1
|
Zhang X, Du Q, Chen G, Jiang Y, Huang K, Li L, Tong D, Huang Y. Guanylate-binding protein 1 inhibits nuclear delivery of pseudorabies virus by disrupting structure of actin filaments. Vet Res 2023; 54:21. [PMID: 36918936 PMCID: PMC10015811 DOI: 10.1186/s13567-023-01154-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/23/2022] [Indexed: 03/16/2023] Open
Abstract
The alphaherpesvirus pseudorabies virus (PRV) is the causative agent of pseudorabies, responsible for severe economic losses to the swine industry worldwide. The interferon-inducible GTPase guanylate-binding protein 1 (GBP1) exhibits antiviral immunity. Our findings show that there is a robust upregulation in the expression of porcine GBP1 during PRV infection. GBP1 knockout promotes PRV infection, while GBP1 overexpression restricts it. Importantly, we found that GBP1 impeded the normal structure of actin filaments in a GTPase-dependent manner, preventing PRV virions from reaching the nucleus. We also discovered that viral US3 protein bound GBP1 to interfere with its GTPase activity. Finally, the interaction between US3 and GBP1 requires US3 serine/threonine kinase activity sites and the GTPase domain (aa 1 to 308) of GBP1. Taken together, this study offers fresh perspectives on how PRV manipulates the host's antiviral immune system.
Collapse
Affiliation(s)
- Xiaohua Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Guiyuan Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yiyuan Jiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Kai Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Linghao Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| |
Collapse
|
2
|
Pseudorabies Virus Regulates the Extracellular Translocation of Annexin A2 To Promote Its Proliferation. J Virol 2023; 97:e0154522. [PMID: 36786600 PMCID: PMC10062141 DOI: 10.1128/jvi.01545-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Pseudorabies virus (PRV) infection causes enormous economic losses to the pork industry and severe health consequences in many hosts. Annexin A2 (ANXA2) is a membrane-associated protein with various intracellular functions associated with many viral infections. However, the role of ANXA2 in alphaherpesvirus replication is still not explored. In the present study, we identified the interaction between ANXA2 and PRV US3. The deficiency of ANXA2 significantly restricted PRV proliferation. PRV infection or US3 overexpression led to ANXA2 extracellular translocation. Furthermore, we confirmed that PRV or US3 could lead to the phosphorylation of the Tyr23 ANXA2 and Tyr419 Src kinase, which was associated with the ANXA2 cell surface transposition. US3 can also bind to Src in an ANXA2-independent manner and enhance the interaction between Src and ANXA2. Additionally, inhibitors targeting ANXA2 (A2ti-1) or Src (PP2) could remarkably inhibit PRV propagation in vitro and protect mice from PRV infection in vivo. Collectively, our findings broaden our understanding of the molecular mechanisms of ANXA2 in alphaherpesvirus pathogenicity and suggest that ANXA2 is a potential therapeutic target for treating alphaherpesvirus-induced infectious diseases. IMPORTANCE PRV belongs to the alphaherpesvirus and has recently re-emerged in China, causing severe economic losses. Recent studies also indicate that PRV may pose a potential public health challenge. ANXA2 is a multifunctional calcium- and lipid-binding protein implicated in immune function, multiple human diseases, and viral infection. Herein, we found that ANXA2 was essential to PRV efficient proliferation. PRV infection resulted in the extracellular translocation of ANXA2 through phosphorylation of ANXA2 and Src. ANXA2 and Src formed a complex with PRV US3. Importantly, inhibitors targeting ANXA2 or Src prevented PRV infection in vitro and in vivo. Therefore, our studies reveal a novel strategy by which alphaherpesvirus modifies ANXA2 to promote its replication and highlight ANXA2 as a target in developing novel promising antivirus agents in viral therapy.
Collapse
|
3
|
Zhang R, Tang J. Evasion of I Interferon-Mediated Innate Immunity by Pseudorabies Virus. Front Microbiol 2022; 12:801257. [PMID: 34970252 PMCID: PMC8712723 DOI: 10.3389/fmicb.2021.801257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/16/2021] [Indexed: 01/02/2023] Open
Abstract
Type I interferon (IFN-I) mediated innate immunity serves as the first line of host defense against viral infection, ranging from IFN-I production upon viral detection, IFN-I triggered signaling pathway that induces antiviral gene transcription the antiviral effects of IFN-I induced gene products. During coevolution, herpesviruses have developed multiple countermeasures to inhibit the various steps involved to evade the IFN response. This mini-review focuses on the strategies used by the alphaherpesvirus Pseudorabies virus (PRV) to antagonize IFN-I mediated innate immunity, with a particular emphasis on the mechanisms inhibiting IFN-I induced gene transcription through the JAK-STAT pathway. The knowledge obtained from PRV enriches the current understanding of the alphaherpesviral immune evasion mechanisms and provides insight into the vaccine development for PRV control.
Collapse
Affiliation(s)
- Rui Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jun Tang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Liao Y, Lupiani B, Reddy SM. Manipulation of Promyelocytic Leukemia Protein Nuclear Bodies by Marek's Disease Virus Encoded US3 Protein Kinase. Microorganisms 2021; 9:microorganisms9040685. [PMID: 33810320 PMCID: PMC8066686 DOI: 10.3390/microorganisms9040685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Promyelocytic leukemia protein nuclear bodies (PML-NBs) are dynamic nuclear structures, shown to be important for herpesvirus replication; however, their role in regulating Marek’s disease virus (MDV) infection has not been studied. MDV is an oncogenic alphaherpesvirus that causes lymphoproliferative disease in chickens. MDV encodes a US3 serine/threonine protein kinase that is important for MDV replication and gene expression. In this study, we studied the role of MDV US3 in regulating PML-NBs. Using an immunofluorescence assay, we found that MDV US3 disrupts PML and SP100 in a kinase dependent manner. In addition, treatment with MG-132 (a proteasome inhibitor) could partially restore the levels of PML and SP100, suggesting that a cellular proteasome dependent degradation pathway is involved in MDV US3 induced disruption of PML and SP100. These findings provide the first evidence for the interplay between MDV proteins and PML-NBs.
Collapse
|
5
|
Qin C, Zhang R, Lang Y, Shao A, Xu A, Feng W, Han J, Wang M, He W, Yu C, Tang J. Bclaf1 critically regulates the type I interferon response and is degraded by alphaherpesvirus US3. PLoS Pathog 2019; 15:e1007559. [PMID: 30682178 PMCID: PMC6364948 DOI: 10.1371/journal.ppat.1007559] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/06/2019] [Accepted: 01/03/2019] [Indexed: 01/12/2023] Open
Abstract
Type I interferon response plays a prominent role against viral infection, which is frequently disrupted by viruses. Here, we report Bcl-2 associated transcription factor 1 (Bclaf1) is degraded during the alphaherpesvirus Pseudorabies virus (PRV) and Herpes simplex virus type 1 (HSV-1) infections through the viral protein US3. We further reveal that Bclaf1 functions critically in type I interferon signaling. Knockdown or knockout of Bclaf1 in cells significantly impairs interferon-α (IFNα) -mediated gene transcription and viral inhibition against US3 deficient PRV and HSV-1. Mechanistically, Bclaf1 maintains a mechanism allowing STAT1 and STAT2 to be efficiently phosphorylated in response to IFNα, and more importantly, facilitates IFN-stimulated gene factor 3 (ISGF3) binding with IFN-stimulated response elements (ISRE) for efficient gene transcription by directly interacting with ISRE and STAT2. Our studies establish the importance of Bclaf1 in IFNα-induced antiviral immunity and in the control of viral infections.
Collapse
Affiliation(s)
- Chao Qin
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Rui Zhang
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yue Lang
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Anwen Shao
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Aotian Xu
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenhai Feng
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jun Han
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mengdong Wang
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wanwei He
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Cuilian Yu
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jun Tang
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Ma H, Li Q, Feng K, Zhang Y, Zhu H, Chen C, Yan K. Glutaraldehyde inactivation of enveloped DNA viruses in the preparation of haemoglobin-based oxygen carriers. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:33-38. [PMID: 29081252 DOI: 10.1080/21691401.2017.1394875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glutaraldehyde (GA), used medically as a disinfectant and as a crosslinker for haemoglobin (Hb)-based oxygen carriers (HBOCs), was investigated for its ability to inactivate viruses during the preparation of these artificial blood substitutes. Porcine parvovirus (PPV; a non-enveloped DNA virus) and porcine pseudorabies virus (PRV; an enveloped DNA virus) were used as the virus indicators. Upon treatment with 0.1 mM GA, the titer of PRV decreased from 9.62 log10 to 2.62 log10 within 0.5 h, whereas that of PPV decreased from 7.00 log10 to 2.30 log10 in 5 h. Following treatment with 1.0 mM GA, the titer of PRV decreased from 11.00 log10 to 1.97 log10 within 0.5 h, whereas that of PPV decreased from 7.50 log10 to 3.43 log10 in 4.5 h. During the polymerization of Hb with GA, the GA concentration decreased to 1.0 and 0.1 mM within 30 and 50 min, respectively, at a GA:Hb molar ratio of 10:1, whereas at a GA:Hb molar ratio of 30:1, GA decreased to those same concentrations in 1.5 and 2.5 h, respectively. This rapid decrease in GA concentration during its polymerization with Hb indicates that GA must be added into the Hb solution in a short time in order to get as high a initial concentration as possible. In this study, the GA can only inactivate PRV effectively, given that a longer time (4.5 h) was required for it to inactivate the PPV titer. This study therefore demonstrates that GA inactivates the enveloped DNA virus only during the preparation of HBOCs.
Collapse
Affiliation(s)
- Huiya Ma
- a College of Life Science , Northwest University , Xi'an , P.R. China
| | - Qiuhui Li
- a College of Life Science , Northwest University , Xi'an , P.R. China
| | - Kun Feng
- a College of Life Science , Northwest University , Xi'an , P.R. China
| | - Yuanyuan Zhang
- a College of Life Science , Northwest University , Xi'an , P.R. China
| | - Hongli Zhu
- a College of Life Science , Northwest University , Xi'an , P.R. China.,b National Engineering Research Center for Miniaturized Detection System , Xi'an , P.R. China
| | - Chao Chen
- a College of Life Science , Northwest University , Xi'an , P.R. China.,b National Engineering Research Center for Miniaturized Detection System , Xi'an , P.R. China
| | - Kunping Yan
- a College of Life Science , Northwest University , Xi'an , P.R. China.,b National Engineering Research Center for Miniaturized Detection System , Xi'an , P.R. China
| |
Collapse
|
7
|
Gu H, Zheng Y. Role of ND10 nuclear bodies in the chromatin repression of HSV-1. Virol J 2016; 13:62. [PMID: 27048561 PMCID: PMC4822283 DOI: 10.1186/s12985-016-0516-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/28/2016] [Indexed: 01/09/2023] Open
Abstract
Herpes simplex virus (HSV) is a neurotropic virus that establishes lifelong latent infection in human ganglion sensory neurons. This unique life cycle necessitates an intimate relation between the host defenses and virus counteractions over the long course of infection. Two important aspects of host anti-viral defense, nuclear substructure restriction and epigenetic chromatin regulation, have been intensively studied in the recent years. Upon viral DNA entering the nucleus, components of discrete nuclear bodies termed nuclear domain 10 (ND10), converge at viral DNA and place restrictions on viral gene expression. Meanwhile the infected cell mobilizes its histones and histone-associated repressors to force the viral DNA into nucleosome-like structures and also represses viral transcription. Both anti-viral strategies are negated by various HSV countermeasures. One HSV gene transactivator, infected cell protein 0 (ICP0), is a key player in antagonizing both the ND10 restriction and chromatin repression. On one hand, ICP0 uses its E3 ubiquitin ligase activity to target major ND10 components for proteasome-dependent degradation and thereafter disrupts the ND10 nuclear bodies. On the other hand, ICP0 participates in de-repressing the HSV chromatin by changing histone composition or modification and therefore activates viral transcription. Involvement of a single viral protein in two seemingly different pathways suggests that there is coordination in host anti-viral defense mechanisms and also cooperation in viral counteraction strategies. In this review, we summarize recent advances in understanding the role of chromatin regulation and ND10 dynamics in both lytic and latent HSV infection. We focus on the new observations showing that ND10 nuclear bodies play a critical role in cellular chromatin regulation. We intend to find the connections between the two major anti-viral defense pathways, chromatin remodeling and ND10 structure, in order to achieve a better understanding of how host orchestrates a concerted defense and how HSV adapts with and overcomes the host immunity.
Collapse
Affiliation(s)
- Haidong Gu
- Department of Biological Sciences, Wayne State University, 4117 Biological Science Building, 5047 Gullen Mall, Detroit, MI, 48202, USA.
| | - Yi Zheng
- Department of Biological Sciences, Wayne State University, 4117 Biological Science Building, 5047 Gullen Mall, Detroit, MI, 48202, USA
| |
Collapse
|
8
|
Desai DV, Kulkarni SS. Herpes Simplex Virus: The Interplay Between HSV, Host, and HIV-1. Viral Immunol 2015; 28:546-55. [PMID: 26331265 DOI: 10.1089/vim.2015.0012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus proteins interact with host (human) proteins and create an environment conducive for its replication. Genital ulceration due to herpes simplex virus type 2 (HSV-2) infections is an important clinical manifestation reported to increase the risk of human immunodeficiency virus type 1 (HIV-1) acquisition and replication in HIV-1/HSV-2 coinfection. Dampening the innate and adaptive immune responses of the skin-resident dendritic cells, HSV-2 not only helps itself, but creates a "yellow brick road" for one of the most dreaded viruses HIV, which is transmitted mainly through the sexual route. Although, data from clinical trials show that HSV-2 suppression reduces HIV-1 viral load, there are hardly any reports presenting conclusive evidence on the impact of HSV-2 coinfection on HIV-1 disease progression. Be that as it may, understanding the interplay between these three characters (HSV, host, and HIV-1) is imperative. This review endeavors to collate studies on the influence of HSV-derived proteins on the host response and HIV-1 replication. Studying such complex interactions may help in designing and developing common strategies for the two viruses to keep these "partners in crime" at bay.
Collapse
Affiliation(s)
- Dipen Vijay Desai
- Department of Virology, ICMR-National AIDS Research Institute , Pune, India
| | | |
Collapse
|
9
|
Herpes simplex virus 1 protein kinase US3 hyperphosphorylates p65/RelA and dampens NF-κB activation. J Virol 2014; 88:7941-51. [PMID: 24807716 DOI: 10.1128/jvi.03394-13] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nuclear factor κB (NF-κB) plays important roles in innate immune responses by regulating the expression of a large number of target genes involved in the immune and inflammatory response, apoptosis, cell proliferation, differentiation, and survival. To survive in the host cells, viruses have evolved multiple strategies to evade and subvert the host immune response. Herpes simplex virus 1 (HSV-1) bears a large DNA genome, with the capacity to encode many different viral proteins to counteract the host immune responses. In the present study, we demonstrated that HSV-1 protein kinase US3 significantly inhibited NF-κB activation and decreased the expression of inflammatory chemokine interleukin-8 (IL-8). US3 was also shown to hyperphosphorylate p65 at serine 75 and block its nuclear translocation. Two US3 mutants, K220M and D305A, still interacted with p65; however, they could not hyperphosphorylate p65, indicating that the kinase activity of US3 was indispensable for the function. The attenuation of NF-κB activation by HSV-1 US3 protein kinase may represent a critical adaptation to enable virus persistence within the host. Importance: This study demonstrated that HSV-1 protein kinase US3 significantly inhibited NF-κB activation and decreased the expression of inflammatory chemokine interleukin-8 (IL-8). US3 hyperphosphorylated p65 at serine 75 to inhibit NF-κB activation. The kinase activity of US3 was indispensable for its hyperphosphorylation of p65 and abrogation of the nuclear translocation of p65. The present study elaborated a novel mechanism of HSV-1 US3 to evade the host innate immunity.
Collapse
|
10
|
Herpes simplex virus 1 serine/threonine kinase US3 hyperphosphorylates IRF3 and inhibits beta interferon production. J Virol 2013; 87:12814-27. [PMID: 24049179 DOI: 10.1128/jvi.02355-13] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Viral infection initiates a series of signaling cascades that lead to the transcription of interferons (IFNs), finally inducing interferon-stimulated genes (ISGs) to eliminate viruses. Viruses have evolved a variety of strategies to modulate host IFN-mediated immune responses. Herpes simplex virus 1 (HSV-1) US3, a Ser/Thr kinase conserved in alphaherpesviruses, was previously reported to counteract host innate immunity; however, the molecular mechanism is elusive. In this study, we report that US3 blocks IFN-β production by hyperphosphorylating IFN regulatory factor 3 (IRF3). Ectopic expression of US3 protein significantly inhibited Sendai virus (SeV)-mediated activation of IFN-β and IFN-stimulated response element (ISRE) promoters and the transcription of IFN-β, ISG54, and ISG56. US3 was also shown to block SeV-induced dimerization and nuclear translocation of IRF3. The kinase activity was indispensable for its inhibitory function, as kinase-dead (KD) US3 mutants K220M and D305A could not inhibit IFN-β production. Furthermore, US3 interacted with and hyperphosphorylated IRF3 at Ser175 to prevent IRF3 activation. Finally, the US3 KD mutant viruses were constructed and denoted K220M or D305A HSV-1, respectively. Cells and mice infected with both mutant viruses produced remarkably larger amounts of IFN-β than those infected with wild-type HSV-1. For the first time, these findings provide convincing evidence that US3 hyperphosphorylates IRF3, blocks the production of IFN-β, and subverts host innate immunity.
Collapse
|
11
|
Kindrachuk J, Arsenault R, Kusalik A, Kindrachuk KN, Trost B, Napper S, Jahrling PB, Blaney JE. Systems kinomics demonstrates Congo Basin monkeypox virus infection selectively modulates host cell signaling responses as compared to West African monkeypox virus. Mol Cell Proteomics 2012; 11:M111.015701. [PMID: 22205724 PMCID: PMC3433897 DOI: 10.1074/mcp.m111.015701] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/19/2011] [Indexed: 01/04/2023] Open
Abstract
Monkeypox virus (MPXV) is comprised of two clades: Congo Basin MPXV, with an associated case fatality rate of 10%, and Western African MPXV, which is associated with less severe infection and minimal lethality. We thus postulated that Congo Basin and West African MPXV would differentially modulate host cell responses and, as many host responses are regulated through phosphorylation independent of transcription or translation, we employed systems kinomics with peptide arrays to investigate these functional host responses. Using this approach we have demonstrated that Congo Basin MPXV infection selectively down-regulates host responses as compared with West African MPXV, including growth factor- and apoptosis-related responses. These results were confirmed using fluorescence-activated cell sorting analysis demonstrating that West African MPXV infection resulted in a significant increase in apoptosis in human monocytes as compared with Congo Basin MPXV. Further, differentially phosphorylated kinases were identified through comparison of our MPXV data sets and validated as potential targets for pharmacological inhibition of Congo Basin MPXV infection, including increased Akt S473 phosphorylation and decreased p53 S15 phosphorylation. Inhibition of Akt S473 phosphorylation resulted in a significant decrease in Congo Basin MPXV virus yield (261-fold) but did not affect West African MPXV. In addition, treatment with staurosporine, an apoptosis activator resulted in a 49-fold greater decrease in Congo Basin MPXV yields as compared with West African MPXV. Thus, using a systems kinomics approach, our investigation demonstrates that West African and Congo Basin MPXV differentially modulate host cell responses and has identified potential host targets of therapeutic interest.
Collapse
Affiliation(s)
- Jason Kindrachuk
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
SUMO binding by the Epstein-Barr virus protein kinase BGLF4 is crucial for BGLF4 function. J Virol 2012; 86:5412-21. [PMID: 22398289 DOI: 10.1128/jvi.00314-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
An Epstein-Barr virus (EBV) protein microarray was used to screen for proteins binding noncovalently to the small ubiquitin-like modifier SUMO2. Among the 11 SUMO binding proteins identified was the conserved protein kinase BGLF4. The mutation of potential SUMO interaction motifs (SIMs) in BGLF4 identified N- and C-terminal SIMs. The mutation of both SIMs changed the intracellular localization of BGLF4 from nuclear to cytoplasmic, while BGLF4 mutated in the N-terminal SIM remained predominantly nuclear. The mutation of the C-terminal SIM yielded an intermediate phenotype with nuclear and cytoplasmic staining. The transfer of BGLF4 amino acids 342 to 359 to a nuclear green fluorescent protein (GFP)-tagged reporter protein led to the relocalization of the reporter to the cytoplasm. Thus, the C-terminal SIM lies adjacent to a nuclear export signal, and coordinated SUMO binding by the N- and C-terminal SIMs blocks export and allows the nuclear accumulation of BGLF4. The mutation of either SIM prevented SUMO binding in vitro. The ability of BGLF4 to abolish the SUMOylation of the EBV lytic cycle transactivator ZTA was dependent on both BGLF4 SUMO binding and BGLF4 kinase activity. The global profile of SUMOylated cell proteins was also suppressed by BGLF4 but not by the SIM or kinase-dead BGLF4 mutant. The effective BGLF4-mediated dispersion of promyelocytic leukemia (PML) bodies was dependent on SUMO binding. The SUMO binding function of BGLF4 was also required to induce the cellular DNA damage response and to enhance the production of extracellular virus during EBV lytic replication. Thus, SUMO binding by BGLF4 modulates BGLF4 function and affects the efficiency of lytic EBV replication.
Collapse
|
13
|
Van Opdenbosch N, Favoreel H, Van de Walle GR. Histone modifications in herpesvirus infections. Biol Cell 2012; 104:139-64. [PMID: 22188068 DOI: 10.1111/boc.201100067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 12/02/2011] [Indexed: 12/13/2022]
Abstract
In eukaryotic cells, gene expression is not only regulated by transcription factors but also by several epigenetic mechanisms including post-translational modifications of histone proteins. There are numerous histone modifications described to date and methylation, acetylation, ubiquitination and phosphorylation are amongst the best studied. In parallel, certain viruses interact with the very same regulatory mechanisms, hereby manipulating the normal epigenetic landscape of the host cell, to fit their own replication needs. This review concentrates on herpesviruses specifically and how they interfere with the histone-modifying enzymes to regulate their replication cycles. Herpesviruses vary greatly with respect to the cell types they infect and the clinical diseases they cause, yet they share various common features including their capacity to encode viral proteins which affect and interfere with the normal functions of histone-modifying enzymes. Studying the epigenetic manipulation/dysregulation of herpesvirus-host interactions not only generates novel insights into the pathogenesis of these viruses but may also have important therapeutic implications.
Collapse
Affiliation(s)
- Nina Van Opdenbosch
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium.
| | | | | |
Collapse
|
14
|
Finnen RL, Johnston SM, Neron CE, Banfield BW. Nucleocytoplasmic shuttling of the HSV-2 serine/threonine kinase Us3. Virology 2011; 417:229-37. [PMID: 21741667 DOI: 10.1016/j.virol.2011.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 06/06/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
Abstract
The alphaherpesvirus serine/threonine kinase Us3 plays diverse roles in virus multiplication and modifies both nuclear and cytoplasmic substrates. We recently reported that treatment of HSV-2 Us3-transfected and HSV-2-infected cells with leptomycin B, an inhibitor of nuclear export mediated by interaction of chromosomal regional maintenance protein (CRM1) with leucine rich nuclear export signals (NESs), resulted in nuclear trapping of Us3. Here, we utilized fluorescence loss in photobleaching to monitor nuclear export of HSV-2 Us3 and confirm that this process proceeds solely via a CRM1-mediated mechanism. Analysis of deletion derivatives of HSV-2 Us3 fused to a nuclear export reporter protein implicated the involvement of NES-like sequences in nuclear export. However, nuclear trapping of HSV-2 Us3 proteins carrying mutations in these potential NESs was not observed, indicating that these sequences are not functional in the context of full-length protein. Our analyses also revealed previously unidentified regions of HSV-2 Us3 that contribute to its kinase activity.
Collapse
Affiliation(s)
- Renée L Finnen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | |
Collapse
|