1
|
Krishnagopal A, van Drunen Littel-van den Hurk S. The biology and development of vaccines for bovine alphaherpesvirus 1. Vet J 2024; 306:106152. [PMID: 38821207 DOI: 10.1016/j.tvjl.2024.106152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Bovine alphaherpesvirus type 1 (BoAHV-1) infections lead to compromised herd health and significantly reduced productivity of affected cattle. While BoAHV-1 may cause rhinotracheitis, conjunctivitis, genital infections, and abortions, respiratory tract infections constitute the predominant clinical disease. Immune suppression induced by BoAHV-1 may contribute to co-infections initiating the bovine respiratory disease complex. In this review, the emphasis is to recapitulate the biology and the vaccine technologies currently in use and in development for BoAHV-1, and to discuss the major limitations. Studies on the life cycle and host interactions of BoAHV-1 have resulted in the identification of virulence factors. While several vaccine types, such as vectored vaccines and subunit vaccines, are under investigation, modified live and inactivated BoAHV-1 vaccines are still most frequently used in most areas of the world, whereas attenuated and inactivated marker vaccines are in use in Europe. The knowledge gained from studies on the biology of BoAHV-1 can form a basis for the rational design of future vaccines.
Collapse
Affiliation(s)
- Akshaya Krishnagopal
- Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Sylvia van Drunen Littel-van den Hurk
- Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada.
| |
Collapse
|
2
|
Sun F, Ma W, Wang H, He H. Tegument protein UL3 of bovine herpesvirus 1 suppresses antiviral IFN-I signaling by targeting STING for autophagic degradation. Vet Microbiol 2024; 291:110031. [PMID: 38412580 DOI: 10.1016/j.vetmic.2024.110031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
Bovine herpesvirus 1 (BoHV-1) is a highly contagious pathogen which causes infectious bovine rhinotracheitis in cattle worldwide. Although it has the ability to evade the host's antiviral innate immune response and establish persistent latent infections, the mechanisms are not fully understood, especially the function of the tegument protein to escape innate immunity and participate in viral replication. In this study, we showed that overexpression of tegument protein UL3 facilitates BoHV-1 replication and suppresses the expression of type-I interferon (IFN-I) and IFN-stimulated genes. Then, STING was identified as the target by which UL3 inhibits the IFN-I signaling pathway, and STING was degraded through the UL3-induced autophagy pathway. Furthermore, overexpression of UL3 promotes the expression of the autophagy-related protein ATG101, thereby inducing autophagy. Further study showed that UL3 enhances the interaction between ATG101 and STING, and then the degradation of STING was reversed following ATG101 silencing in UL3-overexpressing cells during BoHV-1 infection. Our research results demonstrate a novel function of UL3 in regulating host's antiviral response and provide a potential mechanism for BoHV-1 immune evasion.
Collapse
Affiliation(s)
- Fachao Sun
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250358, People's Republic of China
| | - Wenqing Ma
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250358, People's Republic of China
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250358, People's Republic of China.
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250358, People's Republic of China; Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, People's Republic of China.
| |
Collapse
|
3
|
Tan WS, Rong E, Dry I, Lillico SG, Law A, Digard P, Whitelaw B, Dalziel RG. GARP and EARP are required for efficient BoHV-1 replication as identified by a genome wide CRISPR knockout screen. PLoS Pathog 2023; 19:e1011822. [PMID: 38055775 PMCID: PMC10727446 DOI: 10.1371/journal.ppat.1011822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/18/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023] Open
Abstract
The advances in gene editing bring unprecedented opportunities in high throughput functional genomics to animal research. Here we describe a genome wide CRISPR knockout library, btCRISPRko.v1, targeting all protein coding genes in the cattle genome. Using it, we conducted genome wide screens during Bovine Herpes Virus type 1 (BoHV-1) replication and compiled a list of pro-viral and anti-viral candidates. These candidates might influence multiple aspects of BoHV-1 biology such as viral entry, genome replication and transcription, viral protein trafficking and virion maturation in the cytoplasm. Some of the most intriguing examples are VPS51, VPS52 and VPS53 that code for subunits of two membrane tethering complexes, the endosome-associated recycling protein (EARP) complex and the Golgi-associated retrograde protein (GARP) complex. These complexes mediate endosomal recycling and retrograde trafficking to the trans Golgi Network (TGN). Simultaneous loss of both complexes in MDBKs resulted in greatly reduced production of infectious BoHV-1 virions. We also found that viruses released by these deficient cells severely lack VP8, the most abundant tegument protein of BoHV-1 that are crucial for its virulence. In combination with previous reports, our data suggest vital roles GARP and EARP play during viral protein packaging and capsid re-envelopment in the cytoplasm. It also contributes to evidence that both the TGN and the recycling endosomes are recruited in this process, mediated by these complexes. The btCRISPRko.v1 library generated here has been controlled for quality and shown to be effective in host gene discovery. We hope it will facilitate efforts in the study of other pathogens and various aspects of cell biology in cattle.
Collapse
Affiliation(s)
- Wenfang S. Tan
- Division of Infection and Immunity, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Enguang Rong
- Division of Infection and Immunity, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Inga Dry
- Division of Infection and Immunity, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Simon G. Lillico
- Division of Functional Genetics and Development, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Centre for Tropical Livestock Genetics and Health, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Andy Law
- Division of Genetics and Genomics, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Paul Digard
- Division of Infection and Immunity, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Bruce Whitelaw
- Division of Functional Genetics and Development, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Centre for Tropical Livestock Genetics and Health, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Robert G. Dalziel
- Division of Infection and Immunity, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
4
|
Sucharita S, Krishnagopal A, van Drunen Littel-van den Hurk S. Comprehensive Analysis of the Tegument Proteins Involved in Capsid Transport and Virion Morphogenesis of Alpha, Beta and Gamma Herpesviruses. Viruses 2023; 15:2058. [PMID: 37896835 PMCID: PMC10611259 DOI: 10.3390/v15102058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Herpesviruses are enveloped and have an amorphous protein layer surrounding the capsid, which is termed the tegument. Tegument proteins perform critical functions throughout the viral life cycle. This review provides a comprehensive and comparative analysis of the roles of specific tegument proteins in capsid transport and virion morphogenesis of selected, well-studied prototypes of each of the three subfamilies of Herpesviridae i.e., human herpesvirus-1/herpes simplex virus-1 (Alphaherpesvirinae), human herpesvirus-5/cytomegalovirus (Betaherpesvirinae) and human herpesvirus -8/Kaposi's sarcomavirus (Gammaherpesvirinae). Most of the current knowledge is based on alpha herpesviruses, in particular HSV-1. While some tegument proteins are released into the cytoplasm after virus entry, several tegument proteins remain associated with the capsid and are responsible for transport to and docking at the nucleus. After replication and capsid formation, the capsid is enveloped at the nuclear membrane, which is referred to as primary envelopment, followed by de-envelopment and release into the cytoplasm. This requires involvement of at least three tegument proteins. Subsequently, multiple interactions between tegument proteins and capsid proteins, other tegument proteins and glycoproteins are required for assembly of the virus particles and envelopment at the Golgi, with certain tegument proteins acting as the central hub for these interactions. Some redundancy in these interactions ensures appropriate morphogenesis.
Collapse
Affiliation(s)
- Soumya Sucharita
- Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.S.); (A.K.)
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Akshaya Krishnagopal
- Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.S.); (A.K.)
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Sylvia van Drunen Littel-van den Hurk
- Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.S.); (A.K.)
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| |
Collapse
|
5
|
Jiang B, Wang J, Liu W, Cheng J, Xu J, Cao M, Li Y. Comparative transcriptome analysis of MDBK cells reveals that BoIFN-γ augmented host immune responses to bovine herpesvirus 1 infection. Front Microbiol 2022; 13:973278. [PMID: 36016774 PMCID: PMC9396027 DOI: 10.3389/fmicb.2022.973278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1) is an alphaherpesvirus that causes infectious bovine rhinotracheitis and infectious pustular vulvovaginitis in cattle. Ιnterferon-gamma (IFN-γ) is a pleiotropic cytokine with antiviral activity that modulates the innate and adaptive immune responses. In this study, we prepared high-purity bovine interferon gamma (BoIFN-γ) dimer protein using prokaryotic expression system and affinity chromatography. We subsequently investigated the effect of BoIFN-γ on BoHV-1 infection in Madin-Darby bovine kidney (MDBK) cells. The results showed that BoIFN-γ pre-treament not only decreased the production of BoHV-1 but also reduced the cytopathic effect of the virus. Differential gene expression profiles of BoHV-1 infected MDBK cells were then analysed through high-throughput RNA sequencing. The data showed that BoIFN-γ pre-treatment reduced lipid metabolism disorder and DNA damage caused by BoHV-1 infection. Furthermore, BoIFN-γ treatment upregulated the transcription of interferon regulatory transcription factors (IRF1 and GBP5) and interferon-stimulated genes (ISGs) of MDBK cells. Additionally, BoIFN-γ promotes expression of cellular protein involved in complement activation and coagulation cascades response as well as antigen processing and presentation process, while BoHV-1 infection dramatically downregulates transcription of these immune components including C3, C1r, C1s, PLAT, ITGB2, PROCR, BoLA, CD74, B2M, PA28, BoLA-DRA, and TAPBP. Collectively, our findings revealed that BoIFN-γ pre-treatment can improve host resistance to BoHV-1 infection and regulate transcription or expression of host protein associated with cellular metabolism and innate immune response. This provides insights into the development of prophylactic agents for prevention and control of BoHV-1 infection.
Collapse
Affiliation(s)
- Bo Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Wenxiao Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Jing Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Jian Xu
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Mengyao Cao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yongqing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
- *Correspondence: Yongqing Li,
| |
Collapse
|
6
|
Wang S, Ma X, Guo J, Li F, Chen T, Ma W, He C, Wang H, He H. DDIT3 antagonizes innate immune response to promote bovine alphaherpesvirus 1 replication via the DDIT3-SQSTM1-STING pathway. Virulence 2022; 13:514-529. [PMID: 35259065 PMCID: PMC8920142 DOI: 10.1080/21505594.2022.2044667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
DNA damage-inducible transcript 3 (DDIT3), a transcription factor, is typically involved in virus replication control. We are the first to report that DDIT3 promotes the replication of bovine viral diarrhea virus, an RNA virus, by inhibiting innate immunity. However, whether the DDIT3 gene participates in DNA virus replication by regulating innate immunity remains unclear. This study reported that DDIT3 suppressed the innate immune response caused by DNA viruses to promote bovine herpesvirus 1 (BoHV-1) replication. After BoHV-1 infection of Madin-Darby bovine kidney (MDBK) cells, upregulated expression of DDIT3 induced SQSTM1-mediated autophagy and promoted STING degradation. Overexpression of the SQSTM1 protein effectively reduced STING protein levels, whereas SQSTM1 knockdown increased STING protein levels. Coimmunoprecipitation experiments and confocal laser scanning microscopy revealed that the SQSTM1 protein interacts with and colocalizes with STING. Knockdown of SQSTM1 expression in DDIT3-overexpressing cell lines restored STING protein levels. Moreover, a dual-luciferase reporter assay revealed that DDIT3 directly binds to the bovine SQSTM1 promoter and induces SQSTM1 transcription. Overexpression of SQSTM1 promoted BoHV-1 replication by inhibiting IFN-β and IFN-stimulated genes (ISGs) production; silencing of SQSTM1 promoted the expression of IFN-β and ISGs to inhibit BoHV-1 replication. In conclusion, DDIT3 targets STING via SQSTM1-mediated autophagy to promote BoHV-1 replication. These results suggest a novel mechanism by which DDIT3 regulates DNA virus replication by targeting innate immunity. DDIT3 antagonizes the innate immune response to promote bovine alphaherpesvirus 1 replication via the DDIT3-SQSTM1-STING pathway.
Collapse
Affiliation(s)
- Song Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiaomei Ma
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jin Guo
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Fangxu Li
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Tianhua Chen
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wenqing Ma
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chengqiang He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
7
|
Xu J, Cai Y, Ma Z, Jiang B, Liu W, Cheng J, Jin H, Li Y. DEAD/DEAH-box helicase 5 is hijacked by an avian oncogenic herpesvirus to inhibit interferon beta production and promote viral replication. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104048. [PMID: 33609615 DOI: 10.1016/j.dci.2021.104048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
DEAD-box helicase 5 (DDX5) plays a significant role in tumorigenesis and regulates viral replication of several viruses. An avian oncogenic herpesvirus, Marek's disease virus (MDV), is widely known to cause immunosuppression and lymphoma in chickens. However, the underlying mechanisms of how DDX5 plays a role in viral replication remain unclear. In this study, we show that MDV inhibits the production of interferon beta (IFN-β) in chicken embryo fibroblasts (CEFs) by increasing the expression level and promoting the nuclear aggregation of DDX5. We further reveal how DDX5 down-regulates melanoma differentiation-associated gene 5/toll-like receptor 3 signaling through the fundamental transcription factor, interferon regulatory factor 1. MDV replication is suppressed, and the production of IFN-β is promoted in the DDX5 absented CEFs. Taken together, our investigations demonstrate that MDV inhibits IFN-β production by targeting DDX5-mediated signaling to facilitate viral replication, which offers a novel insight into the mechanism by which an avian oncogenic herpesvirus replicates in chicken cells.
Collapse
Affiliation(s)
- Jian Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, PR China
| | - Yunhong Cai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, PR China
| | - Zhenbang Ma
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, PR China
| | - Bo Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, PR China
| | - Wenxiao Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, PR China
| | - Jing Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, PR China
| | - Huan Jin
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, PR China
| | - Yongqing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, PR China.
| |
Collapse
|
8
|
The Tegument Protein pUL47 of Marek's Disease Virus Is Necessary for Horizontal Transmission and Is Important for Expression of Glycoprotein gC. J Virol 2020; 95:JVI.01645-20. [PMID: 32999032 DOI: 10.1128/jvi.01645-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/25/2020] [Indexed: 12/28/2022] Open
Abstract
Viral tropism and transmission of herpesviruses are best studied in their natural host for maximal biological relevance. In the case of alphaherpesviruses, few reports have focused on those aspects, primarily because of the few animal models available as natural hosts that are compatible with such studies. Here, using Marek's disease virus (MDV), a highly contagious and deadly alphaherpesvirus of chickens, we analyze the role of tegument proteins pUL47 and pUL48 in the whole life cycle of the virus. We report that a virus lacking the UL48 gene (vΔUL48) is impaired in growth in cell culture and has diminished virulence in vivo In contrast, a virus lacking UL47 (vΔUL47) is unaffected in its growth in vitro and is as virulent in vivo as the wild-type (WT) virus. Surprisingly, we observed that vΔUL47 was unable to be horizontally transmitted to naive chickens, in contrast to the WT virus. In addition, we show that pUL47 is important for the splicing of UL44 transcripts encoding glycoprotein gC, a protein known as being essential for horizontal transmission of MDV. Importantly, we observed that the levels of gC are lower in the absence of pUL47. Notably, this phenotype is similar to that of another transmission-incompetent mutant ΔUL54, which also affects the splicing of UL44 transcripts. This is the first study describing the role of pUL47 in both viral transmission and the splicing and expression of gC.IMPORTANCE Host-to-host transmission of viruses is ideally studied in vivo in the natural host. Veterinary viruses such as Marek's disease virus (MDV) are, therefore, models of choice to explore these aspects. The natural host of MDV, the chicken, is small, inexpensive, and economically important. MDV is a deadly and contagious herpesvirus that can kill infected animals in less than 4 weeks. The virus naturally infects epithelial cells of the feather follicle epithelium from where it is shed into the environment. In this study, we demonstrate that the viral protein pUL47 is an essential factor for bird-to-bird transmission of the virus. We provide some molecular basis to this function by showing that pUL47 enhances the splicing and the expression of another viral gene, UL44, which is essential for viral transmission. pUL47 may have a similar function in human herpesviruses such as varicella-zoster virus or herpes simplex viruses.
Collapse
|
9
|
He T, Wang M, Cheng A, Yang Q, Jia R, Wu Y, Huang J, Chen S, Zhao XX, Liu M, Zhu D, Zhang S, Ou X, Mao S, Gao Q, Sun D, Wen X, Tian B, Liu Y, Yu Y, Zhang L, Pan L, Chen X. Duck enteritis virus pUL47, as a late structural protein localized in the nucleus, mainly depends on residues 40 to 50 and 768 to 777 and inhibits IFN-β signalling by interacting with STAT1. Vet Res 2020; 51:135. [PMID: 33176874 PMCID: PMC7656727 DOI: 10.1186/s13567-020-00859-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/13/2020] [Indexed: 01/14/2023] Open
Abstract
Duck enteritis virus (DEV) is a member of the Alphaherpesvirinae subfamily. The characteristics of some DEV genes have been reported. However, information regarding the DEV UL47 gene is limited. In this study, we identified the DEV UL47 gene encoding a late structural protein located in the nucleus of infected cells. We further found that two domains of DEV pUL47, amino acids (aa) 40 to 50 and 768 to 777, could function as nuclear localization sequence (NLS) to guide the nuclear localization of pUL47 and nuclear translocation of heterologous proteins, including enhanced green fluorescent protein (EGFP) and beta-galactosidase (β-Gal). Moreover, pUL47 significantly inhibited polyriboinosinic:polyribocytidylic acid [poly(I:C)]-induced interferon beta (IFN-β) production and downregulated interferon-stimulated gene (ISG) expression, such as Mx and oligoadenylate synthetase-like (OASL), by interacting with signal transducer and activator of transcription-1 (STAT1).
Collapse
Affiliation(s)
- Tianqiong He
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Xuming Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - XinJian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 Sichuan People’s Republic of China
| |
Collapse
|
10
|
Ma W, Wang H, He H. Bta-miR-2890 up-regulates JAK-STAT pathway to inhibit BoHV-1 replication by targeting viral gene UL41. Vet Microbiol 2020; 245:108709. [DOI: 10.1016/j.vetmic.2020.108709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/26/2020] [Accepted: 04/26/2020] [Indexed: 11/16/2022]
|
11
|
Ma W, Wang H, He H. Bovine herpesvirus 1 tegument protein UL41 suppresses antiviral innate immune response via directly targeting STAT1. Vet Microbiol 2019; 239:108494. [DOI: 10.1016/j.vetmic.2019.108494] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/26/2022]
|
12
|
Xu J, Cai Y, Jiang B, Li X, Jin H, Liu W, Kong Z, Hong J, Sealy JE, Iqbal M, Li Y. An optimized aptamer-binding viral tegument protein VP8 inhibits the production of Bovine Herpesvirus-1 through blocking nucleocytoplasmic shuttling. Int J Biol Macromol 2019; 140:1226-1238. [PMID: 31445153 DOI: 10.1016/j.ijbiomac.2019.08.165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
Abstract
Bovine herpesvirus 1 (BoHV-1) is a major pathogen of infectious bovine rhinotracheitis in bovine. Previously, we generated the aptamer IBRV A4 using systemic evolution of ligands by exponential enrichment. This aptamer inhibited infectivity of BoHV-1 by blocking viral particle absorption onto cell membranes. In this study, we found that the major tegument protein VP8 of BoHV-1 was involved in inhibition of infectious virus production by IBRV A4. We improved the affinity of IBRV A4 for VP8 by optimizing aptamer's structure and repeat conformation. An optimized aptamer, IBRV A4.7, was constructed with quadruple binding sites and a new stem-loop structure, which had a stronger binding affinity for VP8 or BoHV-1 than raw aptamer IBRV A4. IBRV A4.7 bound to VP8 with a dissociation constant (Kd) value of 0.2054 ± 0.03948 nM and bound to BoHV-1 with a Kd value of 0.3637 ± 0.05452 nM. Crucially, IBRV A4.7 had improved antiviral activity compared to IBRV A4, with a half-maximal inhibitory concentration of 1.16 ± 0.042 μM. Our results also revealed IBRV A4.7 inhibited BoHV-1 production in MDBK cells through blocking nucleocytoplasmic shuttling of viral VP8 in BoHV-1-infected MDBK cells. In conclusion, the aptamer IBRV A4.7 may have potency in preventing outbreaks in herds due to reactivation of latency.
Collapse
Affiliation(s)
- Jian Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China
| | - Yunhong Cai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China
| | - Bo Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China
| | - Xiaoyang Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China
| | - Huan Jin
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China
| | - Wenxiao Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China
| | - Zimeng Kong
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Jiabing Hong
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Joshua E Sealy
- Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China; The Pirbright Institute, Ash Rd, Pirbright, Woking GU24 0NF, United Kingdom
| | - Munir Iqbal
- Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China; The Pirbright Institute, Ash Rd, Pirbright, Woking GU24 0NF, United Kingdom
| | - Yongqing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Research Center for Infectious Disease in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, PR China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing 100097, PR China.
| |
Collapse
|
13
|
Jones C. Bovine Herpesvirus 1 Counteracts Immune Responses and Immune-Surveillance to Enhance Pathogenesis and Virus Transmission. Front Immunol 2019; 10:1008. [PMID: 31134079 PMCID: PMC6514135 DOI: 10.3389/fimmu.2019.01008] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
Infection of cattle by bovine herpesvirus 1 (BoHV-1) can culminate in upper respiratory tract disorders, conjunctivitis, or genital disorders. Infection also consistently leads to transient immune-suppression. BoHV-1 is the number one infectious agent in cattle that is associated with abortions in cattle. BoHV-1, as other α-herpesvirinae subfamily members, establishes latency in sensory neurons. Stressful stimuli, mimicked by the synthetic corticosteroid dexamethasone, consistently induce reactivation from latency in latently infected calves and rabbits. Increased corticosteroid levels due to stress have a two-pronged effect on reactivation from latency by: (1) directly stimulating viral gene expression and replication, and (2) impairing antiviral immune responses, thus enhancing virus spread and transmission. BoHV-1 encodes several proteins, bICP0, bICP27, gG, UL49.5, and VP8, which interfere with key antiviral innate immune responses in the absence of other viral genes. Furthermore, the ability of BoHV-1 to infect lymphocytes and induce apoptosis, in particular CD4+ T cells, has negative impacts on immune responses during acute infection. BoHV-1 induced immune-suppression can initiate the poly-microbial disorder known as bovine respiratory disease complex, which costs the US cattle industry more than one billion dollars annually. Furthermore, interfering with antiviral responses may promote viral spread to ovaries and the developing fetus, thus enhancing reproductive issues associated with BoHV-1 infection of cows or pregnant cows. The focus of this review is to describe the known mechanisms, direct and indirect, by which BoHV-1 interferes with antiviral immune responses during the course of infection.
Collapse
Affiliation(s)
- Clinton Jones
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
14
|
The bovine herpesvirus-1 major tegument protein, VP8, interacts with host HSP60 concomitant with deregulation of mitochondrial function. Virus Res 2018; 261:37-49. [PMID: 30550895 DOI: 10.1016/j.virusres.2018.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 11/21/2022]
Abstract
The UL47 gene product, VP8, is a major tegument protein of BoHV-1. While VP8 is not essential for virus replication in cell culture, a UL47-deleted virus exhibits a smaller tegument structure and is avirulent in cattle. To obtain pure VP8 protein for structural analysis, we expressed a N-terminally truncated version of VP8 in Eschericia coli. However, the recombinant VP8 was consistently co-purified with a tightly associated bacterial protein; this protein was identified by mass spectrometry as GroEL, which has considerable homology with mammalian heat shock protein-60 (HSP60), thus suggesting a new role for VP8 in virus-host interaction. A physical interaction of HSP60 and VP8 in both VP8-transfected and BoHV-1-infected cells was demonstrated by immunoprecipitation. Analysis of different truncated VP8 constructs revealed that amino acids 259-482 and 632-741 are involved in binding to HSP60. Full-length VP8 and VP8 219-741 (containing both interacting domains, 259-482 and 632-741) co-localized with HSP60 and mitochondria. VP8 was localized in the mitochondria from 2 to 14 h post infection in BoHV-1-infected cells. The mitochondrial membrane potential was reduced in both VP8-transfected and BoHV-1-infected cells and was further diminished by overexpression of HSP60 in the presence of VP8. In addition, VP8 expression decreased the ATP concentration during transfection, as well as BoHV-1 infection. Thus, VP8 may play a role in the deregulation of mitochondrial function through interaction with HSP60. This is consistent with the fact that BoHV-1 infection is known to promote mitochondrial dysfunction.
Collapse
|
15
|
Qualitative Differences in Capsidless L-Particles Released as a By-Product of Bovine Herpesvirus 1 and Herpes Simplex Virus 1 Infections. J Virol 2018; 92:JVI.01259-18. [PMID: 30185590 PMCID: PMC6206470 DOI: 10.1128/jvi.01259-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/23/2018] [Indexed: 01/25/2023] Open
Abstract
The alphaherpesvirus family includes viruses that infect humans and animals. Hence, not only do they have a significant impact on human health, but they also have a substantial economic impact on the farming industry. While the pathogenic manifestations of the individual viruses differ from host to host, their relative genetic compositions suggest similarity at the molecular level. This study provides a side-by-side comparison of the particle outputs from the major human pathogen HSV-1 and the veterinary pathogen BoHV-1. Ultrastructural and proteomic analyses have revealed that both viruses have broadly similar morphogenesis profiles and infectious virus compositions. However, the demonstration that BoHV-1 has the capacity to generate vast numbers of capsidless enveloped particles that differ from those produced by HSV-1 in composition implies a divergence in the cell biology of these viruses that impacts our general understanding of alphaherpesvirus morphogenesis. Despite differences in the pathogenesis and host range of alphaherpesviruses, many stages of their morphogenesis are thought to be conserved. Here, an ultrastructural study of bovine herpesvirus 1 (BoHV-1) envelopment revealed profiles similar to those previously found for herpes simplex virus 1 (HSV-1), with BoHV-1 capsids associating with endocytic tubules. Consistent with the similarity of their genomes and envelopment strategies, the proteomic compositions of BoHV-1 and HSV-1 virions were also comparable. However, BoHV-1 morphogenesis exhibited a diversity in envelopment events. First, heterogeneous primary envelopment profiles were readily detectable at the inner nuclear membrane of BoHV-1-infected cells. Second, the BoHV-1 progeny comprised not just full virions but also an abundance of capsidless, noninfectious light particles (L-particles) that were released from the infected cells in numbers similar to those of virions and in the absence of DNA replication. Proteomic analysis of BoHV-1 L-particles and the much less abundant HSV-1 L-particles revealed that they contained the same complement of envelope proteins as virions but showed variations in tegument content. In the case of HSV-1, the UL46 tegument protein was reproducibly found to be >6-fold enriched in HSV-1 L-particles. More strikingly, the tegument proteins UL36, UL37, UL21, and UL16 were depleted in BoHV-1 but not HSV-1 L-particles. We propose that these combined differences reflect the presence of truly segregated “inner” and “outer” teguments in BoHV-1, making it a critical system for studying the structure and process of tegumentation and envelopment. IMPORTANCE The alphaherpesvirus family includes viruses that infect humans and animals. Hence, not only do they have a significant impact on human health, but they also have a substantial economic impact on the farming industry. While the pathogenic manifestations of the individual viruses differ from host to host, their relative genetic compositions suggest similarity at the molecular level. This study provides a side-by-side comparison of the particle outputs from the major human pathogen HSV-1 and the veterinary pathogen BoHV-1. Ultrastructural and proteomic analyses have revealed that both viruses have broadly similar morphogenesis profiles and infectious virus compositions. However, the demonstration that BoHV-1 has the capacity to generate vast numbers of capsidless enveloped particles that differ from those produced by HSV-1 in composition implies a divergence in the cell biology of these viruses that impacts our general understanding of alphaherpesvirus morphogenesis.
Collapse
|
16
|
The Major Tegument Protein of Bovine Herpesvirus 1, VP8, Interacts with DNA Damage Response Proteins and Induces Apoptosis. J Virol 2018; 92:JVI.00773-18. [PMID: 29769345 DOI: 10.1128/jvi.00773-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 12/17/2022] Open
Abstract
VP8, the UL47 gene product in bovine herpesvirus-1 (BoHV-1), is a major tegument protein that is essential for virus replication in vivo The major DNA damage response protein, ataxia telangiectasia mutated (ATM), phosphorylates Nijmegen breakage syndrome (NBS1) and structural maintenance of chromosome-1 (SMC1) proteins during the DNA damage response. VP8 was found to interact with ATM and NBS1 during transfection and BoHV-1 infection. However, VP8 did not interfere with phosphorylation of ATM in transfected or BoHV-1-infected cells. In contrast, VP8 inhibited phosphorylation of both NBS1 and SMC1 in transfected cells, as well as in BoHV-1-infected cells, but not in cells infected with a VP8 deletion mutant (BoHV-1ΔUL47). Inhibition of NBS1 and SMC1 phosphorylation was observed at 4 h postinfection by nuclear VP8. Furthermore, UV light-induced cyclobutane pyrimidine dimer (CPD) repair was reduced in the presence of VP8, and VP8 in fact enhanced etoposide or UV-induced apoptosis. This suggests that VP8 blocks the ATM/NBS1/SMC1 pathway and inhibits DNA repair. VP8 induced apoptosis in VP8-transfected cells through caspase-3 activation. The fact that BoHV-1 is known to induce apoptosis through caspase-3 activation is in agreement with this observation. The role of VP8 was confirmed by the observation that BoHV-1 induced significantly more apoptosis than BoHV-1ΔUL47. These data reveal a potential role of VP8 in the modulation of the DNA damage response pathway and induction of apoptosis during BoHV-1 infection.IMPORTANCE To our knowledge, the effect of BoHV-1 infection on the DNA damage response has not been characterized. Since BoHV-1ΔUL47 was previously shown to be avirulent in vivo, VP8 is critical for the progression of viral infection. We demonstrated that VP8 interacts with DNA damage response proteins and disrupts the ATM-NBS1-SMC1 pathway by inhibiting phosphorylation of DNA repair proteins NBS1 and SMC1. Furthermore, interference of VP8 with DNA repair was correlated with decreased cell viability and increased DNA damage-induced apoptosis. These data show that BoHV-1 VP8 developed a novel strategy to interrupt the ATM signaling pathway and to promote apoptosis. These results further enhance our understanding of the functions of VP8 during BoHV-1 infection and provide an additional explanation for the reduced virulence of BoHV-1ΔUL47.
Collapse
|