1
|
Zhao K, Wen Q, Li Q, Li P, Liu T, Zhu F, Tan Q, Zhang L. Identification of oxidative stress-related hub genes for predicting prognosis in diffuse large B-cell lymphoma. Gene 2025; 935:149077. [PMID: 39500385 DOI: 10.1016/j.gene.2024.149077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Oxidative stress is a cellular characteristic that might induce the proliferation and differentiation of tumor cells and promote tumor progression in diffuse large B-cell lymphoma (DLBCL). METHODS The DLBCL gene sequencing dataset, tumor mutation burden data, copy number variation data of Somatic cell mutation data in TCGA were downloaded for data training analysis, along with four DLBCL datasets in GEO for validation analysis. The known oxidative stress related genes (OSRGs) were collected from websites. The weighted gene co-expression network analysis (WGCNA) was conducted on the TCGA DLBCL dataset to obtain gene modules related to oxidative stress and intersected with the known OSRGs to obtain the hub genes, which were used to perform consensus clustering on the samples to obtain new phenotypes. Next, the prognosis related OSRGs were selected through regression analysis algorithms and key genes were identified. These genes were used to establish the prognostic risk model and predictive model, and to compare functional and pathway differences among different risk groups. RESULTS Through website search, we obtained 297 known OSRGs, and after intersecting with WGCNA results, we obtained 26 OSRGs. The TCGA-DLBC samples were clustered into 2 subtypes with these genes and there were significant differences in immune infiltration between subtypes. After regression analysis, we obtained a total of four key genes, BMI1, CDKN1A, NOX1, and SESN1. The risk prediction model established with these four genes as variables has accurate prognostic prediction ability. The key genes interact with 65 miRNAs, 57 TFs, 47 RBPs, and 62 drugs, respectively, and are closely related to immune infiltration of the disease. Among them, CDKN1A and SESN1 had the highest variability. CONCLUSIONS The key genes involved in oxidative stress could predict the prognosis of DLBCL and potentially become therapeutic targets.
Collapse
Affiliation(s)
- Kewei Zhao
- Hubei Provincial Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; The First Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| | - Qiuyue Wen
- Hubei Provincial Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; The First Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| | - Qiuhui Li
- The First Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengye Li
- Hubei Provincial Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; The First Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| | - Tao Liu
- Hubei Provincial Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; The First Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| | - Fang Zhu
- Hubei Provincial Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; The First Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| | - Qiaoyun Tan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liling Zhang
- Hubei Provincial Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; The First Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
2
|
Bellon M, Nicot C. HTLV-1 Tax Tug-of-War: Cellular Senescence and Death or Cellular Transformation. Pathogens 2024; 13:87. [PMID: 38276160 PMCID: PMC10820833 DOI: 10.3390/pathogens13010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with a lymphoproliferative disease known as adult T cell leukemia/lymphoma (ATLL). HTLV-1 infection efficiently transforms human T cells in vivo and in vitro. The virus does not transduce a proto-oncogene, nor does it integrate into tumor-promoting genomic sites. Instead, HTLV-1 uses a random mutagenesis model, resulting in cellular transformation. Expression of the viral protein Tax is critical for the immortalization of infected cells by targeting specific cellular signaling pathways. However, Tax is highly immunogenic and represents the main target for the elimination of virally infected cells by host cytotoxic T cells (CTLs). In addition, Tax expression in naïve cells induces pro-apoptotic signals and has been associated with the induction of non-replicative cellular senescence. This review will explore these conundrums and discuss the mechanisms used by the Tax viral oncoprotein to influence life-and-death cellular decisions and affect HTLV-1 pathogenesis.
Collapse
Affiliation(s)
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA;
| |
Collapse
|
3
|
Blinova EA, Nikiforov VS, Kotikova AI, Yanishevskaya MA, Akleyev AV. Methylation Status of Apoptosis Genes and Intensity of Apoptotic Death of Peripheral Blood Lymphocytes in Persons Chronically Exposed to Radiation. Mol Biol 2022. [DOI: 10.1134/s002689332205003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Prediction of the Adult T-Cell Leukemia Inhibitory Activity of Blueberry Leaves/Stems Using Direct-Injection Electron Ionization-Mass Spectrometry Metabolomics. PLANTS 2022; 11:plants11101343. [PMID: 35631768 PMCID: PMC9147563 DOI: 10.3390/plants11101343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022]
Abstract
Although Vaccinium virgatum Aiton leaves and stems inhibit adult T-cell leukemia (ATL) cells, leaves and stems can differ between individual plants and by time and location. In this study, leaf and stem components were profiled in the same individual plant using direct-injection electron ionization-mass spectrometry (DI-EI-MS) metabolomics, with the aims of analyzing the anti-ATL activity, and quantifying proanthocyanidins (PACs). Leaves, stems, and leaf/stem mixtures showed distinct and characteristic spectra. Anti-ATL activity was stronger in stems than leaves, and the PAC content was higher in stems than leaves. These data were subjected to bivariate analysis to identify the factor (m/z) responsible for the inhibitory effect of ATL based on the highest coefficient of determination (R2). The results of this DI-EI-MS metabolomics analysis suggest that among PACs contained in V. virgatum stems and leaves, the fragment ion at m/z 149 contributes significantly to anti-ATL activity.
Collapse
|
5
|
Kai H, Sugamoto K, Toshima S, Goto Y, Nakayama T, Morishita K, Kunitake H. Effective Utilization of Vaccinium virgatum Aiton Stems as Functional Materials: Major Constituent Analysis and Bioactivity Evaluation. PLANTS 2022; 11:plants11040568. [PMID: 35214901 PMCID: PMC8880001 DOI: 10.3390/plants11040568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 12/24/2022]
Abstract
We previously reported that rabbit-eye blueberry (Vaccinium virgatum Aiton) leaves exhibit multiple functions. In this study, we evaluated whether V. virgatum stems can also be used as functional materials similar to leaves and clarified the major constituents and their biological activity (antioxidant activity and anti–adult T cell leukemia (ATL) activity). Water extracts of V. virgatum stems were separated into 19 fractions using a Diaion HP-20 open column. Sugars and organic acids were detected in the highly water-soluble fractions. Polyphenols and proanthocyanidin were detected in the hydrous methanol-soluble fractions. In biological activity evaluations, a difference in antioxidant activity was observed in the water-containing methanol-eluted fractions, and fractions exhibiting anti-ATL activity differed depending on cell type. These results suggest that blueberry stems, like leaves, are rich in polyphenols and exhibit antioxidant activity and inhibit ATL cell growth. In the future, aerial parts of blueberries, including stems and leaves, could be used as functional materials and/or medicinal resources.
Collapse
Affiliation(s)
- Hisahiro Kai
- Department of Pharmaceutical Health Sciences, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Nobeoka 882-8508, Japan
- Correspondence: ; Tel.: +81-982-23-5704
| | - Kazuhiro Sugamoto
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan;
| | - Saki Toshima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan; (S.T.); (H.K.)
| | - Yo Goto
- Biolabo Co., Ltd., Kobe 650-0047, Japan; (Y.G.); (T.N.)
| | | | - Kazuhiro Morishita
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki 889-2192, Japan;
| | - Hisato Kunitake
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan; (S.T.); (H.K.)
| |
Collapse
|
6
|
Bellon M, Bialuk I, Galli V, Bai XT, Farre L, Bittencourt A, Marçais A, Petrus MN, Ratner L, Waldmann TA, Asnafi V, Gessain A, Matsuoka M, Franchini G, Hermine O, Watanabe T, Nicot C. Germinal epimutation of Fragile Histidine Triad (FHIT) gene is associated with progression to acute and chronic adult T-cell leukemia diseases. Mol Cancer 2021; 20:86. [PMID: 34092254 PMCID: PMC8183032 DOI: 10.1186/s12943-021-01370-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human T cell Leukemia virus type 1 (HTLV-I) is etiologically linked to adult T cell leukemia/lymphoma (ATL) and an inflammatory neurodegenerative disease called HTLV-I-associated myelopathy or tropical spastic paraparesis (HAM/TSP). The exact genetic or epigenetic events and/or environmental factors that influence the development of ATL, or HAM/TSP diseases are largely unknown. The tumor suppressor gene, Fragile Histidine Triad Diadenosine Triphosphatase (FHIT), is frequently lost in cancer through epigenetic modifications and/or deletion. FHIT is a tumor suppressor acting as genome caretaker by regulating cellular DNA repair. Indeed, FHIT loss leads to replicative stress and accumulation of double DNA strand breaks. Therefore, loss of FHIT expression plays a key role in cellular transformation. METHODS Here, we studied over 400 samples from HTLV-I-infected individuals with ATL, TSP/HAM, or asymptomatic carriers (AC) for FHIT loss and expression. We examined the epigenetic status of FHIT through methylation specific PCR and bisulfite sequencing; and correlated these results to FHIT expression in patient samples. RESULTS We found that epigenetic alteration of FHIT is specifically found in chronic and acute ATL but is absent in asymptomatic HTLV-I carriers and TSP/HAM patients' samples. Furthermore, the extent of FHIT methylation in ATL patients was quantitatively comparable in virus-infected and virus non-infected cells. We also found that longitudinal HTLV-I carriers that progressed to smoldering ATL and descendants of ATL patients harbor FHIT methylation. CONCLUSIONS These results suggest that germinal epigenetic mutation of FHIT represents a preexisting mark predisposing to the development of ATL diseases. These findings have important clinical implications as patients with acute ATL are rarely cured. Our study suggests an alternative strategy to the current "wait and see approach" in that early screening of HTLV-I-infected individuals for germinal epimutation of FHIT and early treatment may offer significant clinical benefits.
Collapse
Affiliation(s)
- Marcia Bellon
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Izabela Bialuk
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Veronica Galli
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xue-Tao Bai
- Comprehensive Cancer Center, Department of Health Sciences, Ohio State University, Columbus, OH, USA
| | - Lourdes Farre
- Program in Molecular Mechanisms and Experimental Therapy in Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Achilea Bittencourt
- Department of Pathology, Prof. Edgard Santos Teaching Hospital, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Ambroise Marçais
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Laboratoire Onco-Hématologie, Paris, France
| | - Michael N Petrus
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lee Ratner
- Division of Oncology, Department of Medicine, Washington University, St Louis, MO, USA
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vahid Asnafi
- Université de Paris (Descartes), Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale (INSERM) U1151 Laboratoire Onco-Hematology, Paris, France
| | - Antoine Gessain
- Unité d'épidémiologie et de Physiopathologie des virus Oncogene, Institut Pasteur, 75015, Paris, France.,Centre National de la Recherche Scientifique (CNRS) UMR 3569, 75015, Paris, France
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Hematology, Rheumatology, and Infectious Disease, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Olivier Hermine
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Laboratoire Onco-Hématologie, Paris, France
| | - Toshiki Watanabe
- Department of Hematology/Oncology, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
7
|
Aberrant lncRNA Profiles Are Associated With Chronic Benzene Poisoning and Acute Myelocytic Leukemia. J Occup Environ Med 2021; 62:e308-e317. [PMID: 32730034 DOI: 10.1097/jom.0000000000001875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE This study investigates the mechanisms of benzene hematotoxicity. METHODS We used microarray to detect expression profiles of long non-coding RNAs (lncRNAs) and mRNAs in peripheral lymphocytes from chronic benzene poisoning, acute myelocytic leukemia, and healthy controls. The lncRNAs and mRNAs were validated using real-time quantitative PCR (RT-qPCR). Cytokinesis-block micronucleus assay was used to analyze chromosomal aberration. RESULTS We found 173 upregulated and 258 downregulated lncRNAs, and 695 upregulated and 804 downregulated mRNAs. The lncRNA CUST_40243 and mRNA PDGFC and CDKN1A associated with chronic benzene poisoning. Relevant inflammatory response, hematopoietic cell lineage, and cell cycle may be important pathways for the sifted lncRNAs and mRNAs. Furthermore, micronuclei frequency was significantly higher in off-post chronic benzene poisoning patients. CONCLUSIONS Chromosomal aberration induced by benzene exposure is irreversible. The lncRNA CUST_40243 and mRNA PDGFC and CDKN1A are related to chronic benzene poisoning.
Collapse
|
8
|
Soni P, Ghufran MS, Olakkaran S, Puttaswamygowda GH, Duddukuri GR, Kanade SR. Epigenetic alterations induced by aflatoxin B 1: An in vitro and in vivo approach with emphasis on enhancer of zeste homologue-2/p21 axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143175. [PMID: 33131875 DOI: 10.1016/j.scitotenv.2020.143175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/21/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
The potent environmental toxicant aflatoxin B1 (AFB1), is a group I carcinogen reported to induce the expression of many cancer associated proteins. Epigenetic alterations such as DNA methylation and histone modifications play vital role in AFB1-mediated carcinogenesis. These epigenetic modifications may result in the recruitment of specific proteins and transcription factors to the promoter region and regulate gene expression. Here we show that AFB1, at lower concentrations (100 and 1000 nM) induced proliferation in L-132 and HaCaT cells with activation of the Akt pathway, which ultimately steered abnormal proliferation and transmission of survival signals. We demonstrated a significant reduction in the expression of p21 with a remarkable increase in the expression of cyclin D1 that correlated with increased methylation of CpG dinucleotides in p21 proximal promoter, while cyclin D1 promoter remained unmethylated. The chromatin immunoprecipitation results revealed the enrichment of DNMT3a and H3K27me3 repressive marks on the p21 proximal promoter where EZH2 mediated H3K27me3 mark enhanced the binding of DNMT3a at the promoter and further contributed to the transcriptional inactivation. The overall study provided the novel information on the impact of AFB1 on p21 inactivation via EZH2 and promoter methylation which is known to be a vital process in proliferation. Furthermore, AFB1 induced the expression of EZH2 analogue protein E(z), cyclin D1 analogue cyclin D and decreased the expression of p21 analogue Dacapo in Drosophila melanogaster. Interestingly, the aggressiveness in their expression upon re-exposure in successive generations suggested first hand perspectives on multigenerational epigenetic memory.
Collapse
Affiliation(s)
- Priyanka Soni
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periye, Kasargod 671316, Kerala, India
| | - Md Sajid Ghufran
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periye, Kasargod 671316, Kerala, India
| | - Shilpa Olakkaran
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periye, Kasargod 671316, Kerala, India
| | | | - Govinda Rao Duddukuri
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periye, Kasargod 671316, Kerala, India
| | - Santosh R Kanade
- Department of Plant Science, School of Life Science, University of Hyderabad, Prof. C. R. Rao Road Gachibowli, Hyderabad 500046, India.
| |
Collapse
|
9
|
Barıs IC, Hacıoglu S, Turk NS, Cetın GO, Zencır S, Bagcı G, Caner V. Expression and DNA methylation profiles of EZH2-target genes in plasma exosomes and matched primary tumor tissues of the patients with diffuse large B-cell lymphoma. Clin Transl Oncol 2020; 23:1152-1166. [PMID: 33226554 DOI: 10.1007/s12094-020-02504-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/19/2020] [Indexed: 12/26/2022]
Abstract
AIMS Diffuse large B-cell lymphoma (DLBCL) is the most common type of aggressive lymphoma. This study was designed to compare epigenetic alterations observed in Enhancer of Zeste Homolog 2 (EZH2)-target genes between plasma-derived exosomes and primary tumors in DLBCL patients. MAIN METHODS Exosomes were isolated from plasma of 21 DLBCL patients and 21 controls. We analyzed the methylation status of the target genes using methylation-specific PCR. We also examined whether the exosomes and the tumor samples contained transcripts of the target genes. KEY FINDINGS We found that CDKN2A and CDKN2B were methylated in both plasma exosomes and primary tumor tissue samples. None of the transcripts were found in the exosomes except CDKN1B which was expressed in 8 (38%) of the exosome samples. SIGNIFICANCE This study showed that plasma exosomes might preferably package certain target molecules from primary tumors and the exosomes containing dual methylated DNAs of CDKN2A and CDKN2B, or CDKN1B transcript may contribute to DLBCL pathogenesis.
Collapse
Affiliation(s)
- I C Barıs
- Department of Medical Biology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - S Hacıoglu
- Department of Hematology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - N S Turk
- Department of Medical Pathology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - G O Cetın
- Department of Medical Genetics, School of Medicine, Pamukkale University, Denizli, Turkey
| | - S Zencır
- Department of Medical Biology, School of Medicine, Pamukkale University, Denizli, Turkey.,Department of Molecular Biology, University of Geneva, 1211, Geneva 4, Switzerland
| | - G Bagcı
- Department of Medical Genetics, School of Medicine, Pamukkale University, Denizli, Turkey
| | - V Caner
- Department of Medical Genetics, School of Medicine, Pamukkale University, Denizli, Turkey.
| |
Collapse
|
10
|
Houssein M, Khalil M, Fatfat M, Gali-Muhtasib H. Apoptosis as a mechanism for the treatment of adult T cell leukemia: promising drugs from benchside to bedside. Drug Discov Today 2020; 25:1189-1197. [PMID: 32389641 DOI: 10.1016/j.drudis.2020.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 04/17/2020] [Accepted: 04/29/2020] [Indexed: 11/26/2022]
Abstract
Human T cell lymphotropic virus-1 (HTLV-1) is the causative agent of adult T cell leukemia (ATL), an aggressive malignancy of mature activated T cells. Although many therapeutic strategies are available, none are effective and most patients experience recurrence of the disease. Over the past decade, many drugs have been discovered that showed promising therapeutic potential against ATL but which remain in the preclinical testing phase. Mechanistically, these drugs either induce apoptosis or regulate cellular proliferation in ATL cells. Here, we provide a summary of these promising drugs that target ATL, with a focus on their mechanism of anticancer activity, to offer insights into the use of multiple drugs with different targets for enhancing ATL eradication.
Collapse
Affiliation(s)
- Marwa Houssein
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Lebanon; Center for Drug Discovery, American University of Beirut, Lebanon
| | - Mahmoud Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Lebanon
| | - Maamoun Fatfat
- Center for Drug Discovery, American University of Beirut, Lebanon
| | - Hala Gali-Muhtasib
- Center for Drug Discovery, American University of Beirut, Lebanon; Department of Biology, American University of Beirut, Lebanon.
| |
Collapse
|
11
|
Abstract
Introduction: T-cell lymphomas represent a broad group of malignant T-cell neoplasms with marked molecular, clinical, and biologic heterogeneity. Survival rates after conventional chemotherapy regimens are poor for most subtypes and new therapies are needed. Rapidly expanding knowledge in the field of epigenomics and the development of an increasing number of epigenetic-modifying agents have created new opportunities for epigenetic therapies for patients with this complex group of diseases.Areas covered: The present review summarizes current knowledge on epigenetic alterations in T-cell lymphomas, availability, and mechanisms of action of epigenetic-modifying agents, results of clinical trials of epigenetic therapies in T-cell lymphomas, status of FDA approval, and biomarker approaches to guide therapy. Promising future directions are discussed.Expert opinion: Mutations in epigenetic-modifying genes are among the most common genetic alterations in T-cell lymphomas, highlighting the potential for epigenetic therapies to improve management of this group of diseases. Single-agent efficacy is well documented, leading to FDA approval for several indications, but overall response rates and durability of responses remain modest. Critical next steps for the field include optimizing combination therapies that incorporate epigenetic-modifying agents and developing predictive biomarkers that help guide patient and drug selection.
Collapse
Affiliation(s)
- Nada Ahmed
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.,Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
12
|
Yin M, Baslan T, Walker RL, Zhu YJ, Freeland A, Matsukawa T, Sridharan S, Nussenzweig A, Pruitt SC, Lowe SW, Meltzer PS, Aplan PD. A unique mutator phenotype reveals complementary oncogenic lesions leading to acute leukemia. JCI Insight 2019; 4:131434. [PMID: 31622281 PMCID: PMC6962024 DOI: 10.1172/jci.insight.131434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/10/2019] [Indexed: 12/30/2022] Open
Abstract
Mice homozygous for a hypomorphic allele of DNA replication factor minichromosome maintenance protein 2 (designated Mcm2cre/cre) develop precursor T cell lymphoblastic leukemia/lymphoma (pre-T LBL) with 4-32 small interstitial deletions per tumor. Mice that express a NUP98-HOXD13 (NHD13) transgene develop multiple types of leukemia, including myeloid and T and B lymphocyte. All Mcm2cre/cre NHD13+ mice develop pre-T LBL, and 26% develop an unrelated, concurrent B cell precursor acute lymphoblastic leukemia (BCP-ALL). Copy number alteration (CNA) analysis demonstrated that pre-T LBLs were characterized by homozygous deletions of Pten and Tcf3 and partial deletions of Notch1 leading to Notch1 activation. In contrast, BCP-ALLs were characterized by recurrent deletions involving Pax5 and Ptpn1 and copy number gain of Abl1 and Nup214 resulting in a Nup214-Abl1 fusion. We present a model in which Mcm2 deficiency leads to replicative stress, DNA double strand breaks (DSBs), and resultant CNAs due to errors in DNA DSB repair. CNAs that involve critical oncogenic pathways are then selected in vivo as malignant lymphoblasts because of a fitness advantage. Some CNAs, such as those involving Abl1 and Notch1, represent attractive targets for therapy.
Collapse
Affiliation(s)
- Mianmian Yin
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Timour Baslan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert L Walker
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Yuelin J Zhu
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Amy Freeland
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Toshihiro Matsukawa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Sriram Sridharan
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Steven C Pruitt
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Paul S Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Peter D Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Long Noncoding RNA ANRIL Supports Proliferation of Adult T-Cell Leukemia Cells through Cooperation with EZH2. J Virol 2018; 92:JVI.00909-18. [PMID: 30258009 DOI: 10.1128/jvi.00909-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/11/2018] [Indexed: 12/31/2022] Open
Abstract
Adult T-cell leukemia (ATL) is a highly aggressive T-cell malignancy induced by human T-cell leukemia virus type 1 (HTLV-1) infection. Long noncoding RNA (lncRNA) plays a critical role in the development and progression of multiple human cancers. However, the function of lncRNA in HTLV-1-induced oncogenesis has not been elucidated. In the present study, we show that the expression level of the lncRNA ANRIL was elevated in HTLV-1-infected cell lines and clinical ATL samples. E2F1 induced ANRIL transcription by enhancing its promoter activity. Knockdown of ANRIL in ATL cells repressed cellular proliferation and increased apoptosis in vitro and in vivo As a mechanism for these actions, we found that ANRIL targeted EZH2 and activated the NF-κB pathway in ATL cells. This activation was independent of the histone methyltransferase (HMT) activity of EZH2 but required the formation of an ANRIL/EZH2/p65 ternary complex. A chromatin immunoprecipitation assay revealed that ANRIL/EZH2 enhanced p65 DNA binding capability. In addition, we observed that the ANRIL/EZH2 complex repressed p21/CDKN1A transcription through H3K27 trimethylation of the p21/CDKN1A promoter. Taken together, our results implicate that the lncRNA ANRIL, by cooperating with EZH2, supports the proliferation of HTLV-1-infected cells, which is thought to be critical for oncogenesis.IMPORTANCE Human T-cell leukemia virus type 1 (HTLV-1) is the pathogen that causes adult T-cell leukemia (ATL), which is a unique malignancy of CD4+ T cells. A role for long noncoding RNA (lncRNA) in HTLV-1-mediated cellular transformation has not been described. In this study, we demonstrated that the lncRNA ANRIL was important for maintaining the proliferation of ATL cells in vitro and in vivo ANRIL was shown to activate NF-κB signaling through forming a ternary complex with EZH2 and p65. Furthermore, epigenetic inactivation of p21/CDKN1A was involved in the oncogenic function of ANRIL. To the best of our knowledge, this is the first study to address the regulatory role of the lncRNA ANRIL in ATL and provides an important clue to prevent or treat HTLV-1-associated human diseases.
Collapse
|
14
|
Yamagishi M, Fujikawa D, Watanabe T, Uchimaru K. HTLV-1-Mediated Epigenetic Pathway to Adult T-Cell Leukemia-Lymphoma. Front Microbiol 2018; 9:1686. [PMID: 30087673 PMCID: PMC6066519 DOI: 10.3389/fmicb.2018.01686] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/06/2018] [Indexed: 11/13/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), the first reported human oncogenic retrovirus, is the etiologic agent of highly aggressive, currently incurable diseases such as adult T-cell leukemia-lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1 proteins, including Tax and HBZ, have been shown to have critical roles in HTLV-1 pathogenicity, yet the underlying mechanisms of HTLV-1-driven leukemogenesis are unclear. The frequent disruption of genetic and epigenetic gene regulation in various types of malignancy, including ATL, is evident. In this review, we illustrate a focused range of topics about the establishment of HTLV-1 memory: (1) genetic lesion in the Tax interactome pathway, (2) gene regulatory loop/switch, (3) disordered chromatin regulation, (4) epigenetic lock by the modulation of epigenetic factors, (5) the loss of gene fine-tuner microRNA, and (6) the alteration of chromatin regulation by HTLV-1 integration. We discuss the persistent influence of Tax-dependent epigenetic changes even after the disappearance of HTLV-1 gene expression due to the viral escape from the immune system, which is a remaining challenge in HTLV-1 research. The summarized evidence and conceptualized description may provide a better understanding of HTLV-1-mediated cellular transformation and the potential therapeutic strategies to combat HTLV-1-associated diseases.
Collapse
Affiliation(s)
- Makoto Yamagishi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Dai Fujikawa
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshiki Watanabe
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kaoru Uchimaru
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Lin Y, Wang X, Yu Y, Liu W, Xie F, Ouyang X, Huang Q. Expression and prognostic significance of cyclin-dependent kinase inhibitor 1A in patients with resected gastric adenocarcinoma. Oncol Lett 2018; 14:7473-7482. [PMID: 29344191 DOI: 10.3892/ol.2017.7107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 07/17/2017] [Indexed: 02/07/2023] Open
Abstract
Cyclin-dependent kinase inhibitor 1A (CDKN1A) is an important cell cycleregulator, and has been identified to exhibit aberrant expression in various types of cancer tissues. However, the association between CDKN1A expression level and prognosis in patients with resected gastric adenocarcinoma (RGA) requires additional elucidation. In the present study, the CDKN1A expression profile in RGA tissues obtained from 217 patients were analyzed using immunohistochemistry. Its prognostic significance was evaluated by using the χ2 test, Kaplan-Meier curves and the log-rank test, and a multivariate Cox model analysis, during a median follow-up time of 51 months. The results demonstrated that CDKN1A expression was significantly correlated with lymph node metastasis (LNM; P=0.001), recurrence (P<0.001) and overall survival (OS; P<0.001). In addition, the recurrence-free survival (RFS) and OS times were significantly shorter in patients with low CDKN1A expression compared with those with high CDKN1A expression (RFS, 20 months vs. 69 months, P<0.001; and OS, 32 months vs. 70 months, P<0.001, respectively). Multivariate analysis additionally confirmed that low CDKN1A expression was significantly correlated with an increased risk of LNM (P=0.001), recurrence (P<0.001) and mortality (P<0.001). Therefore, these data suggest that low expression of CDKN1A has independent prognostic significance indicative of tumor progression and poor survival in patients with RGA. Evaluation of CDKN1A expression may assist in determining prognosis in patients with RGA.
Collapse
Affiliation(s)
- Youdong Lin
- Department of Experimental Medicine, Fuzhou General Hospital, Fuzong Clinical College of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Xiaoting Wang
- Department of Experimental Medicine, Fuzhou General Hospital, Fuzong Clinical College of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Yinghao Yu
- Department of Pathology, Fuzhou General Hospital, Fuzong Clinical College of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Wei Liu
- Department of Pathology, Fuzhou General Hospital, Fuzong Clinical College of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Feilai Xie
- Department of Pathology, Fuzhou General Hospital, Fuzong Clinical College of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Xuenong Ouyang
- Department of Oncology, Fuzhou General Hospital, Fuzong Clinical College of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Qiaojia Huang
- Department of Experimental Medicine, Fuzhou General Hospital, Fuzong Clinical College of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
16
|
Watanabe T. Adult T-cell leukemia: molecular basis for clonal expansion and transformation of HTLV-1-infected T cells. Blood 2017; 129:1071-1081. [PMID: 28115366 PMCID: PMC5374731 DOI: 10.1182/blood-2016-09-692574] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/21/2016] [Indexed: 02/07/2023] Open
Abstract
Adult T-cell leukemia (ATL) is an aggressive T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1) that develops through a multistep carcinogenesis process involving 5 or more genetic events. We provide a comprehensive overview of recently uncovered information on the molecular basis of leukemogenesis in ATL. Broadly, the landscape of genetic abnormalities in ATL that include alterations highly enriched in genes for T-cell receptor-NF-κB signaling such as PLCG1, PRKCB, and CARD11 and gain-of function mutations in CCR4 and CCR7 Conversely, the epigenetic landscape of ATL can be summarized as polycomb repressive complex 2 hyperactivation with genome-wide H3K27 me3 accumulation as the basis of the unique transcriptome of ATL cells. Expression of H3K27 methyltransferase enhancer of zeste 2 was shown to be induced by HTLV-1 Tax and NF-κB. Furthermore, provirus integration site analysis with high-throughput sequencing enabled the analysis of clonal composition and cell number of each clone in vivo, whereas multicolor flow cytometric analysis with CD7 and cell adhesion molecule 1 enabled the identification of HTLV-1-infected CD4+ T cells in vivo. Sorted immortalized but untransformed cells displayed epigenetic changes closely overlapping those observed in terminally transformed ATL cells, suggesting that epigenetic abnormalities are likely earlier events in leukemogenesis. These new findings broaden the scope of conceptualization of the molecular mechanisms of leukemogenesis, dissecting them into immortalization and clonal progression. These recent findings also open a new direction of drug development for ATL prevention and treatment because epigenetic marks can be reprogrammed. Mechanisms underlying initial immortalization and progressive accumulation of these abnormalities remain to be elucidated.
Collapse
Affiliation(s)
- Toshiki Watanabe
- Department of Advanced Medical Innovation, St. Marianna University Graduate School of Medicine, Kanagawa, Japan; and Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Wright DG, Marchal C, Hoang K, Ankney JA, Nguyen ST, Rushing AW, Polakowski N, Miotto B, Lemasson I. Human T-cell leukemia virus type-1-encoded protein HBZ represses p53 function by inhibiting the acetyltransferase activity of p300/CBP and HBO1. Oncotarget 2016; 7:1687-706. [PMID: 26625199 PMCID: PMC4811490 DOI: 10.18632/oncotarget.6424] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/15/2015] [Indexed: 01/31/2023] Open
Abstract
Adult T-cell leukemia (ATL) is an often fatal malignancy caused by infection with the complex retrovirus, human T-cell Leukemia Virus, type 1 (HTLV-1). In ATL patient samples, the tumor suppressor, p53, is infrequently mutated; however, it has been shown to be inactivated by the viral protein, Tax. Here, we show that another HTLV-1 protein, HBZ, represses p53 activity. In HCT116 p53+/+ cells treated with the DNA-damaging agent, etoposide, HBZ reduced p53-mediated activation of p21/CDKN1A and GADD45A expression, which was associated with a delay in G2 phase-arrest. These effects were attributed to direct inhibition of the histone acetyltransferase (HAT) activity of p300/CBP by HBZ, causing a reduction in p53 acetylation, which has be linked to decreased p53 activity. In addition, HBZ bound to, and inhibited the HAT activity of HBO1. Although HBO1 did not acetylate p53, it acted as a coactivator for p53 at the p21/CDKN1A promoter. Therefore, through interactions with two separate HAT proteins, HBZ impairs the ability of p53 to activate transcription. This mechanism may explain how p53 activity is restricted in ATL cells that do not express Tax due to modifications of the HTLV-1 provirus, which accounts for a majority of patient samples.
Collapse
Affiliation(s)
- Diana G Wright
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA
| | - Claire Marchal
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216, CNRS, Paris, France
| | - Kimson Hoang
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA
| | - John A Ankney
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie T Nguyen
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA
| | - Amanda W Rushing
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA
| | - Nicholas Polakowski
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA
| | - Benoit Miotto
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216, CNRS, Paris, France.,INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Isabelle Lemasson
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA
| |
Collapse
|
18
|
Giam CZ, Semmes OJ. HTLV-1 Infection and Adult T-Cell Leukemia/Lymphoma-A Tale of Two Proteins: Tax and HBZ. Viruses 2016; 8:v8060161. [PMID: 27322308 PMCID: PMC4926181 DOI: 10.3390/v8060161] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/19/2022] Open
Abstract
HTLV-1 (Human T-cell lymphotropic virus type 1) is a complex human delta retrovirus that currently infects 10–20 million people worldwide. While HTLV-1 infection is generally asymptomatic, 3%–5% of infected individuals develop a highly malignant and intractable T-cell neoplasm known as adult T-cell leukemia/lymphoma (ATL) decades after infection. How HTLV-1 infection progresses to ATL is not well understood. Two viral regulatory proteins, Tax and HTLV-1 basic zipper protein (HBZ), encoded by the sense and antisense viral transcripts, respectively, are thought to play indispensable roles in the oncogenic process of ATL. This review focuses on the roles of Tax and HBZ in viral replication, persistence, and oncogenesis. Special emphasis is directed towards recent literature on the mechanisms of action of these two proteins and the roles of Tax and HBZ in influencing the outcomes of HTLV-1 infection including senescence induction, viral latency and persistence, genome instability, cell proliferation, and ATL development. Attempts are made to integrate results from cell-based studies of HTLV-1 infection and studies of HTLV-1 proviral integration site preference, clonality, and clonal expansion based on high throughput DNA sequencing. Recent data showing that Tax hijacks key mediators of DNA double-strand break repair signaling—the ubiquitin E3 ligase, ring finger protein 8 (RNF8) and the ubiquitin E2 conjugating enzyme (UBC13)—to activate the canonical nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) and other signaling pathways will be discussed. A perspective on how the Tax-RNF8 signaling axis might impact genomic instability and how Tax may collaborate with HBZ to drive oncogenesis is provided.
Collapse
Affiliation(s)
- Chou-Zen Giam
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA.
| | - Oliver John Semmes
- Department of Microbiology and Molecular Cell Biology, The Leroy T. Canoles Jr Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23501, USA.
| |
Collapse
|
19
|
Brym P, Bojarojć-Nosowicz B, Oleński K, Hering DM, Ruść A, Kaczmarczyk E, Kamiński S. Genome-wide association study for host response to bovine leukemia virus in Holstein cows. Vet Immunol Immunopathol 2016; 175:24-35. [PMID: 27269789 DOI: 10.1016/j.vetimm.2016.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 03/10/2016] [Accepted: 04/28/2016] [Indexed: 11/16/2022]
Abstract
The mechanisms of leukemogenesis induced by bovine leukemia virus (BLV) and the processes underlying the phenomenon of differential host response to BLV infection still remain poorly understood. The aim of the study was to screen the entire cattle genome to identify markers and candidate genes that might be involved in host response to bovine leukemia virus infection. A genome-wide association study was performed using Holstein cows naturally infected by BLV. A data set included 43 cows (BLV positive) and 30 cows (BLV negative) genotyped for 54,609 SNP markers (Illumina Bovine SNP50 BeadChip). The BLV status of cows was determined by serum ELISA, nested-PCR and hematological counts. Linear Regression Analysis with a False Discovery Rate and kinship matrix (computed on the autosomal SNPs) was calculated to find out which SNP markers significantly differentiate BLV-positive and BLV-negative cows. Nine markers reached genome-wide significance. The most significant SNPs were located on chromosomes 23 (rs41583098), 3 (rs109405425, rs110785500) and 8 (rs43564499) in close vicinity of a patatin-like phospholipase domain containing 1 (PNPLA1); adaptor-related protein complex 4, beta 1 subunit (AP4B1); tripartite motif-containing 45 (TRIM45) and cell division cycle associated 2 (CDCA2) genes, respectively. Furthermore, a list of 41 candidate genes was composed based on their proximity to significant markers (within a distance of ca. 1 Mb) and functional involvement in processes potentially underlying BLV-induced pathogenesis. In conclusion, it was demonstrated that host response to BLV infection involves nine sub-regions of the cattle genome (represented by 9 SNP markers), containing many genes which, based on the literature, could be involved to enzootic bovine leukemia progression. New group of promising candidate genes associated with the host response to BLV infection were identified and could therefore be a target for future studies. The functions of candidate genes surrounding significant SNP markers imply that there is no single regulatory process that is solely targeted by BLV infection, but rather the network of interrelated pathways is deregulated, leading to the disruption of the control of B-cell proliferation and programmed cell death.
Collapse
Affiliation(s)
- P Brym
- Department of Animal Genetics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland.
| | - B Bojarojć-Nosowicz
- Department of Animal Genetics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - K Oleński
- Department of Animal Genetics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - D M Hering
- Department of Animal Genetics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - A Ruść
- Department of Animal Genetics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - E Kaczmarczyk
- Department of Animal Genetics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - S Kamiński
- Department of Animal Genetics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| |
Collapse
|
20
|
Polycomb-dependent epigenetic landscape in adult T-cell leukemia. Blood 2016; 127:1790-802. [PMID: 26773042 DOI: 10.1182/blood-2015-08-662593] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/26/2015] [Indexed: 02/08/2023] Open
Abstract
Adult T-cell leukemia-lymphoma (ATL) shows global gene expression alterations that confer cellular characteristics and unfavorable prognosis. However, molecular mechanisms of the sustained expression changes are largely unknown, because there is no study addressing the relationship between landscapes of the gene expression and epigenetic modifications. Here, we analyzed ATL epigenome and integrated it with transcriptome from primary ATL cells and those from corresponding normal CD4(+)T cells to decipher ATL-specific "epigenetic code" that was critical for cell identity. We found that polycomb-repressive complex 2 (PRC2)-mediated trimethylation at histone H3Lys27 (H3K27me3) was significantly and frequently reprogrammed at half of genes in ATL cells. A large proportion of the abnormal gene downregulation was detected at the early stage of disease progression and was explained by H3K27me3 accumulation. The global H3K27me3 alterations involved ATL-specific gene expression changes that included several tumor suppressors, transcription factors, epigenetic modifiers, miRNAs, and developmental genes, suggesting diverse outcomes by the PRC2-dependent hierarchical regulation. Interestingly, a key enzyme, EZH2, was sensitive to promiscuous signaling network including the NF-κB pathway and was functionally affected by human T-cell leukemia virus type I (HTLV-1) Tax. The Tax-dependent immortalized cells showed H3K27me3 reprogramming that was significantly similar to that of ATL cells. Of note, a majority of the epigenetic silencing has occurred in leukemic cells from indolent ATL and also in HTLV-1-infected T cells from asymptomatic HTLV-1 carriers. Because pharmacologic inhibition of EZH2 reversed epigenetic disruption and selectively eliminated leukemic and HTLV-1-infected cells, targeting the epigenetic elements will hold great promise in treatment and prevention of the onset of ATL and HTLV-1-related diseases.
Collapse
|
21
|
Tumor Suppressor Inactivation in the Pathogenesis of Adult T-Cell Leukemia. JOURNAL OF ONCOLOGY 2015; 2015:183590. [PMID: 26170835 PMCID: PMC4478360 DOI: 10.1155/2015/183590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/24/2015] [Indexed: 12/12/2022]
Abstract
Tumor suppressor functions are essential to control cellular proliferation, to activate the apoptosis or senescence pathway to eliminate unwanted cells, to link DNA damage signals to cell cycle arrest checkpoints, to activate appropriate DNA repair pathways, and to prevent the loss of adhesion to inhibit initiation of metastases. Therefore, tumor suppressor genes are indispensable to maintaining genetic and genomic integrity. Consequently, inactivation of tumor suppressors by somatic mutations or epigenetic mechanisms is frequently associated with tumor initiation and development. In contrast, reactivation of tumor suppressor functions can effectively reverse the transformed phenotype and lead to cell cycle arrest or death of cancerous cells and be used as a therapeutic strategy. Adult T-cell leukemia/lymphoma (ATLL) is an aggressive lymphoproliferative disease associated with infection of CD4 T cells by the Human T-cell Leukemia Virus Type 1 (HTLV-I). HTLV-I-associated T-cell transformation is the result of a multistep oncogenic process in which the virus initially induces chronic T-cell proliferation and alters cellular pathways resulting in the accumulation of genetic defects and the deregulated growth of virally infected cells. This review will focus on the current knowledge of the genetic and epigenetic mechanisms regulating the inactivation of tumor suppressors in the pathogenesis of HTLV-I.
Collapse
|
22
|
Zamani-Ahmadmahmudi M, Najafi A, Nassiri SM. Reconstruction of canine diffuse large B-cell lymphoma gene regulatory network: detection of functional modules and hub genes. J Comp Pathol 2015; 152:119-30. [PMID: 25678421 DOI: 10.1016/j.jcpa.2014.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/21/2014] [Accepted: 11/29/2014] [Indexed: 12/17/2022]
Abstract
Lymphoma is one of the most common malignancies in dogs. Canine lymphoma is similar to human non-Hodgkin's lymphoma (NHL) with shared clinical presentation and histopathological features. This study reports the construction of a comprehensive gene regulatory network (GRN) for canine diffuse large B-cell lymphoma (DLBCL), the most common type of canine lymphoma, and performs analysis for detection of major functional modules and hub genes (the most important genes in a GRN). The canine DLBCL GRN was reconstructed from gene expression data (NCBI GEO dataset: GSE30881) using the STRING and MiMI interaction databases. Reconstructed GRNs were then assessed, using various bioinformatics programmes, in order to analyze network topology and identify major pathways and hub genes. The resultant network from both interaction databases had a logically scale-free pattern. Gene ontology (GO) analysis revealed cell activation, cell cycle phase, immune effector process, immune system development, immune system process, integrin-mediated signalling pathway, intracellular protein kinase cascade, intracellular signal transduction, leucocyte activation and differentiation, lymphocyte activation and differentiation as major GO terms in the biological processes of the networks. Moreover, bioinformatics analysis showed E2F1, E2F4, PTEN, CDKN1A, PCNA, DKC1, MNAT1, NDUFB4, ATP5J, PRKDC, BRCA1, MYCN, RFC4 and POLA1 as the most important hub genes. The phosphatidyl inositol signalling system, P53 signalling pathway, Rac CycD pathway, G1/S checkpoint, chemokine signalling pathway and telomere maintenance were the main signalling pathways in which the protein products of the hub genes are involved.
Collapse
Affiliation(s)
- M Zamani-Ahmadmahmudi
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran; Department of Clinical Science, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - A Najafi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - S M Nassiri
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
23
|
Oligomeric proanthocyanidins from rabbiteye blueberry leaves inhibits the proliferation of human T-cell lymphotropic virus type 1-associated cell lines via apoptosis and cell cycle arrest. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Identification of a Bioactive Compound against Adult T-cell Leukaemia from Bitter Gourd Seeds. PLANTS 2013; 3:18-26. [PMID: 27135489 PMCID: PMC4844309 DOI: 10.3390/plants3010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 12/02/2022]
Abstract
In our previous report, an 80% ethanol bitter gourd seed extract (BGSE) was found to suppress proliferation of adult T-cell leukemia (ATL) cell lines. The present study aimed to identify the bioactive compounds from BGSE specific against ATL. From the result of an HPLC-MS analysis, α-eleostearic acid (α-ESA) was present in BGSE at 0.68% ± 0.0022% (±SD, n = 5). In the cell proliferation test, α-ESA potently suppressed proliferation of two ATL cell lines (ED and Su9T01; IC50 = 8.9 and 29.3 µM, respectively) more than several other octadecanoic acids. However, α-ESA moderately inhibited phytohemagglutinin-activated human peripheral blood mononuclear cells (PBMC; IC50 = 31.0 µM). These results suggest that BGSE-derived α-ESA has potential as a functional food constituent because of its activity against ATL, particularly against ED cells. Moreover, α-ESA might be effective for the prevention of moderate adverse effects of ATL on normal T cells.
Collapse
|
25
|
Satou Y, Matsuoka M. Virological and immunological mechanisms in the pathogenesis of human T-cell leukemia virus type 1. Rev Med Virol 2013; 23:269-80. [PMID: 23606621 DOI: 10.1002/rmv.1745] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/17/2013] [Accepted: 03/18/2013] [Indexed: 12/17/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) was the first retrovirus shown to cause human disease, such as adult T-cell leukemia and HTLV-1 associated myelopathy/tropic spastic paraparesis. HTLV-1 mainly infects CD4 T cells and deregulates their differentiation, function and homeostasis, which should contribute to the pathogenesis of HTLV-1, for example, inducing transformation of infected CD4 T cells and chronic inflammatory diseases. Therefore, not only virological approach but also immunological approach regarding CD4 T cells are required to understand how HTLV-1 causes related human diseases. This review focuses on recent advances in our understanding of the interaction between HTLV-1 and the main host cell, CD4 T cells, which should provide us some clue to the mechanisms of HTLV-1 mediated pathogenesis.
Collapse
Affiliation(s)
- Yorifumi Satou
- Laboratory for Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan.
| | | |
Collapse
|
26
|
Vecchio L, Seke Etet PF, Kipanyula MJ, Krampera M, Nwabo Kamdje AH. Importance of epigenetic changes in cancer etiology, pathogenesis, clinical profiling, and treatment: what can be learned from hematologic malignancies? Biochim Biophys Acta Rev Cancer 2013; 1836:90-104. [PMID: 23603458 DOI: 10.1016/j.bbcan.2013.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/25/2013] [Accepted: 04/10/2013] [Indexed: 02/06/2023]
Abstract
Epigenetic alterations represent a key cancer hallmark, even in hematologic malignancies (HMs) or blood cancers, whose clinical features display a high inter-individual variability. Evidence accumulated in recent years indicates that inactivating DNA hypermethylation preferentially targets the subset of polycomb group (PcG) genes that are regulators of developmental processes. Conversely, activating DNA hypomethylation targets oncogenic signaling pathway genes, but outcomes of both events lead in the overexpression of oncogenic signaling pathways that contribute to the stem-like state of cancer cells. On the basis of recent evidence from population-based, clinical and experimental studies, we hypothesize that factors associated with risk for developing a HM, such as metabolic syndrome and chronic inflammation, trigger epigenetic mechanisms to increase the transcriptional expression of oncogenes and activate oncogenic signaling pathways. Among others, signaling pathways associated with such risk factors include pro-inflammatory nuclear factor κB (NF-κB), and mitogenic, growth, and survival Janus kinase (JAK) intracellular non-receptor tyrosine kinase-triggered pathways, which include signaling pathways such as transducer and activator of transcription (STAT), Ras GTPases/mitogen-activated protein kinases (MAPKs)/extracellular signal-related kinases (ERKs), phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), and β-catenin pathways. Recent findings on epigenetic mechanisms at work in HMs and their importance in the etiology and pathogenesis of these diseases are herein summarized and discussed. Furthermore, the role of epigenetic processes in the determination of biological identity, the consequences for interindividual variability in disease clinical profile, and the potential of epigenetic drugs in HMs are also considered.
Collapse
Affiliation(s)
- Lorella Vecchio
- Laboratory of Cytometry, Institute of Molecular Genetics, CNR, University of Pavia, 27100 Pavia, Italy
| | | | | | | | | |
Collapse
|
27
|
Yamagishi M, Watanabe T. Molecular hallmarks of adult T cell leukemia. Front Microbiol 2012; 3:334. [PMID: 23060864 PMCID: PMC3444139 DOI: 10.3389/fmicb.2012.00334] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/29/2012] [Indexed: 12/20/2022] Open
Abstract
The molecular hallmarks of adult T cell leukemia (ATL) comprise outstanding deregulations of signaling pathways that control the cell cycle, resistance to apoptosis, and proliferation of leukemic cells, all of which have been identified by early excellent studies. Nevertheless, we are now confronted the therapeutic difficulties of ATL that is a most aggressive T cell leukemia/lymphoma. Using next-generation strategies, emerging molecular characteristics such as specific surface markers and an additional catalog of signals affecting the fate of leukemic cells have been added to the molecular hallmarks that constitute an organizing principle for rationalizing the complexities of ATL. Although human T cell leukemia virus type 1 is undoubtedly involved in ATL leukemogenesis, most leukemic cells do not express the viral protein Tax. Instead, cellular gene expression changes dominate homeostasis disorders of infected cells and characteristics of ATL. In this review, we summarize the state of the art of ATL molecular pathology, which supports the biological properties of leukemic cells. In addition, we discuss the recent discovery of two molecular hallmarks of potential generality; an abnormal microRNA pattern and epigenetic reprogramming, which strongly involve the imbalance of the molecular network of lymphocytes. Global analyses of ATL have revealed the functional impact of crosstalk between multifunctional pathways. Clinical and biological studies on signaling inhibitory agents have also revealed novel oncogenic drivers that can be targeted in future. ATL cells, by deregulation of such pathways and their interconnections, may become masters of their own destinies. Recognizing and understanding of the widespread molecular applicability of these concepts will increasingly affect the development of novel strategies for treating ATL.
Collapse
Affiliation(s)
- Makoto Yamagishi
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo Minato-ku, Tokyo, Japan
| | | |
Collapse
|
28
|
Davies C, Hogarth LA, Dietrich PA, Bachmann PS, Mackenzie KL, Hall AG, Lock RB. p53-independent epigenetic repression of the p21(WAF1) gene in T-cell acute lymphoblastic leukemia. J Biol Chem 2011; 286:37639-50. [PMID: 21903579 DOI: 10.1074/jbc.m111.272336] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The p53 protein is a primary mediator of cellular apoptosis and growth arrest after exposure to DNA-damaging agents. Previous work has shown that the majority of childhood acute lymphoblastic leukemia (ALL) cases express a wild type p53 gene, although the functionality of the p53 pathway has rarely been validated. In the present study, the integrity of the p53 pathway was investigated in a panel of ALL cell lines and xenografts established from direct patient explants in immune-deficient mice. A focused real-time quantitative reverse transcription PCR array of known p53-regulated genes identified p21(WAF1) (CDKN1A) as the highest ranked gene to be differentially expressed between B-cell precursor (BCP)-ALL and T-ALL xenografts following exposure to the DNA-damaging drug etoposide. Lack of p21(WAF1) induction was observed in six of seven T-ALL xenograft lines, as well as primary T-ALL cells following irradiation exposure, despite an otherwise functional p53 response. Repression of p21(WAF1) in T-ALL cells was associated with decreased acetylated H3K9 localized at its promoter compared with BCP-ALL cells, together with increased CpG methylation within the first exon and intron. Although the histone deacetylase inhibitor vorinostat failed to induce p21(WAF1) in T-ALL samples, the combination of vorinostat and the demethylating agent decitabine reactivated expression of the silenced p21(WAF1) gene in the Molt-4 T-ALL cell line. Considering the known anti-apoptotic function of p21(WAF1), our findings have significant implications for the responses of T- versus BCP-ALL cells to chemotherapeutic drugs that induce p21(WAF1).
Collapse
Affiliation(s)
- Carwyn Davies
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | | | | | | | | | |
Collapse
|
29
|
Human T Lymphotropic Virus Type 1 (HTLV-1): Molecular Biology and Oncogenesis. Viruses 2010; 2:2037-2077. [PMID: 21994719 PMCID: PMC3185741 DOI: 10.3390/v2092037] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/25/2010] [Accepted: 09/15/2010] [Indexed: 12/13/2022] Open
Abstract
Human T lymphotropic viruses (HTLVs) are complex deltaretroviruses that do not contain a proto-oncogene in their genome, yet are capable of transforming primary T lymphocytes both in vitro and in vivo. There are four known strains of HTLV including HTLV type 1 (HTLV-1), HTLV-2, HTLV-3 and HTLV-4. HTLV-1 is primarily associated with adult T cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-2 is rarely pathogenic and is sporadically associated with neurological disorders. There have been no diseases associated with HTLV-3 or HTLV-4 to date. Due to the difference in the disease manifestation between HTLV-1 and HTLV-2, a clear understanding of their individual pathobiologies and the role of various viral proteins in transformation should provide insights into better prognosis and prevention strategies. In this review, we aim to summarize the data accumulated so far in the transformation and pathogenesis of HTLV-1, focusing on the viral Tax and HBZ and citing appropriate comparisons to HTLV-2.
Collapse
|