1
|
Herold K, Ruffin A, Chmura JC, Dellomo AJ, Ehrlich ES. Kaposi's sarcoma herpesvirus viral FLICE inhibitory protein modulates A20 deubiquitinase activity. Access Microbiol 2024; 6:000625.v4. [PMID: 38868372 PMCID: PMC11165616 DOI: 10.1099/acmi.0.000625.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 03/19/2024] [Indexed: 06/14/2024] Open
Abstract
KSHV viral FLICE inhibitory protein (vFLIP) is a potent activator of NF-κB signalling and an inhibitor of apoptosis and autophagy. Inhibition of vFLIP function and NF-κB signalling promotes lytic reactivation. Here we provide evidence for a novel function of vFLIP through inhibition of the deubiquitinating (DUB) activity of the negative regulator, A20. We demonstrate direct interaction of vFLIP with Itch and A20 and provide evidence for subsequent loss of A20 DUB activity. Our results provide further insight into the function of vFLIP in the regulation of NF-κB signalling.
Collapse
Affiliation(s)
- Kevin Herold
- Department of Biological Sciences, Towson University, Towson, MD, USA
| | - Ayana Ruffin
- Department of Biological Sciences, Towson University, Towson, MD, USA
- Cancer Reserach Institute, Emory University, Atlanta, GA, USA
| | | | - Anna J. Dellomo
- Department of Biological Sciences, Towson University, Towson, MD, USA
| | - Elana S. Ehrlich
- Department of Biological Sciences, Towson University, Towson, MD, USA
| |
Collapse
|
2
|
Kuehnle N, Osborne SM, Liang Z, Manzano M, Gottwein E. CRISPR screens identify novel regulators of cFLIP dependency and ligand-independent, TRAIL-R1-mediated cell death. Cell Death Differ 2023; 30:1221-1234. [PMID: 36801923 PMCID: PMC10154404 DOI: 10.1038/s41418-023-01133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes primary effusion lymphoma (PEL). PEL cell lines require expression of the cellular FLICE inhibitory protein (cFLIP) for survival, although KSHV encodes a viral homolog of this protein (vFLIP). Cellular and viral FLIP proteins have several functions, including, most importantly, the inhibition of pro-apoptotic caspase 8 and modulation of NF-κB signaling. To investigate the essential role of cFLIP and its potential redundancy with vFLIP in PEL cells, we first performed rescue experiments with human or viral FLIP proteins known to affect FLIP target pathways differently. The long and short isoforms of cFLIP and molluscum contagiosum virus MC159L, which are all strong caspase 8 inhibitors, efficiently rescued the loss of endogenous cFLIP activity in PEL cells. KSHV vFLIP was unable to fully rescue the loss of endogenous cFLIP and is therefore functionally distinct. Next, we employed genome-wide CRISPR/Cas9 synthetic rescue screens to identify loss of function perturbations that can compensate for cFLIP knockout. Results from these screens and our validation experiments implicate the canonical cFLIP target caspase 8 and TRAIL receptor 1 (TRAIL-R1 or TNFRSF10A) in promoting constitutive death signaling in PEL cells. However, this process was independent of TRAIL receptor 2 or TRAIL, the latter of which is not detectable in PEL cell cultures. The requirement for cFLIP is also overcome by inactivation of the ER/Golgi resident chondroitin sulfate proteoglycan synthesis and UFMylation pathways, Jagunal homolog 1 (JAGN1) or CXCR4. UFMylation and JAGN1, but not chondroitin sulfate proteoglycan synthesis or CXCR4, contribute to TRAIL-R1 expression. In sum, our work shows that cFLIP is required in PEL cells to inhibit ligand-independent TRAIL-R1 cell death signaling downstream of a complex set of ER/Golgi-associated processes that have not previously been implicated in cFLIP or TRAIL-R1 function.
Collapse
Affiliation(s)
- Neil Kuehnle
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Tarry 6-735, Chicago, IL, 60611, USA
| | - Scout Mask Osborne
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Tarry 6-735, Chicago, IL, 60611, USA
| | - Ziyan Liang
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Tarry 6-735, Chicago, IL, 60611, USA
| | - Mark Manzano
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Eva Gottwein
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Tarry 6-735, Chicago, IL, 60611, USA.
| |
Collapse
|
3
|
Bagnéris C, Senthil Kumar SL, Baratchian M, Britt HM, Assafa TE, Thalassinos K, Collins MK, Barrett TE. Mechanistic insights into the activation of the IKK kinase complex by the Kaposi's Sarcoma Herpes virus oncoprotein vFLIP. J Biol Chem 2022; 298:102012. [PMID: 35525271 PMCID: PMC9163697 DOI: 10.1016/j.jbc.2022.102012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022] Open
Abstract
Constitutive activation of the canonical NF-κB signaling pathway is a major factor in Kaposi’s sarcoma-associated herpes virus pathogenesis where it is essential for the survival of primary effusion lymphoma. Central to this process is persistent upregulation of the inhibitor of κB kinase (IKK) complex by the virally encoded oncoprotein vFLIP. Although the physical interaction between vFLIP and the IKK kinase regulatory component essential for persistent activation, IKKγ, has been well characterized, it remains unclear how the kinase subunits are rendered active mechanistically. Using a combination of cell-based assays, biophysical techniques, and structural biology, we demonstrate here that vFLIP alone is sufficient to activate the IKK kinase complex. Furthermore, we identify weakly stabilized, high molecular weight vFLIP–IKKγ assemblies that are key to the activation process. Taken together, our results are the first to reveal that vFLIP-induced NF-κB activation pivots on the formation of structurally specific vFLIP–IKKγ multimers which have an important role in rendering the kinase subunits active through a process of autophosphorylation. This mechanism of NF-κB activation is in contrast to those utilized by endogenous cytokines and cellular FLIP homologues.
Collapse
Affiliation(s)
- Claire Bagnéris
- Department of Biological Sciences, Institute of Structural Molecular Biology, Birkbeck College, London, UK
| | - Swathi L Senthil Kumar
- Department of Biological Sciences, Institute of Structural Molecular Biology, Birkbeck College, London, UK
| | - Mehdi Baratchian
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hannah M Britt
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Tufa E Assafa
- Chemistry and Biochemistry Department, University of California Santa Cruz, Santa Cruz, California, USA
| | - Konstantinos Thalassinos
- Department of Biological Sciences, Institute of Structural Molecular Biology, Birkbeck College, London, UK; Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Mary K Collins
- Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa, Japan
| | - Tracey E Barrett
- Department of Biological Sciences, Institute of Structural Molecular Biology, Birkbeck College, London, UK.
| |
Collapse
|
4
|
Jary A, Veyri M, Gothland A, Leducq V, Calvez V, Marcelin AG. Kaposi's Sarcoma-Associated Herpesvirus, the Etiological Agent of All Epidemiological Forms of Kaposi's Sarcoma. Cancers (Basel) 2021; 13:cancers13246208. [PMID: 34944828 PMCID: PMC8699694 DOI: 10.3390/cancers13246208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Kaposi’s sarcoma-associated herpesvirus (KSHV) is one of the seven oncogenic viruses currently recognized by the International Agency for Research on Cancer. Its presence for Kaposi’s sarcoma development is essential and knowledge on the oncogenic process has increased since its discovery in 1994. However, some uncertainties remain to be clarified, in particular on the exact routes of transmission and disparities in KSHV seroprevalence and the prevalence of Kaposi’s sarcoma worldwide. Here, we summarized the current data on the KSHV viral particle’s structure, its genome, the replication, its seroprevalence, the viral diversity and the lytic and latent oncogenesis proteins involved in Kaposi’s sarcoma. Lastly, we reported the environmental, immunological and viral factors possibly associated with KSHV transmission that could also play a role in the development of Kaposi’s sarcoma. Abstract Kaposi’s sarcoma-associated herpesvirus (KSHV), also called human herpesvirus 8 (HHV-8), is an oncogenic virus belonging to the Herpesviridae family. The viral particle is composed of a double-stranded DNA harboring 90 open reading frames, incorporated in an icosahedral capsid and enveloped. The viral cycle is divided in the following two states: a short lytic phase, and a latency phase that leads to a persistent infection in target cells and the expression of a small number of genes, including LANA-1, v-FLIP and v-cyclin. The seroprevalence and risk factors of infection differ around the world, and saliva seems to play a major role in viral transmission. KSHV is found in all epidemiological forms of Kaposi’s sarcoma including classic, endemic, iatrogenic, epidemic and non-epidemic forms. In a Kaposi’s sarcoma lesion, KSHV is mainly in a latent state; however, a small proportion of viral particles (<5%) are in a replicative state and are reported to be potentially involved in the proliferation of neighboring cells, suggesting they have crucial roles in the process of tumorigenesis. KSHV encodes oncogenic proteins (LANA-1, v-FLIP, v-cyclin, v-GPCR, v-IL6, v-CCL, v-MIP, v-IRF, etc.) that can modulate cellular pathways in order to induce the characteristics found in all cancer, including the inhibition of apoptosis, cells’ proliferation stimulation, angiogenesis, inflammation and immune escape, and, therefore, are involved in the development of Kaposi’s sarcoma.
Collapse
Affiliation(s)
- Aude Jary
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
- Correspondence: ; Tel.: +33-1-4217-7401
| | - Marianne Veyri
- Service d’Oncologie Médicale, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France;
| | - Adélie Gothland
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| | - Valentin Leducq
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| | - Vincent Calvez
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| | - Anne-Geneviève Marcelin
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| |
Collapse
|
5
|
Choi S, Matta H, Gopalakrishnan R, Natarajan V, Gong S, Jeronimo A, Kuo WY, Bravo B, Chaudhary PM. A novel thermostable beetle luciferase based cytotoxicity assay. Sci Rep 2021; 11:10002. [PMID: 33976304 PMCID: PMC8113442 DOI: 10.1038/s41598-021-89404-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/26/2021] [Indexed: 12/22/2022] Open
Abstract
Cytotoxicity assays are essential for the testing and development of novel immunotherapies for the treatment of cancer. We recently described a novel cytotoxicity assay, termed the Matador assay, which was based on marine luciferases and their engineered derivatives. In this study, we describe the development of a new cytotoxicity assay termed 'Matador-Glo assay' which takes advantage of a thermostable variant of Click Beetle Luciferase (Luc146-1H2). Matador-Glo assay utilizes Luc146-1H2 and D-luciferin as the luciferase-substrate pair for luminescence detection. The assay involves ectopic over-expression of Luc146-1H2 in the cytosol of target cells of interest. Upon damage to the membrane integrity, the Luc146-1H2 is either released from the dead and dying cells or its activity is preferentially measured in dead and dying cells. We demonstrate that this assay is simple, fast, specific, sensitive, cost-efficient, and not labor-intensive. We further demonstrate that the Matador-Glo assay can be combined with the marine luciferase-based Matador assay to develop a dual luciferase assay for cell death detection. Finally, we demonstrate that the Luc146-1H2 expressing target cells can also be used for in vivo bioluminescence imaging applications.
Collapse
Affiliation(s)
- Sunju Choi
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hittu Matta
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ramakrishnan Gopalakrishnan
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Venkatesh Natarajan
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Songjie Gong
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alberto Jeronimo
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wei-Ying Kuo
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bryant Bravo
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Preet M Chaudhary
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Sadek J, Wuo MG, Rooklin D, Hauenstein A, Hong SH, Gautam A, Wu H, Zhang Y, Cesarman E, Arora PS. Modulation of virus-induced NF-κB signaling by NEMO coiled coil mimics. Nat Commun 2020; 11:1786. [PMID: 32286300 PMCID: PMC7156456 DOI: 10.1038/s41467-020-15576-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 03/12/2020] [Indexed: 01/07/2023] Open
Abstract
Protein-protein interactions featuring intricate binding epitopes remain challenging targets for synthetic inhibitors. Interactions of NEMO, a scaffolding protein central to NF-κB signaling, exemplify this challenge. Various regulators are known to interact with different coiled coil regions of NEMO, but the topological complexity of this protein has limited inhibitor design. We undertook a comprehensive effort to block the interaction between vFLIP, a Kaposi’s sarcoma herpesviral oncoprotein, and NEMO using small molecule screening and rational design. Our efforts reveal that a tertiary protein structure mimic of NEMO is necessary for potent inhibition. The rationally designed mimic engages vFLIP directly causing complex disruption, protein degradation and suppression of NF-κB signaling in primary effusion lymphoma (PEL). NEMO mimic treatment induces cell death and delays tumor growth in a PEL xenograft model. Our studies with this inhibitor reveal the critical nexus of signaling complex stability in the regulation of NF-κB by a viral oncoprotein. NF-κB signalling involves the scaffold protein NEMO, which can be bound by the oncoprotein vFLIP to promote cell survival and oncogenic transformation. Here the authors rationally engineer a tertiary protein mimic of NEMO to disrupt the vFLIP-NEMO interaction to induce cell death.
Collapse
Affiliation(s)
- Jouliana Sadek
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Michael G Wuo
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - David Rooklin
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Arthur Hauenstein
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Seong Ho Hong
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Archana Gautam
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029-5674, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY, 10003, USA.,NYU-ECNU Center for Computational Chemistry, New York University-Shanghai, 200122, Shanghai, China
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.
| | - Paramjit S Arora
- Department of Chemistry, New York University, New York, NY, 10003, USA.
| |
Collapse
|
7
|
Gopalakrishnan R, Matta H, Choi S, Chaudhary PM. Narciclasine, an isocarbostyril alkaloid, has preferential activity against primary effusion lymphoma. Sci Rep 2020; 10:5712. [PMID: 32235878 PMCID: PMC7109099 DOI: 10.1038/s41598-020-62690-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 03/11/2020] [Indexed: 01/23/2023] Open
Abstract
Primary effusion lymphoma (PEL) is a subtype of non-Hodgkin lymphoma associated with infection by Kaposi sarcoma-associated herpes virus (KSHV). PEL is an aggressive disease with extremely poor prognosis when treated with conventional chemotherapy. Narciclasine, a natural product present in Amaryllidaceae family of flowering plants including daffodils, belongs to a class of molecules termed ‘isocarbostyril alkaloid’. We have found that narciclasine displays preferential cytotoxicity towards PEL at low nanomolar concentrations and is approximately 10 and 100-fold more potent than its structural analogs lycoricidine and lycorine, respectively. Narciclasine arrested cell-cycle progression at the G1 phase and induced apoptosis in PEL, which is accompanied by activation of caspase-3/7, cleavage of PARP and increase in the surface expression of Annexin-V. Although narciclasine treatment resulted in a marked decrease in the expression of MYC and its direct target genes,time-course experiments revealed that MYC is not a direct target of narciclasine. Narciclasine treatment neither induces the expression of KSHV-RTA/ORF50 nor the production of infectious KSHV virions in PEL. Finally, narciclasine provides dramatic survival advantages to mice in two distinct mouse xenograft models of PEL. In conclusion, our results suggest that narciclasine could be a promising agent for the treatment of PEL.
Collapse
Affiliation(s)
- Ramakrishnan Gopalakrishnan
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, University of Southern California, Keck School of Medicine, Los Angeles, California, United States of America.
| | - Hittu Matta
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, University of Southern California, Keck School of Medicine, Los Angeles, California, United States of America
| | - Sunju Choi
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, University of Southern California, Keck School of Medicine, Los Angeles, California, United States of America
| | - Preet M Chaudhary
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, University of Southern California, Keck School of Medicine, Los Angeles, California, United States of America.
| |
Collapse
|
8
|
Ruder B, Murtadak V, Stürzl M, Wirtz S, Distler U, Tenzer S, Mahapatro M, Greten FR, Hu Y, Neurath MF, Cesarman E, Ballon G, Günther C, Becker C. Chronic intestinal inflammation in mice expressing viral Flip in epithelial cells. Mucosal Immunol 2018; 11:1621-1629. [PMID: 30104627 PMCID: PMC8063487 DOI: 10.1038/s41385-018-0068-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/04/2018] [Accepted: 07/10/2018] [Indexed: 02/04/2023]
Abstract
Viruses are present in the intestinal microflora and are currently discussed as a potential causative mechanism for the development of inflammatory bowel disease. A number of viruses, such as Human Herpesvirus-8, express homologs to cellular FLIPs, which are major contributors for the regulation of epithelial cell death. In this study we analyzed the consequences of constitutive expression of HHV8-viral FLIP in intestinal epithelial cells (IECs) in mice. Surprisingly, expression of vFlip disrupts tissue homeostasis and induces severe intestinal inflammation. Moreover vFlipIEC-tg mice showed reduced Paneth cell numbers, associated with excessive necrotic cell death. On a molecular level vFlip expression altered classical and alternative NFκB activation. Blocking of alternative NFκB signaling by deletion of Ikka in vivo largely protected mice from inflammation and Paneth cell loss induced by vFLIP. Collectively, our data provide functional evidence that expression of a single viral protein in IECs can be sufficient to disrupt epithelial homeostasis and to initiate chronic intestinal inflammation.
Collapse
Affiliation(s)
- Barbara Ruder
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Vinay Murtadak
- Division of Molecular and Experimental Surgery, Department of Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ute Distler
- Institute for Immunology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Mousumi Mahapatro
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Florian R. Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Markus F. Neurath
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Gianna Ballon
- Department of Pathology and Laboratory Medicine, Northwell Health, Lake Success, NY, USA
| | - Claudia Günther
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
9
|
Manzano M, Patil A, Waldrop A, Dave SS, Behdad A, Gottwein E. Gene essentiality landscape and druggable oncogenic dependencies in herpesviral primary effusion lymphoma. Nat Commun 2018; 9:3263. [PMID: 30111820 PMCID: PMC6093911 DOI: 10.1038/s41467-018-05506-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/26/2018] [Indexed: 12/26/2022] Open
Abstract
Primary effusion lymphoma (PEL) is caused by Kaposi's sarcoma-associated herpesvirus. Our understanding of PEL is poor and therefore treatment strategies are lacking. To address this need, we conducted genome-wide CRISPR/Cas9 knockout screens in eight PEL cell lines. Integration with data from unrelated cancers identifies 210 genes as PEL-specific oncogenic dependencies. Genetic requirements of PEL cell lines are largely independent of Epstein-Barr virus co-infection. Genes of the NF-κB pathway are individually non-essential. Instead, we demonstrate requirements for IRF4 and MDM2. PEL cell lines depend on cellular cyclin D2 and c-FLIP despite expression of viral homologs. Moreover, PEL cell lines are addicted to high levels of MCL1 expression, which are also evident in PEL tumors. Strong dependencies on cyclin D2 and MCL1 render PEL cell lines highly sensitive to palbociclib and S63845. In summary, this work comprehensively identifies genetic dependencies in PEL cell lines and identifies novel strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Mark Manzano
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ajinkya Patil
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Alexander Waldrop
- Duke Cancer Institute and Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Sandeep S Dave
- Duke Cancer Institute and Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Amir Behdad
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Eva Gottwein
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
10
|
Hunte R, Alonso P, Thomas R, Bazile CA, Ramos JC, van der Weyden L, Dominguez-Bendala J, Khan WN, Shembade N. CADM1 is essential for KSHV-encoded vGPCR-and vFLIP-mediated chronic NF-κB activation. PLoS Pathog 2018; 14:e1006968. [PMID: 29698475 PMCID: PMC5919438 DOI: 10.1371/journal.ppat.1006968] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
Approximately 12% of all human cancers worldwide are caused by infections with oncogenic viruses. Kaposi's sarcoma herpesvirus/human herpesvirus 8 (KSHV/HHV8) is one of the oncogenic viruses responsible for human cancers, including Kaposi's sarcoma (KS), Primary Effusion Lymphoma (PEL), and the lymphoproliferative disorder multicentric Castleman's disease (MCD). Chronic inflammation mediated by KSHV infection plays a decisive role in the development and survival of these cancers. NF-κB, a family of transcription factors regulating inflammation, cell survival, and proliferation, is persistently activated in KSHV-infected cells. The KSHV latent and lytic expressing oncogenes involved in NF-κB activation are vFLIP/K13 and vGPCR, respectively. However, the mechanisms by which NF-κB is activated by vFLIP and vGPCR are poorly understood. In this study, we have found that a host molecule, Cell Adhesion Molecule 1 (CADM1), is robustly upregulated in KSHV-infected PBMCs and KSHV-associated PEL cells. Further investigation determined that both vFLIP and vGPCR interacted with CADM1. The PDZ binding motif localized at the carboxyl terminus of CADM1 is essential for both vGPCR and vFLIP to maintain chronic NF-κB activation. Membrane lipid raft associated CADM1 interaction with vFLIP is critical for the initiation of IKK kinase complex and NF-κB activation in the PEL cells. In addition, CADM1 played essential roles in the survival of KSHV-associated PEL cells. These data indicate that CADM1 plays key roles in the activation of NF-κB pathways during latent and lytic phases of the KSHV life cycle and the survival of KSHV-infected cells.
Collapse
MESH Headings
- Cell Adhesion Molecule-1/genetics
- Cell Adhesion Molecule-1/metabolism
- Herpesvirus 8, Human/pathogenicity
- Humans
- Lymphoma, Primary Effusion/genetics
- Lymphoma, Primary Effusion/metabolism
- Lymphoma, Primary Effusion/virology
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/virology
- Tumor Cells, Cultured
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Richard Hunte
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Patricia Alonso
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Remy Thomas
- Qatar Biomedical Research Institute, Doha, Qatar
| | - Cassandra Alexandria Bazile
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Juan Carlos Ramos
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, and Center for AIDS Research and Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Louise van der Weyden
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Wasif Noor Khan
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Noula Shembade
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| |
Collapse
|
11
|
Development and characterization of a novel luciferase based cytotoxicity assay. Sci Rep 2018; 8:199. [PMID: 29317736 PMCID: PMC5760659 DOI: 10.1038/s41598-017-18606-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/14/2017] [Indexed: 11/08/2022] Open
Abstract
A simple, accurate, sensitive and robust assay that can rapidly and specifically measure the death of target cells would have applications in many areas of biomedicine and particularly for the development of novel cellular- and immune-therapeutics. In this study, we describe a novel cytotoxicity assay, termed the Matador assay, which takes advantage of the extreme brightness, stability and glow-like characteristics of recently discovered novel marine luciferases and their engineered derivatives. The assay involves expression of a luciferase of interest in target cells in a manner so that it is preferentially retained within the healthy cells but is either released from dead and dying cells or whose activity can be preferentially measured in dead and dying cells. We demonstrate that this assay is highly sensitive, specific, rapid, and can be performed in a single-step manner without the need for any expensive equipment. We further validate this assay by demonstrating its ability to detect cytotoxicity induced by several cellular and immune-therapeutic agents including antibodies, natural killer cells, chimeric antigen receptor expressing T cells and a bispecific T cell engager.
Collapse
|
12
|
IKKγ-Mimetic Peptides Block the Resistance to Apoptosis Associated with Kaposi's Sarcoma-Associated Herpesvirus Infection. J Virol 2017; 91:JVI.01170-17. [PMID: 28931678 PMCID: PMC5686756 DOI: 10.1128/jvi.01170-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 08/31/2017] [Indexed: 11/20/2022] Open
Abstract
Primary effusion lymphoma (PEL) is a lymphogenic disorder associated with Kaposi's sarcoma-associated herpesvirus (KSHV) infection. Key to the survival and proliferation of PEL is the canonical NF-κB pathway, which becomes constitutively activated following overexpression of the viral oncoprotein KSHV vFLIP (ks-vFLIP). This arises from its capacity to form a complex with the modulatory subunit of the IκB kinase (IKK) kinase, IKKγ (or NEMO), resulting in the overproduction of proteins that promote cellular survival and prevent apoptosis, both of which are important drivers of tumorigenesis. Using a combination of cell-based and biophysical assays together with structural techniques, we showed that the observed resistance to cell death is largely independent of autophagy or major death receptor signaling pathways and demonstrated that direct targeting of the ks-vFLIP–IKKγ interaction both in cells and in vitro can be achieved using IKKγ-mimetic peptides. Our results further reveal that these peptides not only induce cell killing but also potently sensitize PEL to the proapoptotic agents tumor necrosis factor alpha and etoposide and are the first to confirm ks-vFLIP as a tractable target for the treatment of PEL and related disorders. IMPORTANCE KSHV vFLIP (ks-vFLIP) has been shown to have a crucial role in cellular transformation, in which it is vital for the survival and proliferation of primary effusion lymphoma (PEL), an aggressive malignancy associated with infection that is resistant to the majority of chemotherapeutic drugs. It operates via subversion of the canonical NF-κB pathway, which requires a physical interaction between ks-vFLIP and the IKK kinase modulatory subunit IKKγ. While this interaction has been directly linked to protection against apoptosis, it is unclear whether the suppression of other cell death pathways implicated in ks-vFLIP pathogenesis is an additional contributor. We demonstrate that the interaction between ks-vFLIP and IKKγ is pivotal in conferring resistance to apoptosis. Additionally, we show that the ks-vFLIP–IKKγ complex can be disrupted using peptides leading to direct killing and the sensitization of PEL cells to proapoptotic agents. Our studies thus provide a framework for future therapeutic interventions.
Collapse
|
13
|
Williamson SJ, Nicol SM, Stürzl M, Sabbah S, Hislop AD. Azidothymidine Sensitizes Primary Effusion Lymphoma Cells to Kaposi Sarcoma-Associated Herpesvirus-Specific CD4+ T Cell Control and Inhibits vIRF3 Function. PLoS Pathog 2016; 12:e1006042. [PMID: 27893813 PMCID: PMC5125715 DOI: 10.1371/journal.ppat.1006042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 11/04/2016] [Indexed: 01/06/2023] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is linked with the development of Kaposi sarcoma and the B lymphocyte disorders primary effusion lymphoma (PEL) and multi-centric Castleman disease. T cell immunity limits KSHV infection and disease, however the virus employs multiple mechanisms to inhibit efficient control by these effectors. Thus KSHV-specific CD4+ T cells poorly recognize most PEL cells and even where they can, they are unable to kill them. To make KSHV-infected cells more sensitive to T cell control we treated PEL cells with the thymidine analogue azidothymidine (AZT), which sensitizes PEL lines to Fas-ligand and TRAIL challenge; effector mechanisms which T cells use. PELs co-cultured with KSHV-specific CD4+ T cells in the absence of AZT showed no control of PEL outgrowth. However in the presence of AZT PEL outgrowth was controlled in an MHC-restricted manner. To investigate how AZT sensitizes PELs to immune control we first examined BJAB cells transduced with individual KSHV-latent genes for their ability to resist apoptosis mediated by stimuli delivered through Fas and TRAIL receptors. This showed that in addition to the previously described vFLIP protein, expression of vIRF3 also inhibited apoptosis delivered by these stimuli. Importantly vIRF3 mediated protection from these apoptotic stimuli was inhibited in the presence of AZT as was a second vIRF3 associated phenotype, the downregulation of surface MHC class II. Although both vFLIP and vIRF3 are expressed in PELs, we propose that inhibiting vIRF3 function with AZT may be sufficient to restore T cell control of these tumor cells. Kaposi sarcoma-associated herpesvirus (KSHV) can cause disease in humans in the form of B lymphocyte disorders such as primary effusion lymphoma (PEL) and multicentric Castleman disease. Where tested, these are highly resistant to immune control by KSHV-specific T cells. To investigate how such KSHV-infected cells can be made more sensitive to T cell control we treated PEL lines with azidothymidine (AZT), which has been shown to induce sensitivity in such lines to the mechanisms which T cells use to kill targets. We found this allowed the T cells to control in vitro lymphoma growth. The ability of the T cells to control PEL cell growth was found to correlate with AZT mediated inhibition of function of the KSHV protein vIRF3 which we show has the ability to protect cells from killing by immune effector mechanisms. These studies suggest that the therapeutic drug AZT may be of use to tip the virus host balance away from the virus by interfering with this immune evasion and pro-survival protein, potentially allowing better control by the host.
Collapse
Affiliation(s)
- Samantha J. Williamson
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Samantha M. Nicol
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Shereen Sabbah
- Department of Immunobiology, King's College London, London, United Kingdom
| | - Andrew D. Hislop
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Crow MS, Lum KK, Sheng X, Song B, Cristea IM. Diverse mechanisms evolved by DNA viruses to inhibit early host defenses. Crit Rev Biochem Mol Biol 2016; 51:452-481. [PMID: 27650455 PMCID: PMC5285405 DOI: 10.1080/10409238.2016.1226250] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In mammalian cells, early defenses against infection by pathogens are mounted through a complex network of signaling pathways shepherded by immune-modulatory pattern-recognition receptors. As obligate parasites, the survival of viruses is dependent on the evolutionary acquisition of mechanisms that tactfully dismantle and subvert the cellular intrinsic and innate immune responses. Here, we review the diverse mechanisms by which viruses that accommodate DNA genomes are able to circumvent activation of cellular immunity. We start by discussing viral manipulation of host defense protein levels by either transcriptional regulation or protein degradation. We next review viral strategies used to repurpose or inhibit these cellular immune factors by molecular hijacking or by regulating their post-translational modification status. Additionally, we explore the infection-induced temporal modulation of apoptosis to facilitate viral replication and spread. Lastly, the co-evolution of viruses with their hosts is highlighted by the acquisition of elegant mechanisms for suppressing host defenses via viral mimicry of host factors. In closing, we present a perspective on how characterizing these viral evasion tactics both broadens the understanding of virus-host interactions and reveals essential functions of the immune system at the molecular level. This knowledge is critical in understanding the sources of viral pathogenesis, as well as for the design of antiviral therapeutics and autoimmunity treatments.
Collapse
Affiliation(s)
- Marni S. Crow
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Krystal K. Lum
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Xinlei Sheng
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Bokai Song
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| |
Collapse
|
15
|
Baratchian M, Davis CA, Shimizu A, Escors D, Bagnéris C, Barrett T, Collins MK. Distinct Activation Mechanisms of NF-κB Regulator Inhibitor of NF-κB Kinase (IKK) by Isoforms of the Cell Death Regulator Cellular FLICE-like Inhibitory Protein (cFLIP). J Biol Chem 2016; 291:7608-20. [PMID: 26865630 PMCID: PMC4817188 DOI: 10.1074/jbc.m116.718122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Indexed: 11/06/2022] Open
Abstract
The viral FLICE-like inhibitory protein (FLIP) protein from Kaposi sarcoma-associated herpesvirus activates the NF-κB pathway by forming a stable complex with a central region (amino acids 150-272) of the inhibitor of NF-κB kinase (IKK) γ subunits, thereby activating IKK. Cellular FLIP (cFLIP) forms are also known to activate the NF-κB pathway via IKK activation. Here we demonstrate that cFLIPL, cFLIPS, and their proteolytic product p22-FLIP all require the C-terminal region of NEMO/IKKγ (amino acids 272-419) and its ubiquitin binding function for activation of the IKK kinase (or kinase complex), but none form a stable complex with IKKγ. Our results further reveal that cFLIPLrequires the linear ubiquitin chain assembly complex and the kinase TAK1 for activation of the IKK kinase. Similarly, cFLIPSand p22-FLIP also require TAK1 but do not require LUBAC. In contrast, these isoforms are both components of complexes that incorporate Fas-associated death domain and RIP1, which appear essential for kinase activation. This conservation of IKK activation among the cFLIP family using different mechanisms suggests that the mechanism plays a critical role in their function.
Collapse
Affiliation(s)
- Mehdi Baratchian
- From the Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom, Division of Advanced Therapies, National Institute of Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, United Kingdom, and
| | - Christopher A Davis
- From the Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | - Akira Shimizu
- From the Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | - David Escors
- From the Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | - Claire Bagnéris
- Institute of Structural and Molecular Biology, School of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | - Tracey Barrett
- Institute of Structural and Molecular Biology, School of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | - Mary K Collins
- From the Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom, Division of Advanced Therapies, National Institute of Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, United Kingdom, and
| |
Collapse
|
16
|
Jung J, Münz C. Immune control of oncogenic γ-herpesviruses. Curr Opin Virol 2015; 14:79-86. [PMID: 26372881 DOI: 10.1016/j.coviro.2015.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 08/27/2015] [Accepted: 08/30/2015] [Indexed: 11/26/2022]
Abstract
Human γ-herpesviruses contain Epstein Barr virus (EBV), the first human tumor virus that was identified in man, and Kaposi Sarcoma associated herpesvirus (KSHV), one of the most recently identified human oncogenic pathogens. Both of these have co-evolved with humans to cause tumors only in a minority of infected individuals, despite their exquisite ability to establish persistent infections. In this review we will summarize the fine-tuned balance between immune responses, immune escape and cellular transformation by these viruses, which results in life-long persistent, but asymptomatic infection with immune control in most virus carriers. A detailed understanding of this balance is required to immunotherapeutically reinstall it in patients that suffer from EBV and KSHV associated malignancies.
Collapse
Affiliation(s)
- Jae Jung
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Harlyne J. Norris Cancer Research Tower, 1450 Biggy Street, Los Angeles, CA 90033, USA.
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
17
|
Bagnéris C, Rogala KB, Baratchian M, Zamfir V, Kunze MBA, Dagless S, Pirker KF, Collins MK, Hall BA, Barrett TE, Kay CWM. Probing the Solution Structure of IκB Kinase (IKK) Subunit γ and Its Interaction with Kaposi Sarcoma-associated Herpes Virus Flice-interacting Protein and IKK Subunit β by EPR Spectroscopy. J Biol Chem 2015; 290:16539-49. [PMID: 25979343 PMCID: PMC4505408 DOI: 10.1074/jbc.m114.622928] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 05/13/2015] [Indexed: 01/04/2023] Open
Abstract
Viral flice-interacting protein (vFLIP), encoded by the oncogenic Kaposi sarcoma-associated herpes virus (KSHV), constitutively activates the canonical nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) pathway. This is achieved through subversion of the IκB kinase (IKK) complex (or signalosome), which involves a physical interaction between vFLIP and the modulatory subunit IKKγ. Although this interaction has been examined both in vivo and in vitro, the mechanism by which vFLIP activates the kinase remains to be determined. Because IKKγ functions as a scaffold, recruiting both vFLIP and the IKKα/β subunits, it has been proposed that binding of vFLIP could trigger a structural rearrangement in IKKγ conducive to activation. To investigate this hypothesis we engineered a series of mutants along the length of the IKKγ molecule that could be individually modified with nitroxide spin labels. Subsequent distance measurements using electron paramagnetic resonance spectroscopy combined with molecular modeling and molecular dynamics simulations revealed that IKKγ is a parallel coiled-coil whose response to binding of vFLIP or IKKβ is localized twisting/stiffening and not large-scale rearrangements. The coiled-coil comprises N- and C-terminal regions with distinct registers accommodated by a twist: this structural motif is exploited by vFLIP, allowing it to bind and subsequently activate the NF-κB pathway. In vivo assays confirm that NF-κB activation by vFLIP only requires the N-terminal region up to the transition between the registers, which is located directly C-terminal of the vFLIP binding site.
Collapse
Affiliation(s)
- Claire Bagnéris
- From the Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| | - Kacper B Rogala
- From the Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom, Institute of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Mehdi Baratchian
- MRC Centre for Medical Molecular Virology, UCL Cancer Institute and National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, United Kingdom
| | - Vlad Zamfir
- From the Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom, Institute of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Micha B A Kunze
- Institute of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Selina Dagless
- Institute of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Katharina F Pirker
- Institute of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Mary K Collins
- MRC Centre for Medical Molecular Virology, UCL Cancer Institute and National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, United Kingdom
| | - Benjamin A Hall
- MRC Cancer Unit, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XZ, United Kingdom, and
| | - Tracey E Barrett
- From the Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom,
| | - Christopher W M Kay
- Institute of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom, London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, United Kingdom
| |
Collapse
|
18
|
Gopalakrishnan R, Matta H, Tolani B, Triche T, Chaudhary PM. Immunomodulatory drugs target IKZF1-IRF4-MYC axis in primary effusion lymphoma in a cereblon-dependent manner and display synergistic cytotoxicity with BRD4 inhibitors. Oncogene 2015; 35:1797-810. [PMID: 26119939 PMCID: PMC4486341 DOI: 10.1038/onc.2015.245] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 04/22/2015] [Accepted: 05/18/2015] [Indexed: 01/16/2023]
Abstract
Primary effusion lymphoma (PEL) is an aggressive type of non-Hodgkin lymphoma localized predominantly in body cavities. Kaposi’s sarcoma-associated herpes virus is the causative agent of PEL. PEL is an incurable malignancy and has extremely poor prognosis when treated with conventional chemotherapy. Immunomodulatory drugs (IMiDs) lenalidomide and pomalidomide are FDA approved drugs for the treatment of various ailments. IMiDs display pronounced anti-proliferative effect against majority of PEL cell lines within their clinically achievable concentrations, by arresting cells at G0/G1 phase of cell-cycle, and without any induction of KSHV lytic-cycle reactivation. Although microarray examination of PEL cells treated with lenalidomide revealed activation of interferon (IFN) signaling, blocking the IFN pathway did not block the anti-PEL activity of IMiDs. The anti-PEL effects of IMiDs involved cereblon-dependent suppression of IRF4 and rapid degradation of IKZF1, but not IKZF3. Small hairpin-RNA (shRNA) mediated knockdown of MYC enhanced the cytotoxicity of IMiDs. Bromodomain and extraterminal domain (BET) proteins are epigenetic readers which perform a vital role in chromatin remodeling and transcriptional regulation. BRD4, a widely expressed transcriptional coactivator, belongs to BET family of proteins, which has been shown to co-occupy the super-enhancers associated with MYC. Specific BRD4 inhibitors were developed which suppress MYC transcriptionally. Lenalidomide displayed synergistic cytotoxicity with several structurally distinct BRD4 inhibitors (JQ-1, IBET151, and PFI-1). Furthermore, combined administration of lenalidomide and BRD4 inhibitor JQ-1 significantly increased the survival of PEL bearing NOD.SCID mice in an orthotopic xenograft model as compared to either agent alone. These results provide compelling evidence for clinical testing of IMiDs alone and in combination with BRD4 inhibitors for PEL.
Collapse
Affiliation(s)
- R Gopalakrishnan
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Department of Medicine, Keck School of Medicine, Los Angeles, CA, USA
| | - H Matta
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Department of Medicine, Keck School of Medicine, Los Angeles, CA, USA
| | - B Tolani
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Department of Medicine, Keck School of Medicine, Los Angeles, CA, USA
| | - T Triche
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Department of Medicine, Keck School of Medicine, Los Angeles, CA, USA
| | - P M Chaudhary
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, Department of Medicine, Keck School of Medicine, Los Angeles, CA, USA.,Department of Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
19
|
Abstract
Molluscum contagiosum virus (MCV) is the causative agent of molluscum contagiosum (MC), the third most common viral skin infection in children, and one of the five most prevalent skin diseases worldwide. No FDA-approved treatments, vaccines, or commercially available rapid diagnostics for MCV are available. This review discusses several aspects of this medically important virus including: physical properties of MCV, MCV pathogenesis, MCV replication, and immune responses to MCV infection. Sequencing of the MCV genome revealed novel immune evasion molecules which are highlighted here. Special attention is given to the MCV MC159 and MC160 proteins. These proteins are FLIPs with homologs in gamma herpesviruses and in the cell. They are of great interest because each protein regulates apoptosis, NF-κB, and IRF3. However, the mechanism that each protein uses to impart its effects is different. It is important to elucidate how MCV inhibits immune responses; this knowledge contributes to our understanding of viral pathogenesis and also provides new insights into how the immune system neutralizes virus infections.
Collapse
|
20
|
Interplay between Kaposi's sarcoma-associated herpesvirus and the innate immune system. Cytokine Growth Factor Rev 2014; 25:597-609. [PMID: 25037686 DOI: 10.1016/j.cytogfr.2014.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/16/2014] [Indexed: 02/04/2023]
Abstract
Understanding of the innate immune response to viral infections is rapidly progressing, especially with regards to the detection of DNA viruses. Kaposi's sarcoma-associated herpesvirus (KSHV) is a large dsDNA virus that is responsible for three human diseases: Kaposi's sarcoma, primary effusion lymphoma and multicentric Castleman's disease. The major target cells of KSHV (B cells and endothelial cells) express a wide range of pattern recognition receptors (PRRs) and play a central role in mobilizing inflammatory responses. On the other hand, KSHV encodes an array of immune evasion genes, including several pirated host genes, which interfere with multiple aspects of the immune response. This review summarizes current understanding of innate immune recognition of KSHV and the role of immune evasion genes that shape the antiviral and inflammatory responses.
Collapse
|