly detected and colocalized with endocan in the cytoplasm of tumor cells. Importantly, there was a significant positive correlation in detection rates between those 2 proteins. In control samples, neither HCMV pp65 nor endocan expression was detected. Moreover, the serum endocan levels in glioma patients were markedly higher than that in healthy subjects. In in vitro study, HCMV infection induced the expression of interleukin 6 and tumor necrosis factor-α in human glioblastoma U87 MG (U87) cells and human umbilical vein endothelial cells (HUVECs). Furthermore, elevated endocan levels were also observed in HCMV-infected U87 cells and HUVECs and antiviral treatment with ganciclovir reduced the endocan expression. These results suggest HCMV infection leads to glioma progression through an upregulation of endocan and the secretion of inflammatory cytokines. Thus, anti-HCMV treatment may represent a potentially novel therapeutic strategy for glioma.
Collapse
Affiliation(s)
- Yan Xing
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yisong Wang
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shijie Wang
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xin Wang
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Dongying Fan
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Dabiao Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Jing An
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
43
|
Lin CTM, Leibovitch EC, Almira-Suarez MI, Jacobson S. Human herpesvirus multiplex ddPCR detection in brain tissue from low- and high-grade astrocytoma cases and controls. Infect Agent Cancer 2016; 11:32. [PMID: 27462365 PMCID: PMC4960850 DOI: 10.1186/s13027-016-0081-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/25/2016] [Indexed: 11/19/2022] Open
Abstract
Background Glioblastoma (GBM) is a fatal CNS malignancy, representing 50 % of all gliomas with approximately 12–18 months survival time after initial diagnosis. Recently, the human herpesvirus cytomegalovirus (CMV) has been suggested to have an oncogenic role, yet this association remains controversial. In addition, human herpesvirus 6 (HHV-6) and Epstein-Barr virus (EBV) have also been associated with low-grade gliomas, but few studies have examined HHV-6 and EBV in glioblastomas. Droplet digital PCR (ddPCR) is a highly precise diagnostic tool that enables the absolute quantification of target DNA. This study examines the association between multiple human herpesviruses and astrocytomas. Methods This study analyzed 112 brain tissue specimens, including 45 glioblastoma, 12 astrocytoma grade III, 2 astrocytoma grade II, 4 astrocytoma grade I, and 49 controls. All brain tissue samples were de-identified and pathologically confirmed. Each tissue block was sectioned for DNA extraction and CMV, EBV, HHV-6A and HHV-6B, and a cellular housekeeping gene were amplified by ddPCR. Results Neither CMV nor HHV-6A were detected in any of the astrocytoma samples. However, HHV-6B (p = 0.147) and EBV (p = 0.049) had a higher positivity frequency in the GBM compared to the controls. Conclusion The undetectable CMV DNA in the astrocytoma cohort does not support the observation of an increased prevalence of CMV DNA in GBM, as reported in other studies. EBV has a significantly higher positivity in the GBM cohort compared to the controls, while HHV-6B has a higher but not statistically significant positivity in the case cohort. Whether these viruses play an oncogenic role in GBM remains to be further investigated.
Collapse
Affiliation(s)
- Cheng-Te Major Lin
- The National Institute of Neurological Disorders and Stroke, National Institutes of Health, BG 10 RM 5C103 10 Center Dr., Bethesda, MD 20892 USA ; School of Medicine and Health Sciences, The George Washington University, Ross Hall 2300 Eye Street, NW, Washington, DC 20037 USA
| | - Emily C Leibovitch
- The National Institute of Neurological Disorders and Stroke, National Institutes of Health, BG 10 RM 5C103 10 Center Dr., Bethesda, MD 20892 USA ; School of Medicine and Health Sciences, The George Washington University, Ross Hall 2300 Eye Street, NW, Washington, DC 20037 USA
| | - M Isabel Almira-Suarez
- School of Medicine and Health Sciences, The George Washington University, Ross Hall 2300 Eye Street, NW, Washington, DC 20037 USA
| | - Steven Jacobson
- The National Institute of Neurological Disorders and Stroke, National Institutes of Health, BG 10 RM 5C103 10 Center Dr., Bethesda, MD 20892 USA
| |
Collapse
|
44
|
Stangherlin LM, Castro FLF, Medeiros RSS, Guerra JM, Kimura LM, Shirata NK, Nonogaki S, dos Santos CJ, Carlan Silva MC. Human Cytomegalovirus DNA Quantification and Gene Expression in Gliomas of Different Grades. PLoS One 2016; 11:e0159604. [PMID: 27458810 PMCID: PMC4961403 DOI: 10.1371/journal.pone.0159604] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/05/2016] [Indexed: 01/04/2023] Open
Abstract
Gliomas are the most common type of primary brain tumors. The most aggressive type, Glioblastoma multiforme (GBM), is one of the deadliest human diseases, with an average survival at diagnosis of about 1 year. Previous evidence suggests a link between human cytomegalovirus (HCMV) and gliomas. HCMV has been shown to be present in these tumors and several viral proteins can have oncogenic properties in glioma cells. Here we have investigated the presence of HCMV DNA, RNA and proteins in fifty-two gliomas of different grades of malignancy. The UL83 viral region, the early beta 2.7 RNA and viral protein were detected in 73%, 36% and 57% by qPCR, ISH and IHC, respectively. Positivity of the viral targets and viral load was independent of tumor type or grade suggesting no correlation between viral presence and tumor progression. Our results demonstrate high prevalence of the virus in gliomas from Brazilian patients, contributing to a better understanding of the association between HCMV infection and gliomas worldwide and supporting further investigations of the virus oncomodulatory properties.
Collapse
Affiliation(s)
- Lucas Matheus Stangherlin
- Laboratório de Biologia Molecular de Patógenos, Virologia Molecular, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Paulo, Brazil
| | - Fabiane Lucy Ferreira Castro
- Laboratório de Biologia Molecular de Patógenos, Virologia Molecular, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Paulo, Brazil
| | | | - Juliana Mariotti Guerra
- Núcleo de Patologia Quantitativa (NPQ) do Centro de Patologia do Instituto Adolfo Lutz (IAL), São Paulo, Brazil
| | - Lidia Midori Kimura
- Núcleo de Patologia Quantitativa (NPQ) do Centro de Patologia do Instituto Adolfo Lutz (IAL), São Paulo, Brazil
| | - Neuza Kazumi Shirata
- Núcleo de Patologia Quantitativa (NPQ) do Centro de Patologia do Instituto Adolfo Lutz (IAL), São Paulo, Brazil
| | - Suely Nonogaki
- Núcleo de Patologia Quantitativa (NPQ) do Centro de Patologia do Instituto Adolfo Lutz (IAL), São Paulo, Brazil
| | - Claudia Januário dos Santos
- Laboratório de Biologia Molecular de Patógenos, Virologia Molecular, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Paulo, Brazil
| | - Maria Cristina Carlan Silva
- Laboratório de Biologia Molecular de Patógenos, Virologia Molecular, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
45
|
Strong MJ, Blanchard E, Lin Z, Morris CA, Baddoo M, Taylor CM, Ware ML, Flemington EK. A comprehensive next generation sequencing-based virome assessment in brain tissue suggests no major virus - tumor association. Acta Neuropathol Commun 2016; 4:71. [PMID: 27402152 PMCID: PMC4940872 DOI: 10.1186/s40478-016-0338-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 12/15/2022] Open
Abstract
Next generation sequencing (NGS) can globally interrogate the genetic composition of biological samples in an unbiased yet sensitive manner. The objective of this study was to utilize the capabilities of NGS to investigate the reported association between glioblastoma multiforme (GBM) and human cytomegalovirus (HCMV). A large-scale comprehensive virome assessment was performed on publicly available sequencing datasets from the Cancer Genome Atlas (TCGA), including RNA-seq datasets from primary GBM (n = 157), recurrent GBM (n = 13), low-grade gliomas (n = 514), recurrent low-grade gliomas (n = 17), and normal brain (n = 5), and whole genome sequencing (WGS) datasets from primary GBM (n = 51), recurrent GBM (n = 10), and normal matched blood samples (n = 20). In addition, RNA-seq datasets from MRI-guided biopsies (n = 92) and glioma stem-like cell cultures (n = 9) were analyzed. Sixty-four DNA-seq datasets from 11 meningiomas and their corresponding blood control samples were also analyzed. Finally, three primary GBM tissue samples were obtained, sequenced using RNA-seq, and analyzed. After in-depth analysis, the most robust virus findings were the detection of papillomavirus (HPV) and hepatitis B reads in the occasional LGG sample (4 samples and 1 sample, respectively). In addition, low numbers of virus reads were detected in several datasets but detailed investigation of these reads suggest that these findings likely represent artifacts or non-pathological infections. For example, all of the sporadic low level HCMV reads were found to map to the immediate early promoter intimating that they likely originated from laboratory expression vector contamination. Despite the detection of low numbers of Epstein-Barr virus reads in some samples, these likely originated from infiltrating B-cells. Finally, human herpesvirus 6 and 7 aligned viral reads were identified in all DNA-seq and a few RNA-seq datasets but detailed analysis demonstrated that these were likely derived from the homologous human telomeric-like repeats. Other low abundance viral reads were detected in some samples but for most viruses, the reads likely represent artifacts or incidental infections. This analysis argues against associations between most known viruses and GBM or mengiomas. Nevertheless, there may be a low percentage association between HPV and/or hepatitis B and LGGs.
Collapse
|
46
|
Zhang J, Feng H, Xu S, Feng P. Hijacking GPCRs by viral pathogens and tumor. Biochem Pharmacol 2016; 114:69-81. [PMID: 27060663 DOI: 10.1016/j.bcp.2016.03.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 03/25/2016] [Indexed: 01/11/2023]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of molecules that transduce signals across the plasma membrane. Herpesviruses are successful pathogens that evolved diverse mechanisms to benefit their infection. Several human herpesviruses express GPCRs to exploit cellular signaling cascades during infection. These viral GPCRs demonstrate distinct biochemical and biophysical properties that result in the activation of a broad spectrum of signaling pathways. In immune-deficient individuals, human herpesvirus infection and the expression of their GPCRs are implicated in virus-associated diseases and pathologies. Emerging studies also uncover diverse mutations in components, particularly GPCRs and small G proteins, of GPCR signaling pathways that render the constitutive activation of proliferative and survival signal, which contributes to the oncogenesis of various human cancers. Hijacking GPCR-mediated signaling is a signature shared by diseases associated with constitutively active viral GPCRs and cellular mutations activating GPCR signaling, exposing key molecules that can be targeted for anti-viral and anti-tumor therapy.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States.
| | - Hao Feng
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Simin Xu
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Pinghui Feng
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States.
| |
Collapse
|
47
|
Ferguson SD, Srinivasan VM, Ghali MG, Heimberger AB. Cytomegalovirus-targeted immunotherapy and glioblastoma: hype or hope? Immunotherapy 2016; 8:413-23. [PMID: 26973123 DOI: 10.2217/imt.16.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Malignant gliomas, including glioblastoma (GBM), are the most common primary brain tumors. Despite extensive research only modest gains have been made in long-term survival. Standard of care involves maximizing safe surgical resection followed by concurrent chemoradiation with temozolomide. Immunotherapy for GBM is an area of intense research in recent years. New immunotherapies, although promising, have not been integrated into standard practice. Human cytomegalovirus (HCMV) is a DNA virus of the family Herpesviridae. Human seroprevalence is approximately 80%, and in most cases, is associated with asymptomatic infection. HCMV may be an important agent in the initiation, promotion and/or progression of tumorigenesis. Regardless of a possible etiologic role in GBM, interest has centered on exploiting this association for development of immunomodulatory therapies.
Collapse
Affiliation(s)
- Sherise D Ferguson
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Department of Neurosurgery, 1400 Holcombe Blvd, Unit 442, Houston, TX 77030, USA
| | - Visish M Srinivasan
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Department of Neurosurgery, 1400 Holcombe Blvd, Unit 442, Houston, TX 77030, USA
| | - Michael Gz Ghali
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, 2900 Queen Lane, PA, USA
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Department of Neurosurgery, 1400 Holcombe Blvd, Unit 442, Houston, TX 77030, USA
| |
Collapse
|
48
|
Taha MS, Abdalhamid BA, El-Badawy SA, Sorour YM, Almsned FM, Al-Abbadi MA. Expression of cytomegalovirus in glioblastoma multiforme: Myth or reality? Br J Neurosurg 2016; 30:307-12. [PMID: 26742571 DOI: 10.3109/02688697.2015.1119241] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A role for human cytomegalovirus (HCMV) in the pathogenesis of glioblastoma multiforme (GBM) was proposed more than a decade ago and has since generated a considerable debate as a possible therapeutic target. We investigate the presence of HCMV in the specimens of patients with GBM treated in our centre. This is a retrospective cohort study to investigate the presence of HCMV by routine immunohistochemical stains and polymerase chain reaction (PCR)-based molecular analysis on formalin-fixed-paraffin-embedded tissue of all patients with GBM treated in our hospital in 2009-2013 (5 years). The evaluation of positivity by immunohistochemistry (IHC) was semi-quantitative. The molecular analysis was performed by extracting the tumour DNA from representative paraffin-embedded tissue blocks and amplified for detection by a sensitive real time PCR (RT-PCR) CMV assay. During the study period, we treated 45 patients with GBM; however, adequate pathology tissue materials were available only for 32 patients. All the pathology material was reviewed and the diagnosis was confirmed. All the cases were found to be negative for CMV expression by our IHC and RT-PCR CMV assay. Our study has shown no expression of CMV in GBM. Our results were similar to other recent reports that concluded insufficient evidence to recommend routine testing for CMV in GBM or treatment as an add-on therapy.
Collapse
Affiliation(s)
- Mahmoud S Taha
- a Neuroscience Center, King Fahad Specialist Hospital Dammam , Dammam , Saudi Arabia
| | - Baha A Abdalhamid
- b Department of Pathology and Laboratory Medicine , King Fahad Specialist Hospital Dammam , Dammam , Saudi Arabia
| | - Samy A El-Badawy
- c Department of Radiation Oncology , King Fahad Specialist Hospital Dammam , Dammam , Saudi Arabia
| | - Yasser M Sorour
- c Department of Radiation Oncology , King Fahad Specialist Hospital Dammam , Dammam , Saudi Arabia
| | - Fahad M Almsned
- a Neuroscience Center, King Fahad Specialist Hospital Dammam , Dammam , Saudi Arabia
| | - Mousa A Al-Abbadi
- b Department of Pathology and Laboratory Medicine , King Fahad Specialist Hospital Dammam , Dammam , Saudi Arabia
| |
Collapse
|
49
|
Navarro D. Expanding role of cytomegalovirus as a human pathogen. J Med Virol 2016; 88:1103-12. [DOI: 10.1002/jmv.24450] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2015] [Indexed: 12/19/2022]
Affiliation(s)
- David Navarro
- Microbiology Service, Hospital Clínico Universitario; Fundación INCLIVA; Valencia Spain
- Department of Microbiology, School of Medicine; University of Valencia; Valencia Spain
| |
Collapse
|
50
|
Peng C, Wang J, Tanksley JP, Mobley BC, Ayers GD, Moots PL, Clark SW. Valganciclovir and bevacizumab for recurrent glioblastoma: A single-institution experience. Mol Clin Oncol 2015; 4:154-158. [PMID: 26893852 DOI: 10.3892/mco.2015.692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/24/2015] [Indexed: 01/08/2023] Open
Abstract
Prolonged treatment with adjuvant valganciclovir has been shown in one retrospective study to exert a significant effect on overall survival (OS) in newly diagnosed patients with glioblastoma multiforme (GBM). However, studies evaluating the effectiveness of valganciclovir in the treatment of recurrent GBM have not been performed. We evaluated the effect of valganciclovir in the recurrent setting in combination with bevacizumab therapy. A retrospective analysis was performed on patients treated for recurrent GBM with off-label valganciclovir and bevacizumab at Vanderbilt University. We identified 13 patients who received valganciclovir plus bevacizumab at some point during their treatment, 8 of whom were started on valganciclovir and bevacizumab concurrently upon first recurrence, whereas 5 had valganciclovir added to their bevacizumab regimen prior to a second recurrence. of these patients, 12 were pathologically confirmed to have GBM, and 1 patient was diagnosed with gliosarcoma. We also identified an institutional cohort of 50 patients who had not been exposed to valganciclovir, but were treated with bevacizumab for first recurrence. The progression-free survival (PFS) at 6 months (PF6) and median OS (mOS) in the valganciclovir plus bevacizumab group was 62% and 13.1 months, respectively, for all 13 patients, and 50% and 11.3 months, respectively, for the 8 concurrently treated patients. In the institutional bevacizumab cohort, the PF6 and mOS were 34% and 8.7 months, respectively. In this retrospective analysis, valganciclovir in combination with bevacizumab exhibited a trend toward improved survival in patients with recurrent GBM. However, given the small sample size and the retrospective nature of this study, a larger prospective study is required to confirm these results.
Collapse
Affiliation(s)
- Chengwei Peng
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jialing Wang
- Department of Neurosurgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jarred P Tanksley
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bret C Mobley
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Gregory D Ayers
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Paul L Moots
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Stephen W Clark
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|