1
|
Liu Q, Liu Y, Liu T, Fan J, Xia Z, Zhou Y, Deng X. Expanding horizons of iminosugars as broad-spectrum anti-virals: mechanism, efficacy and novel developments. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:55. [PMID: 39325109 PMCID: PMC11427655 DOI: 10.1007/s13659-024-00477-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
Iminosugars, a class of polyhydroxylated cyclic alkaloids with intriguing properties, hold promising therapeutic potentials against a broad spectrum of enveloped viruses, including DENV, HCV, HIV, and influenza viruses. Mechanistically, iminosugars act as the competitive inhibitors of host endoplasmic reticular α-glucosidases I and II to disrupt the proper folding of viral nascent glycoproteins, which thereby exerts antiviral effects. Remarkably, the glycoproteins of many enveloped viruses are significantly more dependent on the calnexin pathway of the protein folding than most host glycoproteins. Therefore, extensive interests and efforts have been devoted to exploit iminosugars as broad-spectrum antiviral agents. This review provides the summary and insights into the recent advancements in the development of novel iminosugars as effective and selective antiviral agents against a variety of enveloped viruses, as well as the understandings of their antiviral mechanisms.
Collapse
Affiliation(s)
- Qiantong Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Yanyun Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Tingting Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Jinbao Fan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Zanxian Xia
- School of Life Science, Central South University, Changsha, 410013, Hunan, China
| | - Yingjun Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Xu Deng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
2
|
Pavlakis E, Neumann M, Merle N, Wieboldt R, Wanzel M, Ponath V, Pogge von Strandmann E, Elmshäuser S, Stiewe T. Mutant p53-ENTPD5 control of the calnexin/calreticulin cycle: a druggable target for inhibiting integrin-α5-driven metastasis. J Exp Clin Cancer Res 2023; 42:203. [PMID: 37563605 PMCID: PMC10413714 DOI: 10.1186/s13046-023-02785-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND TP53, encoding the tumor suppressor p53, is frequently mutated in various cancers, producing mutant p53 proteins (mutp53) which can exhibit neomorphic, gain-of-function properties. The latter transform p53 into an oncoprotein that promotes metastatic tumor progression via downstream effectors such as ENTPD5, an endoplasmic reticulum UDPase involved in the calnexin/calreticulin cycle of N-glycoprotein biosynthesis. Elucidating the mechanisms underlying the pro-metastatic functions of the mutp53-ENTPD5 axis is crucial for developing targeted therapies for aggressive metastatic cancer. METHODS We analyzed pancreatic, lung, and breast adenocarcinoma cells with p53 missense mutations to study the impact of mutp53 and ENTPD5 on the N-glycoproteins integrin-α5 (ITGA5) and integrin-β1 (ITGB1), which heterodimerize to form the key fibronectin receptor. We assessed the role of the mutp53-ENTPD5 axis in integrin-dependent tumor-stroma interactions and tumor cell motility using adhesion, migration, and invasion assays, identifying and validating therapeutic intervention targets. We employed an orthotopic xenograft model of pancreatic ductal adenocarcinoma to examine in vivo targeting of mutp53-ENTPD5-mediated ITGA5 regulation for cancer therapy. RESULTS Mutp53 depletion diminished ITGA5 and ITGB1 expression and impaired tumor cell adhesion, migration, and invasion, rescued by ENTPD5. The mutp53-ENTPD5 axis maintained ITGA5 expression and function via the calnexin/calreticulin cycle. Targeting this axis using ITGA5-blocking antibodies, α-glucosidase inhibitors, or pharmacological degradation of mutp53 by HSP90 inhibitors, such as Ganetespib, effectively inhibited ITGA5-mediated cancer cell motility in vitro. In the orthotopic xenograft model, Ganetespib reduced ITGA5 expression and metastasis in an ENTPD5-dependent manner. CONCLUSIONS The mutp53-ENTPD5 axis fosters ITGA5 and ITGB1 expression and tumor cell motility through the calnexin/calreticulin cycle, contributing to cancer metastasis. ITGA5-blocking antibodies or α-glucosidase inhibitors target this axis and represent potential therapeutic options worth exploring in preclinical models. The pharmacologic degradation of mutp53 by HSP90 inhibitors effectively blocks ENTPD5-ITGA5-mediated cancer cell motility and metastasis in vivo, warranting further clinical evaluation in p53-mutant cancers. This research underscores the significance of understanding the complex interplay between mutp53, ENTPD5, and the calnexin/calreticulin cycle in integrin-mediated metastatic tumor progression, offering valuable insights for the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Evangelos Pavlakis
- Institute of Molecular Oncology, Philipps-University, 35043, Marburg, Germany
| | - Michelle Neumann
- Institute of Molecular Oncology, Philipps-University, 35043, Marburg, Germany
| | - Nastasja Merle
- Institute of Molecular Oncology, Philipps-University, 35043, Marburg, Germany
| | - Ronja Wieboldt
- Institute of Molecular Oncology, Philipps-University, 35043, Marburg, Germany
| | - Michael Wanzel
- Institute of Molecular Oncology, Philipps-University, 35043, Marburg, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Marburg, 35043, Germany
| | - Viviane Ponath
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
| | | | - Sabrina Elmshäuser
- Institute of Molecular Oncology, Philipps-University, 35043, Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps-University, 35043, Marburg, Germany.
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Marburg, 35043, Germany.
- Genomics Core Facility, Philipps-University, 35043, Marburg, Germany.
- Institute for Lung Health (ILH), Justus Liebig University, 35392, Giessen, Germany.
| |
Collapse
|
3
|
Nakamura H, Zhou Y, Sakamoto Y, Yamazaki A, Kurumiya E, Yamazaki R, Hayashi K, Kasuya Y, Watanabe K, Kasahara J, Takabatake M, Tatsumi K, Yoshino I, Honda T, Murayama T. N-butyldeoxynojirimycin (miglustat) ameliorates pulmonary fibrosis through inhibition of nuclear translocation of Smad2/3. Biomed Pharmacother 2023; 160:114405. [PMID: 36804125 DOI: 10.1016/j.biopha.2023.114405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease. The disease involves excessive accumulation of fibroblasts and myofibroblasts, and myofibroblasts differentiated by pro-fibrotic factors promote the deposition of extracellular matrix proteins such as collagen and fibronectin. Transforming growth factor-β1 is a pro-fibrotic factor that promotes fibroblast-to-myofibroblast differentiation (FMD). Therefore, inhibition of FMD may be an effective strategy for IPF treatment. In this study, we screened the anti-FMD effects of various iminosugars and showed that some compounds, including N-butyldeoxynojirimycin (NB-DNJ, miglustat, an inhibitor of glucosylceramide synthase (GCS)), a clinically approved drug for treating Niemann-Pick disease type C and Gaucher disease type 1, inhibited TGF-β1-induced FMD by inhibiting the nuclear translocation of Smad2/3. N-butyldeoxygalactonojirimycin having GCS inhibitory effect did not attenuate the TGF-β1-induced FMD, suggesting that NB-DNJ exerts the anti-FMD effects by GCS inhibitory effect independent manner. N-butyldeoxynojirimycin did not inhibit TGF-β1-induced Smad2/3 phosphorylation. In a mouse model of bleomycin (BLM)-induced pulmonary fibrosis, intratracheal or oral administration of NB-DNJ at an early fibrotic stage markedly ameliorated lung injury and deterioration of respiratory functions, such as specific airway resistance, tidal volume, and peak expiratory flow. Furthermore, the anti-fibrotic effects of NB-DNJ in the BLM-induced lung injury model were similar to those of pirfenidone and nintedanib, which are clinically approved drugs for the treatment of IPF. These results suggest that NB-DNJ may be effective for IPF treatment.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Yuan Zhou
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yuka Sakamoto
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ayako Yamazaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Eon Kurumiya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Risa Yamazaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kyota Hayashi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yoshitoshi Kasuya
- Deprtment of Biomedical Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kazuaki Watanabe
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Junya Kasahara
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Mamoru Takabatake
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Ichiro Yoshino
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Takuya Honda
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
4
|
Song C, Chang L, Wang B, Zhang Z, Wei Y, Dou Y, Qi K, Yang F, Li X, Li X, Wang K, Qiao R, Han X. Seminal plasma metabolomics analysis of differences in liquid preservation ability of boar sperm. J Anim Sci 2023; 101:skad392. [PMID: 38006391 PMCID: PMC10718801 DOI: 10.1093/jas/skad392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/23/2023] [Indexed: 11/27/2023] Open
Abstract
The preservation of semen is pivotal in animal reproduction to ensure successful fertilization and genetic improvement of livestock and poultry. However, investigating the underlying causes of differences in sperm liquid preservation ability and identifying relevant biomarkers remains a challenge. This study utilized liquid chromatography-mass spectrometry (LC-MS) to analyze the metabolite composition of seminal plasma (SP) from two groups with extreme differences in sperm liquid preservation ability. The two groups namely the good liquid preservation ability (GPA) and the poor preservation ability (PPA). The aim was to explore the relationship between metabolite composition in SP and sperm liquid preservation ability, and to identify candidate biomarkers associated with this ability of sperm. The results revealed the identification of 756 metabolites and 70 differentially expressed metabolites (DEM) in the SP from two groups of boar semen with differing liquid preservation abilities at 17 °C. The majority of identified metabolites in the SP belonged to organic acids and derivatives as well as lipids and lipid-like molecules. The DEM in the SP primarily consisted of amino acids, peptides, and analogs. The Kyoto Encyclopedia of Genes and Genomes analysis also demonstrated that the DEM are mainly concentrated in amino acid synthesis and metabolism-related pathways (P < 0.05). Furthermore, eleven key metabolites were identified and six target amino acids were verified, and the results were consistent with the non-targeted metabolic analysis. These findings indicated that amino acids and their associated pathways play a potential role in determining boar sperm quality and liquid preservation ability. D-proline, arginine, L-citrulline, phenylalanine, leucine, DL-proline, DL-serine, and indole may serve as potential biomarkers for early assessment of boar sperm liquid preservation ability. The findings of this study are helpful in understanding the causes and mechanisms of differences in the liquid preservation ability of boar sperm, and provide valuable insights for improving semen quality assessment methods and developing novel extenders or protocols.
Collapse
Affiliation(s)
- Chenglei Song
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Lebin Chang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Bingjie Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhe Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yilin Wei
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yaqing Dou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Kunlong Qi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
5
|
Roy A, Roy M, Gacem A, Datta S, Zeyaullah M, Muzammil K, Farghaly TA, Abdellattif MH, Yadav KK, Simal-Gandara J. Role of bioactive compounds in the treatment of hepatitis: A review. Front Pharmacol 2022; 13:1051751. [PMID: 36618936 PMCID: PMC9810990 DOI: 10.3389/fphar.2022.1051751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatitis causes liver infection leading to inflammation that is swelling of the liver. They are of various types and detrimental to human beings. Natural products have recently been used to develop antiviral drugs against severe viral infections like viral hepatitis. They are usually extracted from herbs or plants and animals. The naturally derived compounds have demonstrated significant antiviral effects against the hepatitis virus and they interfere with different stages of the life cycle of the virus, viral release, replication, and its host-specific interactions. Antiviral activities have been demonstrated by natural products such as phenylpropanoids, flavonoids, xanthones, anthraquinones, terpenoids, alkaloids, aromatics, etc., against hepatitis B and hepatitis C viruses. The recent studies conducted to understand the viral hepatitis life cycle, more effective naturally derived drugs are being produced with a promising future for the treatment of the infection. This review emphasizes the current strategies for treating hepatitis, their shortcomings, the properties of natural products and their numerous types, clinical trials, and future prospects as potential drugs.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India,*Correspondence: Arpita Roy, ; Jesus Simal-Gandara,
| | - Madhura Roy
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Shreeja Datta
- Biotechnology Department, Delhi Technological University, Rohini, India
| | - Md. Zeyaullah
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi Arabia
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi Arabia
| | - Thoraya A. Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al‐Qura University, Makkah, Saudi Arabia
| | - Magda H. Abdellattif
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Bhopal, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Science, Universidade de Vigo, Ourense, Spain,*Correspondence: Arpita Roy, ; Jesus Simal-Gandara,
| |
Collapse
|
6
|
Jiang L, Zhang L, Yang J, Shi H, Zhu H, Zhai M, Lu L, Wang X, Li XY, Yu S, Liu J, Duan W. 1-Deoxynojirimycin attenuates septic cardiomyopathy by regulating oxidative stress, apoptosis, and inflammation via the JAK2/STAT6 signaling pathway. Biomed Pharmacother 2022; 155:113648. [PMID: 36108388 DOI: 10.1016/j.biopha.2022.113648] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
Cardiac dysfunction caused by sepsis is the predominant reason for death in patients with sepsis. However, the effective drugs for its prevention and the molecular mechanisms remain elusive. 1-Deoxynojirimycin (DNJ), a natural iminopyranose, exhibits various biological properties, such as hypoglycemic, antitumor, antiviral, and anti-inflammatory activities. However, whether DNJ can mediate biological activity resistance in sepsis-induced myocardial injury and the underlying mechanisms are unclear. Janus kinase and signal transducer and activator of transcription (JAK/STAT) signaling is an important pathway for the signal transduction of several key cytokines in the pathogenesis of sepsis, which can transcribe and modulate the host immune response. This study was conducted to confirm whether DNJ mediates oxidative stress, apoptosis, and inflammation in cardiomyocytes, thereby alleviating myocardial injury in sepsis via the JAK2/STAT6 signaling pathway. Septic cardiomyopathy was induced in mice using lipopolysaccharide (LPS), and they were then treated with DNJ. The results showed that DNJ markedly improved sepsis-induced cardiac dysfunction, attenuated reactive oxygen species generation, reduced cardiomyocyte apoptosis, and mitigated inflammation. Mechanistically, increased JAK2/STAT6 phosphorylation was observed in the mouse sepsis models, which decreased significantly after DNJ oral treatment. To further confirm whether DNJ mediates the JAK2/STAT6 pathway, the selective inhibitor fedratinib was used to block the JAK2 signaling pathway in vitro, which enhanced the protective effects of DNJ against the sepsis-induced cardiac damage. Collectively, these findings suggest that DNJ attenuates sepsis-induced myocardial injury by decreasing myocardial oxidative damage, apoptosis, and inflammation via the regulation of the JAK2/STAT6 signaling pathway.
Collapse
Affiliation(s)
- LiQing Jiang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032 Shaanxi, China.
| | - LiYun Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032 Shaanxi, China.
| | - JiaChang Yang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032 Shaanxi, China.
| | - Heng Shi
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032 Shaanxi, China.
| | - HanZhao Zhu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032 Shaanxi, China.
| | - MengEn Zhai
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032 Shaanxi, China.
| | - LinHe Lu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032 Shaanxi, China.
| | - XiaoWu Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032 Shaanxi, China.
| | - Xia Yun Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032 Shaanxi, China.
| | - ShiQiang Yu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032 Shaanxi, China.
| | - JinCheng Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032 Shaanxi, China.
| | - WeiXun Duan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032 Shaanxi, China.
| |
Collapse
|
7
|
Sun L, Li Y, Misumi I, González-López O, Hensley L, Cullen JM, McGivern DR, Matsuda M, Suzuki R, Sen GC, Hirai-Yuki A, Whitmire JK, Lemon SM. IRF3-mediated pathogenicity in a murine model of human hepatitis A. PLoS Pathog 2021; 17:e1009960. [PMID: 34591933 PMCID: PMC8509855 DOI: 10.1371/journal.ppat.1009960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/12/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
HAV-infected Ifnar1-/- mice recapitulate many of the cardinal features of hepatitis A in humans, including serum alanine aminotransferase (ALT) elevation, hepatocellular apoptosis, and liver inflammation. Previous studies implicate MAVS-IRF3 signaling in pathogenesis, but leave unresolved the role of IRF3-mediated transcription versus the non-transcriptional, pro-apoptotic activity of ubiquitylated IRF3. Here, we compare the intrahepatic transcriptomes of infected versus naïve Mavs-/- and Ifnar1-/- mice using high-throughput sequencing, and identify IRF3-mediated transcriptional responses associated with hepatocyte apoptosis and liver inflammation. Infection was transcriptionally silent in Mavs-/- mice, in which HAV replicates robustly within the liver without inducing inflammation or hepatocellular apoptosis. By contrast, infection resulted in the upregulation of hundreds of genes in Ifnar1-/- mice that develop acute hepatitis closely modeling human disease. Upregulated genes included pattern recognition receptors, interferons, chemokines, cytokines and other interferon-stimulated genes. Compared with Ifnar1-/- mice, HAV-induced inflammation was markedly attenuated and there were few apoptotic hepatocytes in livers of infected Irf3S1/S1Ifnar1-/- mice in which IRF3 is transcriptionally-inactive due to alanine substitutions at Ser-388 and Ser-390. Although transcriptome profiling revealed remarkably similar sets of genes induced in Irf3S1/S1Ifnar1-/- and Ifnar1-/- mice, a subset of genes was differentially expressed in relation to the severity of the liver injury. Prominent among these were both type 1 and type III interferons and interferon-responsive genes associated previously with apoptosis, including multiple members of the ISG12 and 2’-5’ oligoadenylate synthetase families. Ifnl3 and Ifnl2 transcript abundance correlated strongly with disease severity, but mice with dual type 1 and type III interferon receptor deficiency remained fully susceptible to liver injury. Collectively, our data show that IRF3-mediated transcription is required for HAV-induced liver injury in mice and identify key IRF3-responsive genes associated with pathogenicity, providing a clear distinction from the transcription-independent role of IRF3 in liver injury following binge exposure to alcohol. Hepatitis A is a common and potentially serious disease involving inflammation and liver cell death resulting from infection with the picornavirus, hepatitis A virus (HAV). The pathogenesis of the disease is incompletely understood. Here, we have profiled changes in the RNA transcriptome of livers from mice with various genetic deficiencies in the innate immune response to HAV. We show that the liver injury associated with HAV infection in these mice results from the induction of genes under transcriptional control of interferon regulatory factor 3 (IRF3). We use high-throughput RNA sequencing to identify sets of genes induced in mice with wild-type versus transcriptionally-incompetent IRF3, rule out roles for type III interferons and IFIT proteins in disease pathogenesis, and identify genes with intrahepatic expression correlating closely with HAV-mediated liver pathology.
Collapse
Affiliation(s)
- Lu Sun
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - You Li
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ichiro Misumi
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Olga González-López
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lucinda Hensley
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - John M. Cullen
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - David R. McGivern
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mami Matsuda
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Ganes C. Sen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Asuka Hirai-Yuki
- Management Department of Biosafety and Laboratory Animal, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Jason K. Whitmire
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Stanley M. Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|