1
|
Williams T, López-Ferber M, Caballero P. Nucleopolyhedrovirus Coocclusion Technology: A New Concept in the Development of Biological Insecticides. Front Microbiol 2022; 12:810026. [PMID: 35145496 PMCID: PMC8822060 DOI: 10.3389/fmicb.2021.810026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/20/2021] [Indexed: 01/25/2023] Open
Abstract
Nucleopolyhedroviruses (NPV, Baculoviridae) that infect lepidopteran pests have an established record as safe and effective biological insecticides. Here, we describe a new approach for the development of NPV-based insecticides. This technology takes advantage of the unique way in which these viruses are transmitted as collective infectious units, and the genotypic diversity present in natural virus populations. A ten-step procedure is described involving genotypic variant selection, mixing, coinfection and intraspecific coocclusion of variants within viral occlusion bodies. Using two examples, we demonstrate how this approach can be used to produce highly pathogenic virus preparations for pest control. As restricted host range limits the uptake of NPV-based insecticides, this technology has recently been adapted to produce custom-designed interspecific mixtures of viruses that can be applied to control complexes of lepidopteran pests on particular crops, as long as a shared host species is available for virus production. This approach to the development of NPV-based insecticides has the potential to be applied across a broad range of NPV-pest pathosystems.
Collapse
Affiliation(s)
| | - Miguel López-Ferber
- Hydrosciences Montpellier, Univ Montpellier, IMT Mines Alès, IRD, CNRS, Alès, France
| | - Primitivo Caballero
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, Pamplona, Spain
- Bioinsectis SL, Noain, Spain
| |
Collapse
|
2
|
Popham HJR, Rowley DL, Harrison RL. Differential insecticidal properties of Spodoptera frugiperda multiple nucleopolyhedrovirus isolates against corn-strain and rice-strain fall armyworm, and genomic analysis of three isolates. J Invertebr Pathol 2021; 183:107561. [PMID: 33639152 DOI: 10.1016/j.jip.2021.107561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 11/25/2022]
Abstract
The fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is a destructive crop pest native to North, Central, and South America that recently has spread to Africa and Asia. Isolates of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) have the potential to be developed as low-risk biopesticides for management of fall armyworm, and a commercially available formulation has been developed for control of fall armyworm in North and South America. In this study, the virulence (LC50 and LT50) of several SfMNPV isolates towards larvae of both corn-strain and rice-strain fall armyworm was assessed. Bioassays with corn-strain larvae revealed that the isolates could be organized into fast-killing (LT50 < 56 h post-infection) and slow-killing (LT50 > 68 h post-infection) groups. Rice-strain larvae exhibited narrower ranges of susceptibility to baculovirus infection and of survival times in bioassays with different isolates. Two SfMNPV isolates with rapid speeds of kill (SfMNPV-459 from Colombia and SfMNPV-1197 from Georgia, USA) along with an isolate that killed corn-strain at relatively low concentrations (SfMNPV-281 from Georgia) were selected for the complete determination of their genome sequences. The SfMNPV-1197 genome sequence shared high sequence identity with genomes of a Nicaraguan isolate, while SfMNPV-281 formed a separate clade with a USA and a Brazilian isolate in phylogenetic trees. The SfMNPV-459 sequence was more divergent with the lowest genome sequence identities in pairwise alignments with other sequenced SfMNPV genomes, and was not grouped reliably with either the 1197 clade or the 281 clade. SfMNPV-459 contained homologs of two ORFs that were unique to another Colombian isolate, but these isolates were not placed in the same clade in phylogenetic trees. This study identifies isolates with superior properties for control of fall armyworm and adds to our knowledge of the genetics of SfMNPV.
Collapse
Affiliation(s)
- Holly J R Popham
- Biological Control of Insects Research Laboratory, USDA Agricultural Research Service, 1503 S. Providence Road, Columbia, MO 65203, USA.
| | - Daniel L Rowley
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center, USDA Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, USA.
| | - Robert L Harrison
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center, USDA Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, USA.
| |
Collapse
|
3
|
Genomic diversity in a population of Spodoptera frugiperda nucleopolyhedrovirus. INFECTION GENETICS AND EVOLUTION 2021; 90:104749. [PMID: 33540087 DOI: 10.1016/j.meegid.2021.104749] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/10/2021] [Accepted: 01/29/2021] [Indexed: 01/05/2023]
Abstract
Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) represents a strong candidate to develop environmental-friendly pesticides against the fall armyworm (Spodoptera frugiperda), a widespread pest that poses a severe threat to different crops around the world. To date, SfMNPV genomic diversity of different isolates has been mainly studied by means of restriction pattern analyses and by sequencing of the egt region. Here, the genomic diversity present inside an isolate of SfMNPV was explored using high-throughput sequencing for the first time. We identified 704 intrahost single nucleotide variants, from which 184 are nonsynonymous mutations distributed among 82 different coding sequences. We detected several structural variants affecting SfMNPV genome, including two previously reported deletions inside the egt region. A comparative analysis between polymorphisms present in different SfMNPV isolates and our intraisolate diversity data suggests that coding regions with higher genetic diversity are associated with oral infectivity or unknown functions. In this context, through molecular evolution studies we provide evidence of diversifying selection acting on sf29, a putative collagenase which could contribute to the oral infectivity of SfMNPV. Overall, our results contribute to deepen our understanding of the coevolution between SfMNPV and the fall armyworm and will be useful to improve the applicability of this virus as a biological control agent.
Collapse
|
4
|
Lei C, Yang J, Wang J, Hu J, Sun X. Molecular and Biological Characterization of Spodoptera frugiperda Multiple Nucleopolyhedrovirus Field Isolate and Genotypes from China. INSECTS 2020; 11:insects11110777. [PMID: 33182689 PMCID: PMC7697700 DOI: 10.3390/insects11110777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/08/2020] [Accepted: 11/08/2020] [Indexed: 12/20/2022]
Abstract
Simple Summary The fall armyworm is a notorious lepidopteran pest that consumes many economically important crops. Its recent invasion into China threatens crops in over 19 provinces. This species is susceptible to its homologous nucleopolyhedrovirus (Spodoptera frugiperda multiple nucleopolyhedrovirus, or SfMNPV). Selection of indigenous isolates that are adaptable in each geographical region is important for developing a virus-based pesticide. In this study, an SfMNPV field isolate was obtained from a natural population of the fall armyworm in Hubei, China. Two genotypes were cloned from the field isolate, and one genotype, SfHub-A, which had similar activity to the field isolate and produced significantly more progeny viruses, was considered to be a suitable strain for the commercial production of SfMNPV. This information will be valuable for developing a virus-based pesticide against fall armyworm in China. Abstract The fall armyworm, Spodoptera frugiperda, is a new invading pest in China. The baculovirus Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) is a pathogenic agent of the fall armyworm and a potential agent for its control in integrated pest management strategies. In this work, we analyze the molecular and biological characteristics of an SfMNPV isolate collected from maize in China (SfMNPV-Hub). Two genotypes were further isolated from SfMNPV-Hub by an in vivo cloning method. The PstI profile of one genotype (SfHub-A) was similar to genotype A of the SfMNPV Colombian isolate, and the other (SfHub-E) was similar to genotype E of the Colombian isolate. The bioactivity of SfHub-A against second-instar S. frugiperda larvae was not significantly different from that of SfMNPV-Hub, whereas SfHub-E was 2.7–5.5 fold less potent than SfMNPV-Hub. The speed of kill of SfHub-E was quicker than SfMNPV-Hub, while SfHub-A acted slower than SfMNPV-Hub. Occlusion body (OB) production of SfHub-A in an S. frugiperda cadaver was significantly higher than that of SfMNPV-Hub, while SfHub-E yielded far fewer occlusion bodies (OBs) in the host larvae. These results provide basic information for developing a virus-based pesticide against the invading pest S. frugiperda.
Collapse
Affiliation(s)
- Chengfeng Lei
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (C.L.); (J.Y.); (J.W.); (J.H.)
| | - Jian Yang
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (C.L.); (J.Y.); (J.W.); (J.H.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Wang
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (C.L.); (J.Y.); (J.W.); (J.H.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Hu
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (C.L.); (J.Y.); (J.W.); (J.H.)
| | - Xiulian Sun
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; (C.L.); (J.Y.); (J.W.); (J.H.)
- Correspondence: ; Tel.: +86-27-87198641
| |
Collapse
|
5
|
Li Y, Zhang J, Kong X, Chen N, Zeng X, Wu X. Bombyx mori nucleopolyhedrovirus Bm46 is essential for efficient production of infectious BV and nucleocapsid morphogenesis. Virus Res 2020; 289:198145. [PMID: 32889106 DOI: 10.1016/j.virusres.2020.198145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 10/23/2022]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) orf46 (Bm46), the orthologues of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac57, is a highly conserved gene in group Ⅰ and group Ⅱ nucleopolyhedroviruses (NPVs). However, its function in viral life cycle is unclear. Our results indicated that Bm46 transcript was detected from infected cells at 12 h post infection, while Bm46 protein was detectable from 24 to 72 h post infection. Upon the deletion of Bm46, fewer infectious BVs were produced by titer assays, but neither viral DNA synthesis nor occlusion bodies (OBs) production was affected. Electron microscopy revealed that Bm46 knockout interrupted nucleocapsid assembly and occlusion-derived virus (ODV) embedding, resulting in aberrant capsid-like tubular structures accumulated in the RZ (ring zone). Interestingly, this abnormally elongated capsid structures were consistent with the immunofluorescence microscopy results showing that VP39 assembled into long filaments and cables in the RZ. Moreover, DNA copies decreased by 30 % in occlusion bodies (OBs) produced by Bm46-knockout virus. qRT-PCR and Western blot analysis showed that the expression of VP39 was affected by Bm46 disruption. Taken together, our findings clearly pointed out that Bm46 played an important role in BV production and the proper formation of nucleocapsid morphogenesis.
Collapse
Affiliation(s)
- Yang Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, PR China
| | - Jianjia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiangshuo Kong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Nan Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaoqun Zeng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, PR China.
| |
Collapse
|
6
|
Xu W, Fan Y, Wang H, Feng M, Wu X. Bombyx mori nucleopolyhedrovirus F-like protein Bm14 affects the morphogenesis and production of occlusion bodies and the embedding of ODVs. Virology 2019; 526:61-71. [DOI: 10.1016/j.virol.2018.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022]
|
7
|
Parasitic Manipulation of Host Behaviour: Baculovirus SeMNPV EGT Facilitates Tree-Top Disease in Spodoptera exigua Larvae by Extending the Time to Death. INSECTS 2015; 6:716-31. [PMID: 26463412 PMCID: PMC4598661 DOI: 10.3390/insects6030716] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/15/2015] [Accepted: 07/27/2015] [Indexed: 11/17/2022]
Abstract
Many parasites enhance their dispersal and transmission by manipulating host behaviour. One intriguing example concerns baculoviruses that induce hyperactivity and tree-top disease (i.e., climbing to elevated positions prior to death) in their caterpillar hosts. Little is known about the underlying mechanisms of such parasite-induced behavioural changes. Here, we studied the role of the ecdysteroid UDP-glucosyltransferase (egt) gene of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) in tree-top disease in S. exigua larvae. Larvae infected with a mutant virus lacking the egt gene exhibited a shorter time to death and died before the induction of tree-top disease. Moreover, deletion of either the open reading frame or the ATG start codon of the egt gene prevented tree-top disease, indicating that the EGT protein is involved in this process. We hypothesize that SeMNPV EGT facilitates tree-top disease in S. exigua larvae by prolonging the larval time to death. Additionally, we discuss the role of egt in baculovirus-induced tree-top disease.
Collapse
|
8
|
Beperet I, Simón O, Williams T, López-Ferber M, Caballero P. The “11K” gene family members sf68, sf95 and sf138 modulate transmissibility and insecticidal properties of Spodoptera frugiperda multiple nucleopolyhedrovirus. J Invertebr Pathol 2015; 127:101-9. [DOI: 10.1016/j.jip.2015.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/03/2015] [Accepted: 03/11/2015] [Indexed: 11/29/2022]
|
9
|
Haase S, Sciocco-Cap A, Romanowski V. Baculovirus insecticides in Latin America: historical overview, current status and future perspectives. Viruses 2015; 7:2230-67. [PMID: 25941826 PMCID: PMC4452904 DOI: 10.3390/v7052230] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/25/2015] [Accepted: 04/23/2015] [Indexed: 11/16/2022] Open
Abstract
Baculoviruses are known to regulate many insect populations in nature. Their host-specificity is very high, usually restricted to a single or a few closely related insect species. They are amongst the safest pesticides, with no or negligible effects on non-target organisms, including beneficial insects, vertebrates and plants. Baculovirus-based pesticides are compatible with integrated pest management strategies and the expansion of their application will significantly reduce the risks associated with the use of synthetic chemical insecticides. Several successful baculovirus-based pest control programs have taken place in Latin American countries. Sustainable agriculture (a trend promoted by state authorities in most Latin American countries) will benefit from the wider use of registered viral pesticides and new viral products that are in the process of registration and others in the applied research pipeline. The success of baculovirus-based control programs depends upon collaborative efforts among government and research institutions, growers associations, and private companies, which realize the importance of using strategies that protect human health and the environment at large. Initiatives to develop new regulations that promote the use of this type of ecological alternatives tailored to different local conditions and farming systems are underway.
Collapse
Affiliation(s)
- Santiago Haase
- Instituto de Biotecnología y Biología Molecular (IBBM), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata 1900, Argentina.
| | - Alicia Sciocco-Cap
- Instituto de Microbiología y Zoología Agrícola (IMYZA), Instituto Nacional de Tecnología Agropecuaria (INTA), Castelar 1712, Argentina.
| | - Víctor Romanowski
- Instituto de Biotecnología y Biología Molecular (IBBM), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata 1900, Argentina.
| |
Collapse
|
10
|
Clem SA, Wu W, Passarelli AL. The Trichoplusia ni single nucleopolyhedrovirus tn79 gene encodes a functional sulfhydryl oxidase enzyme that is able to support the replication of Autographa californica multiple nucleopolyhedrovirus lacking the sulfhydryl oxidase ac92 gene. Virology 2014; 460-461:207-16. [PMID: 25010286 PMCID: PMC4101058 DOI: 10.1016/j.virol.2014.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 03/31/2014] [Accepted: 05/06/2014] [Indexed: 11/27/2022]
Abstract
The Autographa californica multiple nucleopolyhedrovirus ac92 is a conserved baculovirus gene with homology to flavin adenine dinucleotide-linked sulfhydryl oxidases. Its product, Ac92, is a functional sulfhydryl oxidase. Deletion of ac92 results in almost negligible levels of budded virus (BV) production, defects in occlusion-derived virus (ODV) co-envelopment and their inefficient incorporation into occlusion bodies. To determine the role of sulfhydryl oxidation in the production of BV, envelopment of nucleocapsids, and nucleocapsid incorporation into occlusion bodies, the Trichoplusia ni single nucleopolyhedrovirus ortholog, tn79, was substituted for ac92. Tn79 was found to be an active sulfhydryl oxidase that substituted for Ac92, resulting in the production of infectious BV, albeit about 10-fold less than an ac92-containing virus. Tn79 rescued defects in ODV morphogenesis caused by a lack of ac92. Active Tn79 sulfhydryl oxidase activity is required for efficient BV production, ODV envelopment, and their subsequent incorporation into occlusion bodies in the absence of ac92.
Collapse
Affiliation(s)
- Stian A Clem
- Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506-4901, USA
| | - Wenbi Wu
- Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506-4901, USA
| | - A Lorena Passarelli
- Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506-4901, USA.
| |
Collapse
|
11
|
Beperet I, Barrera G, Simón O, Williams T, López-Ferber M, Gasmi L, Herrero S, Caballero P. The sf32 unique gene of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) is a non-essential gene that could be involved in nucleocapsid organization in occlusion-derived virions. PLoS One 2013; 8:e77683. [PMID: 24204916 PMCID: PMC3813766 DOI: 10.1371/journal.pone.0077683] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/04/2013] [Indexed: 12/14/2022] Open
Abstract
A recombinant virus lacking the sf32 gene (Sf32null), unique to the Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV), was generated by homologous recombination from a bacmid comprising the complete viral genome (Sfbac). Transcriptional analysis revealed that sf32 is an early gene. Occlusion bodies (OBs) of Sf32null contained 62% more genomic DNA than viruses containing the sf32 gene, Sfbac and Sf32null-repair, although Sf32null DNA was three-fold less infective when injected in vivo. Sf32null OBs were 18% larger in diameter and contained 17% more nucleocapsids within ODVs than those of Sfbac. No significant differences were detected in OB pathogenicity (50% lethal concentration), speed-of-kill or budded virus production in vivo. In contrast, the production of OBs/larva was reduced by 39% in insects infected by Sf32null compared to those infected by Sfbac. The SF32 predicted protein sequence showed homology (25% identity, 44% similarity) to two adhesion proteins from Streptococcus pyogenes and a single N-mirystoylation site was predicted. We conclude that SF32 is a non-essential protein that could be involved in nucleocapsid organization during ODV assembly and occlusion, resulting in increased numbers of nucleocapsids within ODVs.
Collapse
Affiliation(s)
- Inés Beperet
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Mutilva Baja, Navarra, Spain
| | - Gloria Barrera
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Mutilva Baja, Navarra, Spain
- Corporación Colombiana de Investigación Agropecuaria (CORPOICA), Bogotá, Colombia
| | - Oihane Simón
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Mutilva Baja, Navarra, Spain
| | | | | | - Laila Gasmi
- Department of Genetics, Univesitat de València, Burjassot, Valencia, Spain
| | - Salvador Herrero
- Department of Genetics, Univesitat de València, Burjassot, Valencia, Spain
| | - Primitivo Caballero
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Mutilva Baja, Navarra, Spain
- Departamento de Producción Agraria, Universidad Pública de Navarra, Pamplona, Navarra, Spain
- * E-mail:
| |
Collapse
|
12
|
Deletion genotypes reduce occlusion body potency but increase occlusion body production in a Colombian Spodoptera frugiperda nucleopolyhedrovirus population. PLoS One 2013; 8:e77271. [PMID: 24116220 PMCID: PMC3792916 DOI: 10.1371/journal.pone.0077271] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/02/2013] [Indexed: 11/19/2022] Open
Abstract
A Colombian field isolate (SfCOL-wt) of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) is a mixture of different genotypes. To evaluate the insecticidal properties of the different genotypic variants, 83 plaque purified virus were characterized. Ten distinct genotypes were identified (named A through J). SfCOL-A was the most prevalent (71±2%; mean ± SE) showing a PstI restriction profile indistinguishable to that of SfCOL-wt. The remaining nine genotypes presented genomic deletions of 3.8 - 21.8 Kb located mainly between nucleotides 11,436 and 33,883 in the reference genome SfMNPV-B, affecting the region between open reading frames (ORFs) sf20 and sf33. The insecticidal activity of each genotype from SfCOL-wt and several mixtures of genotypes was compared to that of SfCOL-wt. The potency of SfCOL-A occlusion bodies (OBs) was 4.4-fold higher than SfCOL-wt OBs, whereas the speed of kill of SfCOL-A was similar to that of SfCOL-wt. Deletion genotype OBs were similarly or less potent than SfCOL-wt but six deletion genotypes were faster killing than SfCOL-wt. The potency of genotype mixtures co-occluded within OBs were consistently reduced in two-genotype mixtures involving equal proportions of SfCOL-A and one of three deletion genotypes (SfCOL-C, -D or -F). Speed of kill and OB production were improved only when the certain genotype mixtures were co-occluded, although OB production was higher in the SfCOL-wt isolate than in any of the component genotypes, or mixtures thereof. Deleted genotypes reduced OB potency but increased OB production of the SfCOL-wt population, which is structured to maximize the production of OBs in each infected host.
Collapse
|
13
|
Tao XY, Choi JY, Wang Y, Roh JY, Lee JH, Liu Q, Park JB, Kim JS, Kim W, Je YH. Functional characterization of Autographa californica multiple nucleopolyhedrovirus ORF43 and phenotypic changes of ORF43-knockout mutant. J Microbiol 2013; 51:515-21. [DOI: 10.1007/s12275-013-3058-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/01/2013] [Indexed: 11/29/2022]
|
14
|
Simón O, Williams T, López-Ferber M, Caballero P. Deletion of egt is responsible for the fast-killing phenotype of natural deletion genotypes in a Spodoptera frugiperda multiple nucleopolyhedrovirus population. J Invertebr Pathol 2012; 111:260-3. [DOI: 10.1016/j.jip.2012.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 08/19/2012] [Accepted: 08/24/2012] [Indexed: 11/30/2022]
|
15
|
Roy P, Noad R. Use of bacterial artificial chromosomes in baculovirus research and recombinant protein expression: current trends and future perspectives. ISRN MICROBIOLOGY 2012; 2012:628797. [PMID: 23762754 PMCID: PMC3671692 DOI: 10.5402/2012/628797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/16/2012] [Indexed: 11/23/2022]
Abstract
The baculovirus expression system is one of the most successful and widely used eukaryotic protein expression methods. This short review will summarise the role of bacterial artificial chromosomes (BACS) as an enabling technology for the modification of the virus genome. For many years baculovirus genomes have been maintained in E. coli as bacterial artificial chromosomes, and foreign genes have been inserted using a transposition-based system. However, with recent advances in molecular biology techniques, particularly targeting reverse engineering of the baculovirus genome by recombineering, new frontiers in protein expression are being addressed. In particular, BACs have facilitated the propagation of disabled virus genomes that allow high throughput protein expression. Furthermore, improvement in the selection of recombinant viral genomes inserted into BACS has enabled the expression of multiprotein complexes by iterative recombineering of the baculovirus genome.
Collapse
Affiliation(s)
- Polly Roy
- Department of Pathogen Molecular Biology, Faculty of Infectious Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | |
Collapse
|
16
|
Simón O, Palma L, Williams T, López-Ferber M, Caballero P. Analysis of a naturally-occurring deletion mutant of Spodoptera frugiperda multiple nucleopolyhedrovirus reveals sf58 as a new per os infectivity factor of lepidopteran-infecting baculoviruses. J Invertebr Pathol 2012; 109:117-26. [PMID: 22041202 DOI: 10.1016/j.jip.2011.10.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/13/2011] [Accepted: 10/17/2011] [Indexed: 11/19/2022]
Affiliation(s)
- Oihane Simón
- Instituto de Agrobiotecnología, CSIC, Gobierno de Navarra, 31192 Mutilva Baja, Navarra, Spain
| | | | | | | | | |
Collapse
|
17
|
Luo S, Zhang Y, Xu X, Westenberg M, Vlak JM, Wang H, Hu Z, Deng F. Helicoverpa armigera nucleopolyhedrovirus occlusion-derived virus-associated protein, HA100, affects oral infectivity in vivo but not virus replication in vitro. J Gen Virol 2011; 92:1324-1331. [PMID: 21325478 DOI: 10.1099/vir.0.029116-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
ORF100 (ha100) of Helicoverpa armigera nucleopolyhedrovirus (HearNPV) has been reported as one of the unique genes of group II alphabaculoviruses encoding a protein located in the occlusion-derived virus (ODV) envelope and nucleocapsid. The protein consists of 510 aa with a predicted mass of 58.1 kDa and is a homologue of poly(ADP–ribose) glycohydrolase in eukaryotes. Western blot analysis detected a 60 kDa band in HearNPV-infected HzAM1 cells starting at 18 h post-infection. Transient expression of GFP-fused HA100 in HzAM1 cells resulted in cytoplasmic localization of the protein, but after superinfection with HearNPV, GFP-fused HA100 was localized in the nucleus. To study the function of HA100 further, an ha100-null virus was constructed using bacmid technology. Viral one-step growth curve analyses showed that the ha100-null virus had similar budded virus production kinetics to that of the parental virus. Electron microscopy revealed that deletion of HA100 did not alter the morphology of ODVs or occlusion bodies (OBs). However, bioassays in larvae showed that the 50 % lethal concentration (LC50) value of HA100-null OBs was significantly higher than that of parental OBs; the median lethal time (LT50) of ha100-null OBs was about 24 h later than control virus. These results indicate that HA100 is not essential for virus replication in vitro. However, it significantly affects the oral infectivity of OBs in host insects, suggesting that the association HA100 with the ODV contributes to the infectivity of OBs in vivo.
Collapse
Affiliation(s)
- Sijiani Luo
- State Key Laboratory of Virology and CAS Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Yanfang Zhang
- State Key Laboratory of Virology and CAS Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Xushi Xu
- Faculty of Biosciences, Nanjing Normal University, Nanjing 210097, PR China
- State Key Laboratory of Virology and CAS Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Marcel Westenberg
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Just M. Vlak
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Hualin Wang
- State Key Laboratory of Virology and CAS Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Zhihong Hu
- State Key Laboratory of Virology and CAS Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Fei Deng
- State Key Laboratory of Virology and CAS Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| |
Collapse
|
18
|
Simón O, Palma L, Beperet I, Muñoz D, López-Ferber M, Caballero P, Williams T. Sequence comparison between three geographically distinct Spodoptera frugiperda multiple nucleopolyhedrovirus isolates: Detecting positively selected genes. J Invertebr Pathol 2011; 107:33-42. [PMID: 21238456 DOI: 10.1016/j.jip.2011.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 12/22/2010] [Accepted: 01/10/2011] [Indexed: 11/18/2022]
Abstract
The complete genomic sequence of a Nicaraguan plaque purified Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV) genotype SfMNPV-B was determined and compared to previously sequenced isolates from United States (SfMNPV-3AP2) and Brazil (SfMNPV-19). The genome of SfMNPV-B (132,954bp) was 1623bp and 389bp larger than that of SfMNPV-3AP2 and SfMNPV-19, respectively. Genome size differences were mainly due to a deletion located in the SfMNPV-3AP2 egt region and small deletions and point mutations in SfMNPV-19. Nucleotide sequences were strongly conserved (99.35% identity) and a high degree of predicted amino acid sequence identity was observed. A total of 145 open reading frames (ORFs) were identified in SfMNPV-B, two of them (sf39a and sf110a) had not been previously identified in the SfMNPV-3AP2 and SfMNPV-19 genomes and one (sf57a) was absent in both these genomes. In addition, sf6 was not previously identified in the SfMNPV-19 genome. In contrast, SfMNPV-B and SfMNPV-19 both lacked sf129 that had been reported in SfMNPV-3AP2. In an effort to identify genes potentially involved in virulence or in determining population adaptations, selection pressure analysis was performed. Three ORFs were identified undergoing positive selection: sf49 (pif-3), sf57 (odv-e66b) and sf122 (unknown function). Strong selection for ODV envelope protein genes indicates that the initial infection process in the insect midgut is one critical point at which adaptation acts during the transmission of these viruses in geographically distant populations. The function of ORF sf122 is being examined.
Collapse
Affiliation(s)
- Oihane Simón
- Instituto de Agrobiotecnología, CSIC, Universidad Pública de Navarra, Gobierno de Navarra, Campus Arrosadia, 31192 Mutilva Baja, Navarra, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Stability of a Spodoptera frugiperda nucleopolyhedrovirus deletion recombinant during serial passage in insects. Appl Environ Microbiol 2009; 76:803-9. [PMID: 20008167 DOI: 10.1128/aem.01894-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stabilities of the Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) complete genome bacmid (Sfbac) and a deletion recombinant (Sf29null) in which the Sf29 gene was replaced by a kanamycin resistance cassette were determined during sequential rounds of per os infection in insect larvae. The Sf29 gene is a viral factor that determines the number of virions in occlusion bodies (OBs). The Sf29null bacmid virus was able to recover the Sf29 gene during passage. After the third passage (P3) of Sf29null bacmid OBs, the population was observed to reach an equilibrium involving a mixture of those with a kanamycin resistance cassette and those with the Sf29 gene. The biological activity of Sf29null bacmid OBs at P3 was similar to that of Sfbac OBs. The recovered gene in the Sf29null virus was 98 to 100% homologous to the Sf29 genes of different SfMNPV genotypes. Reverse transcription-PCR analysis of uninoculated S. frugiperda larvae confirmed the expression of the SfMNPV ie-0 and Sf29 genes, indicating that the insect colony harbors a covert SfMNPV infection. Additionally, the nonessential bacterial artificial chromosome vector was spontaneously deleted from both viral genomes upon passage in insects.
Collapse
|
20
|
Yu IL, Bray D, Lin YC, Lung O. Autographa californica multiple nucleopolyhedrovirus ORF 23 null mutant produces occlusion-derived virions with fewer nucleocapsids. J Gen Virol 2009; 90:1499-1504. [DOI: 10.1099/vir.0.009035-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two envelope fusion protein gene homologues have been identified in the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). AcMNPV GP64 protein is fusogenic and essential for propagation and pathogenicity. The F homologue (Ac23) is not essential, is fusion-incompetent in standard assays, but contributes to faster host death. Here, we show that occlusion bodies (OBs) from Ac23null mutants and control viruses do not differ significantly in size and the number of occlusion-derived virions (ODVs) contained; however, Ac23null OBs had a much higher percentage of ODVs with a single nucleocapsid (44.6 %) than the near-isogenic control (11.3 %). Infection of Sf9 cells with Ac23–green fluorescent protein (gfp)-expressing recombinant viruses showed Ac23–gfp fluorescence overlapping perinuclear DAPI staining at later times, a pattern not observed with GP64. These results suggest that F proteins have evolved functions beyond envelope fusion and play a different role from that of GP64 in viruses that contain both proteins.
Collapse
Affiliation(s)
- Ian-Ling Yu
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Doug Bray
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Ying-Chu Lin
- Faculty of Dentistry, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Oliver Lung
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
21
|
Wang L, Salem TZ, Campbell DJ, Turney CM, Kumar CMS, Cheng XW. Characterization of a virion occlusion-defective Autographa californica multiple nucleopolyhedrovirus mutant lacking the p26, p10 and p74 genes. J Gen Virol 2009; 90:1641-1648. [PMID: 19264658 DOI: 10.1099/vir.0.010397-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleopolyhedroviruses (NPVs), family Baculoviridae, are insect-specific viruses with the potential to control insect pests in agriculture and forestry. NPVs are occluded in polyhedral occlusion bodies. Polyhedra protect virions from inactivation in the environment as well as assisting virions in horizontal transmission in the insect population. The process of virion occlusion in the polyhedra is undefined and the genes that regulate the virion occlusion process have not been well investigated yet. An Autographa californica multiple nucleopolyhedrovirus (AcMNPV) mutant (AcDef) that has a 2136 bp DNA deletion, including p26, p10 and p74 genes, has been isolated. No virions were detected in the polyhedra of AcDef. Restoration of all the missing sequences into AcDef led to proper virion occlusion. Individual gene deletion of either p10 or p26 could not abolish virion occlusion in the polyhedra of AcMNPV, but p10 deletion reduced virion occlusion efficiency more than threefold compared with the wild-type AcMNPV. Previous studies by other research groups on deletion of AcMNPV gene p74 suggested that p74 is a per os infectivity factor, and deletion of the p74 gene did not eliminate virion occlusion. Collectively, the three genes (p26, p10 and p74) may act in concert to regulate the virion occlusion process. Therefore, p26, p10 and p74 are all required for proper virion occlusion in the polyhedra of AcMNPV.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Microbiology, 32 Pearson Hall, Miami University, Oxford, OH 45056, USA
| | - Tamer Z Salem
- Department of Microbiology, 32 Pearson Hall, Miami University, Oxford, OH 45056, USA
| | - Dean J Campbell
- Department of Microbiology, 32 Pearson Hall, Miami University, Oxford, OH 45056, USA
| | - Colin M Turney
- Department of Microbiology, 32 Pearson Hall, Miami University, Oxford, OH 45056, USA
| | - C M Senthil Kumar
- Department of Microbiology, 32 Pearson Hall, Miami University, Oxford, OH 45056, USA
| | - Xiao-Wen Cheng
- Department of Microbiology, 32 Pearson Hall, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
22
|
Mixtures of complete and pif1- and pif2-deficient genotypes are required for increased potency of an insect nucleopolyhedrovirus. J Virol 2009; 83:5127-36. [PMID: 19264787 DOI: 10.1128/jvi.02020-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The insecticidal potency of a nucleopolyhedrovirus population (SfNIC) that infects Spodoptera frugiperda (Lepidoptera) is greater than the potency of any of the component genotypes alone. Occlusion bodies (OBs) produced in mixed infections comprising the complete genotype and a deletion genotype are as pathogenic as the natural population of genotypes from the field. To test whether this increased potency was due to the deletion or to some other characteristic of the deletion variant genome, we used the SfNIC-B genome to construct a recombinant virus (SfNIC-B Delta 16K) with the same 16.4-kb deletion as that observed in SfNIC-C and another recombinant (SfNIC-B Delta pifs) with a deletion encompassing two adjacent genes (pif1 and pif2) that are essential for transmission per os. Mixtures comprising SfNIC-B and SfNIC-B Delta 16K in OB ratios that varied between 10:90 and 90:10 were injected into insects, and the progeny OBs were fed to larvae in an insecticidal potency assay. A densitometric analysis of PCR products indicated that SfNIC-B was generally more abundant than expected in mixtures based on the proportions of OBs used to produce the inocula. Mixtures derived from OB ratios of 10, 25, or 50% of SfNIC-B Delta 16K and the corresponding SfNIC-B proportions showed a significant increase in potency compared to SfNIC-B alone. The results of potency assays with mixtures comprising various proportions of SfNIC-B plus SfNIC-B Delta pifs were almost identical to the results observed with SfNIC-B Delta 16K, indicating that deletion of the pif gene region was responsible for the increased potency observed in mixtures of SfNIC-B and each deletion recombinant virus. Subsequently, mixtures produced from OB ratios involving 10 or 90% of SfNIC-B Delta 16K with the corresponding proportions of SfNIC-B were subjected to four rounds of per os transmission in larvae. The composition of each experimental mixture rapidly converged to a common equilibrium with a genotypic composition of approximately 85% SfNIC-B plus approximately 15% SfNIC-B Delta 16K. Nearly identical results were observed in peroral-passage experiments involving mixtures of SfNIC-B plus SfNIC-B Delta pifs. We conclude that (i) the deletion of the pif1 and pif2 region is necessary and sufficient to explain the increased potency observed in mixtures of complete and deletion genotypes and (ii) viral populations with decreased ratios of pif1- and pif2-deficient genotypes in the virus population increase the potency of genotypic mixtures and are likely to positively influence the transmission of this pathogen.
Collapse
|