1
|
Arshad H, Patel Z, Al-Azzawi ZAM, Amano G, Li L, Mehra S, Eid S, Schmitt-Ulms G, Watts JC. The molecular determinants of a universal prion acceptor. PLoS Pathog 2024; 20:e1012538. [PMID: 39255320 DOI: 10.1371/journal.ppat.1012538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/20/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
In prion diseases, the species barrier limits the transmission of prions from one species to another. However, cross-species prion transmission is remarkably efficient in bank voles, and this phenomenon is mediated by the bank vole prion protein (BVPrP). The molecular determinants of BVPrP's ability to function as a universal prion acceptor remain incompletely defined. Building on our finding that cultured cells expressing BVPrP can replicate both mouse and hamster prion strains, we systematically identified key residues in BVPrP that permit cross-species prion replication. We found that residues N155 and N170 of BVPrP, which are absent in mouse PrP but present in hamster PrP, are critical for cross-species prion replication. Additionally, BVPrP residues V112, I139, and M205, which are absent in hamster PrP but present in mouse PrP, are also required to enable replication of both mouse and hamster prions. Unexpectedly, we found that residues E227 and S230 near the C-terminus of BVPrP severely restrict prion accumulation following cross-species prion challenge, suggesting that they may have evolved to counteract the inherent propensity of BVPrP to misfold. PrP variants with an enhanced ability to replicate both mouse and hamster prions displayed accelerated spontaneous aggregation kinetics in vitro. These findings suggest that BVPrP's unusual properties are governed by a key set of amino acids and that the enhanced misfolding propensity of BVPrP may enable cross-species prion replication.
Collapse
Affiliation(s)
- Hamza Arshad
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Zeel Patel
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Zaid A M Al-Azzawi
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Genki Amano
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Leyao Li
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Surabhi Mehra
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Shehab Eid
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Arshad H, Watts JC. Genetically engineered cellular models of prion propagation. Cell Tissue Res 2022; 392:63-80. [PMID: 35581386 DOI: 10.1007/s00441-022-03630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/26/2022] [Indexed: 11/02/2022]
Abstract
For over three decades, cultured cells have been a useful tool for dissecting the molecular details of prion replication and the identification of candidate therapeutics for prion disease. A major issue limiting the translatability of these studies has been the inability to reliably propagate disease-relevant, non-mouse strains of prions in cells relevant to prion pathogenesis. In recent years, fueled by advances in gene editing technology, it has become possible to propagate prions from hamsters, cervids, and sheep in immortalized cell lines originating from the central nervous system. In particular, the use of CRISPR-Cas9-mediated gene editing to generate versions of prion-permissive cell lines that lack endogenous PrP expression has provided a blank canvas upon which re-expression of PrP leads to species-matched susceptibility to prion infection. When coupled with the ability to propagate prions in cells or organoids derived from stem cells, these next-generation cellular models should provide an ideal paradigm for identifying small molecules and other biological therapeutics capable of interfering with prion replication in animal and human prion disorders. In this review, we summarize recent advances that have widened the spectrum of prion strains that can be propagated in cultured cells and cutting-edge tissue-based models.
Collapse
Affiliation(s)
- Hamza Arshad
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower Rm. 4KD481, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building Rm. 5207, Toronto, ON, M5S 1A8, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower Rm. 4KD481, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada. .,Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building Rm. 5207, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
3
|
Kostelanska M, Holada K. Prion Strains Differ in Susceptibility to Photodynamic Oxidation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030611. [PMID: 35163872 PMCID: PMC8840242 DOI: 10.3390/molecules27030611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022]
Abstract
Prion disorders, or transmissible spongiform encephalophaties (TSE), are fatal neurodegenerative diseases affecting mammals. Prion-infectious particles comprise of misfolded pathological prion proteins (PrPTSE). Different TSEs are associated with distinct PrPTSE folds called prion strains. The high resistance of prions to conventional sterilization increases the risk of prion transmission in medical, veterinary and food industry practices. Recently, we have demonstrated the ability of disulfonated hydroxyaluminum phthalocyanine to photodynamically inactivate mouse RML prions by generated singlet oxygen. Herein, we studied the efficiency of three phthalocyanine derivatives in photodynamic treatment of seven mouse adapted prion strains originating from sheep, human, and cow species. We report the different susceptibilities of the strains to photodynamic oxidative elimination of PrPTSE epitopes: RML, A139, Fu-1 > mBSE, mvCJD > ME7, 22L. The efficiency of the phthalocyanine derivatives in the epitope elimination also differed (AlPcOH(SO3)2 > ZnPc(SO3)1-3 > SiPc(OH)2(SO3)1-3) and was not correlated to the yields of generated singlet oxygen. Our data suggest that the structural properties of both the phthalocyanine and the PrPTSE strain may affect the effectiveness of the photodynamic prion inactivation. Our finding provides a new option for the discrimination of prion strains and highlights the necessity of utilizing range of prion strains when validating the photodynamic prion decontamination procedures.
Collapse
|
4
|
Arshad H, Patel Z, Mehrabian M, Bourkas MEC, Al-Azzawi ZAM, Schmitt-Ulms G, Watts JC. The aminoglycoside G418 hinders de novo prion infection in cultured cells. J Biol Chem 2021; 297:101073. [PMID: 34390689 PMCID: PMC8413896 DOI: 10.1016/j.jbc.2021.101073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/23/2021] [Accepted: 08/10/2021] [Indexed: 01/16/2023] Open
Abstract
The study of prions and the discovery of candidate therapeutics for prion disease have been facilitated by the ability of prions to replicate in cultured cells. Paradigms in which prion proteins from different species are expressed in cells with low or no expression of endogenous prion protein (PrP) have expanded the range of prion strains that can be propagated. In these systems, cells stably expressing a PrP of interest are typically generated via coexpression of a selectable marker and treatment with an antibiotic. Here, we report the unexpected discovery that the aminoglycoside G418 (Geneticin) interferes with the ability of stably transfected cultured cells to become infected with prions. In G418-resistant lines of N2a or CAD5 cells, the presence of G418 reduced levels of protease-resistant PrP following challenge with the RML or 22L strains of mouse prions. G418 also interfered with the infection of cells expressing hamster PrP with the 263K strain of hamster prions. Interestingly, G418 had minimal to no effect on protease-resistant PrP levels in cells with established prion infection, arguing that G418 selectively interferes with de novo prion infection. As G418 treatment had no discernible effect on cellular PrP levels or its localization, this suggests that G418 may specifically target prion assemblies or processes involved in the earliest stages of prion infection.
Collapse
Affiliation(s)
- Hamza Arshad
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Zeel Patel
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Mohadeseh Mehrabian
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Matthew E C Bourkas
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Zaid A M Al-Azzawi
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Pineau H, Sim VL. From Cell Culture to Organoids-Model Systems for Investigating Prion Strain Characteristics. Biomolecules 2021; 11:biom11010106. [PMID: 33466947 PMCID: PMC7830147 DOI: 10.3390/biom11010106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Prion diseases are the hallmark protein folding neurodegenerative disease. Their transmissible nature has allowed for the development of many different cellular models of disease where prion propagation and sometimes pathology can be induced. This review examines the range of simple cell cultures to more complex neurospheres, organoid, and organotypic slice cultures that have been used to study prion disease pathogenesis and to test therapeutics. We highlight the advantages and disadvantages of each system, giving special consideration to the importance of strains when choosing a model and when interpreting results, as not all systems propagate all strains, and in some cases, the technique used, or treatment applied, can alter the very strain properties being studied.
Collapse
Affiliation(s)
- Hailey Pineau
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2B7, Canada;
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Valerie L. Sim
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2B7, Canada;
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Correspondence:
| |
Collapse
|
6
|
Krance SH, Luke R, Shenouda M, Israwi AR, Colpitts SJ, Darwish L, Strauss M, Watts JC. Cellular models for discovering prion disease therapeutics: Progress and challenges. J Neurochem 2020; 153:150-172. [PMID: 31943194 DOI: 10.1111/jnc.14956] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/22/2022]
Abstract
Prions, which cause fatal neurodegenerative disorders such as Creutzfeldt-Jakob disease, are misfolded and infectious protein aggregates. Currently, there are no treatments available to halt or even delay the progression of prion disease in the brain. The infectious nature of prions has resulted in animal paradigms that accurately recapitulate all aspects of prion disease, and these have proven to be instrumental for testing the efficacy of candidate therapeutics. Nonetheless, infection of cultured cells with prions provides a much more powerful system for identifying molecules capable of interfering with prion propagation. Certain lines of cultured cells can be chronically infected with various types of mouse prions, and these models have been used to unearth candidate anti-prion drugs that are at least partially efficacious when administered to prion-infected rodents. However, these studies have also revealed that not all types of prions are equal, and that drugs active against mouse prions are not necessarily effective against prions from other species. Despite some recent progress, the number of cellular models available for studying non-mouse prions remains limited. In particular, human prions have proven to be particularly challenging to propagate in cultured cells, which has severely hindered the discovery of drugs for Creutzfeldt-Jakob disease. In this review, we summarize the cellular models that are presently available for discovering and testing drugs capable of blocking the propagation of prions and highlight challenges that remain on the path towards developing therapies for prion disease.
Collapse
Affiliation(s)
- Saffire H Krance
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Russell Luke
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Marc Shenouda
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Ahmad R Israwi
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Sarah J Colpitts
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Lina Darwish
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Maximilian Strauss
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Holec SA, Block AJ, Bartz JC. The role of prion strain diversity in the development of successful therapeutic treatments. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:77-119. [PMID: 32958242 PMCID: PMC8939712 DOI: 10.1016/bs.pmbts.2020.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prions are a self-propagating misfolded conformation of a cellular protein. Prions are found in several eukaryotic organisms with mammalian prion diseases encompassing a wide range of disorders. The first recognized prion disease, the transmissible spongiform encephalopathies (TSEs), affect several species including humans. Alzheimer's disease, synucleinopathies, and tauopathies share a similar mechanism of self-propagation of the prion form of the disease-specific protein reminiscent of the infection process of TSEs. Strain diversity in prion disease is characterized by differences in the phenotype of disease that is hypothesized to be encoded by strain-specific conformations of the prion form of the disease-specific protein. Prion therapeutics that target the prion form of the disease-specific protein can lead to the emergence of drug-resistant strains of prions, consistent with the hypothesis that prion strains exist as a dynamic mixture of a dominant strain in combination with minor substrains. To overcome this obstacle, therapies that reduce or eliminate the template of conversion are efficacious, may reverse neuropathology, and do not result in the emergence of drug resistance. Recent advancements in preclinical diagnosis of prion infection may allow for a combinational approach that treats the prion form and the precursor protein to effectively treat prion diseases.
Collapse
Affiliation(s)
- Sara A.M. Holec
- Institute for Applied Life Sciences and Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States,Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States
| | - Alyssa J. Block
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, United States,Corresponding author:
| |
Collapse
|
8
|
Bourkas MEC, Arshad H, Al-Azzawi ZAM, Halgas O, Shikiya RA, Mehrabian M, Schmitt-Ulms G, Bartz JC, Watts JC. Engineering a murine cell line for the stable propagation of hamster prions. J Biol Chem 2019; 294:4911-4923. [PMID: 30705093 DOI: 10.1074/jbc.ra118.007135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/30/2019] [Indexed: 01/23/2023] Open
Abstract
Prions are infectious protein aggregates that cause several fatal neurodegenerative diseases. Prion research has been hindered by a lack of cellular paradigms for studying the replication of prions from different species. Although hamster prions have been widely used to study prion replication in animals and within in vitro amplification systems, they have proved challenging to propagate in cultured cells. Because the murine catecholaminergic cell line CAD5 is susceptible to a diverse range of mouse prion strains, we hypothesized that it might also be capable of propagating nonmouse prions. Here, using CRISPR/Cas9-mediated genome engineering, we demonstrate that CAD5 cells lacking endogenous mouse PrP expression (CAD5-PrP-/- cells) can be chronically infected with hamster prions following stable expression of hamster PrP. When exposed to the 263K, HY, or 139H hamster prion strains, these cells stably propagated high levels of protease-resistant PrP. Hamster prion replication required absence of mouse PrP, and hamster PrP inhibited the propagation of mouse prions. Cellular homogenates from 263K-infected cells exhibited prion seeding activity in the RT-QuIC assay and were infectious to naïve cells expressing hamster PrP. Interestingly, murine N2a neuroblastoma cells ablated for endogenous PrP expression were susceptible to mouse prions, but not hamster prions upon expression of cognate PrP, suggesting that CAD5 cells either possess cellular factors that enhance or lack factors that restrict the diversity of prion strains that can be propagated. We conclude that transfected CAD5-PrP-/- cells may be a useful tool for assessing the biology of prion strains and dissecting the mechanism of prion replication.
Collapse
Affiliation(s)
- Matthew E C Bourkas
- From the Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada M5T 0S8.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5T 0S8
| | - Hamza Arshad
- From the Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada M5T 0S8.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5T 0S8
| | - Zaid A M Al-Azzawi
- From the Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada M5T 0S8.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5T 0S8
| | - Ondrej Halgas
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5T 0S8
| | - Ronald A Shikiya
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, 68178
| | - Mohadeseh Mehrabian
- From the Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada M5T 0S8.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5T 0S8, and
| | - Gerold Schmitt-Ulms
- From the Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada M5T 0S8.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5T 0S8, and
| | - Jason C Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, 68178
| | - Joel C Watts
- From the Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada M5T 0S8, .,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5T 0S8
| |
Collapse
|
9
|
Giles K, Berry DB, Condello C, Hawley RC, Gallardo-Godoy A, Bryant C, Oehler A, Elepano M, Bhardwaj S, Patel S, Silber BM, Guan S, DeArmond SJ, Renslo AR, Prusiner SB. Different 2-Aminothiazole Therapeutics Produce Distinct Patterns of Scrapie Prion Neuropathology in Mouse Brains. J Pharmacol Exp Ther 2015. [PMID: 26224882 DOI: 10.1124/jpet.115.224659] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Because no drug exists that halts or even slows any neurodegenerative disease, developing effective therapeutics for any prion disorder is urgent. We recently reported two compounds (IND24 and IND81) with the 2-aminothiazole (2-AMT) chemical scaffold that almost doubled the incubation times in scrapie prion-infected, wild-type (wt) FVB mice when given in a liquid diet. Remarkably, oral prophylactic treatment with IND24 beginning 14 days prior to intracerebral prion inoculation extended survival from ∼120 days to over 450 days. In addition to IND24, we evaluated the pharmacokinetics and efficacy of five additional 2-AMTs; one was not followed further because its brain penetration was poor. Of the remaining four new 2-AMTs, IND114338 doubled and IND125 tripled the incubation times of RML-inoculated wt and Tg4053 mice overexpressing wt mouse prion protein (PrP), respectively. Neuropathological examination of the brains from untreated controls showed a widespread deposition of self-propagating, β-sheet-rich "scrapie" isoform (PrP(Sc)) prions accompanied by a profound astrocytic gliosis. In contrast, mice treated with 2-AMTs had lower levels of PrP(Sc) and associated astrocytic gliosis, with each compound resulting in a distinct pattern of deposition. Notably, IND125 prevented both PrP(Sc) accumulation and astrocytic gliosis in the cerebrum. Progressive central nervous system dysfunction in the IND125-treated mice was presumably due to the PrP(Sc) that accumulated in their brainstems. Disappointingly, none of the four new 2-AMTs prolonged the lives of mice expressing a chimeric human/mouse PrP transgene inoculated with Creutzfeldt-Jakob disease prions.
Collapse
Affiliation(s)
- Kurt Giles
- Institute for Neurodegenerative Diseases (K.G., D.B.B., C.C., R.C.H., M.E., S.B., S.P., B.M.S., S.G., S.J.D., S.B.P); Small Molecule Discovery Center (A.G.-G., C.B., A.R.R.); and Departments of Neurology (K.G., C.C., R.C.H., B.M.S., S.B.P), Pharmaceutical Chemistry (A.G.-G., C.B., S.G., A.R.R.), Pathology (A.O., S.J.D.), Bioengineering and Therapeutic Sciences (B.M.S.), and Biochemistry and Biophysics (S.B.P.), University of California, San Francisco
| | - David B Berry
- Institute for Neurodegenerative Diseases (K.G., D.B.B., C.C., R.C.H., M.E., S.B., S.P., B.M.S., S.G., S.J.D., S.B.P); Small Molecule Discovery Center (A.G.-G., C.B., A.R.R.); and Departments of Neurology (K.G., C.C., R.C.H., B.M.S., S.B.P), Pharmaceutical Chemistry (A.G.-G., C.B., S.G., A.R.R.), Pathology (A.O., S.J.D.), Bioengineering and Therapeutic Sciences (B.M.S.), and Biochemistry and Biophysics (S.B.P.), University of California, San Francisco
| | - Carlo Condello
- Institute for Neurodegenerative Diseases (K.G., D.B.B., C.C., R.C.H., M.E., S.B., S.P., B.M.S., S.G., S.J.D., S.B.P); Small Molecule Discovery Center (A.G.-G., C.B., A.R.R.); and Departments of Neurology (K.G., C.C., R.C.H., B.M.S., S.B.P), Pharmaceutical Chemistry (A.G.-G., C.B., S.G., A.R.R.), Pathology (A.O., S.J.D.), Bioengineering and Therapeutic Sciences (B.M.S.), and Biochemistry and Biophysics (S.B.P.), University of California, San Francisco
| | - Ronald C Hawley
- Institute for Neurodegenerative Diseases (K.G., D.B.B., C.C., R.C.H., M.E., S.B., S.P., B.M.S., S.G., S.J.D., S.B.P); Small Molecule Discovery Center (A.G.-G., C.B., A.R.R.); and Departments of Neurology (K.G., C.C., R.C.H., B.M.S., S.B.P), Pharmaceutical Chemistry (A.G.-G., C.B., S.G., A.R.R.), Pathology (A.O., S.J.D.), Bioengineering and Therapeutic Sciences (B.M.S.), and Biochemistry and Biophysics (S.B.P.), University of California, San Francisco
| | - Alejandra Gallardo-Godoy
- Institute for Neurodegenerative Diseases (K.G., D.B.B., C.C., R.C.H., M.E., S.B., S.P., B.M.S., S.G., S.J.D., S.B.P); Small Molecule Discovery Center (A.G.-G., C.B., A.R.R.); and Departments of Neurology (K.G., C.C., R.C.H., B.M.S., S.B.P), Pharmaceutical Chemistry (A.G.-G., C.B., S.G., A.R.R.), Pathology (A.O., S.J.D.), Bioengineering and Therapeutic Sciences (B.M.S.), and Biochemistry and Biophysics (S.B.P.), University of California, San Francisco
| | - Clifford Bryant
- Institute for Neurodegenerative Diseases (K.G., D.B.B., C.C., R.C.H., M.E., S.B., S.P., B.M.S., S.G., S.J.D., S.B.P); Small Molecule Discovery Center (A.G.-G., C.B., A.R.R.); and Departments of Neurology (K.G., C.C., R.C.H., B.M.S., S.B.P), Pharmaceutical Chemistry (A.G.-G., C.B., S.G., A.R.R.), Pathology (A.O., S.J.D.), Bioengineering and Therapeutic Sciences (B.M.S.), and Biochemistry and Biophysics (S.B.P.), University of California, San Francisco
| | - Abby Oehler
- Institute for Neurodegenerative Diseases (K.G., D.B.B., C.C., R.C.H., M.E., S.B., S.P., B.M.S., S.G., S.J.D., S.B.P); Small Molecule Discovery Center (A.G.-G., C.B., A.R.R.); and Departments of Neurology (K.G., C.C., R.C.H., B.M.S., S.B.P), Pharmaceutical Chemistry (A.G.-G., C.B., S.G., A.R.R.), Pathology (A.O., S.J.D.), Bioengineering and Therapeutic Sciences (B.M.S.), and Biochemistry and Biophysics (S.B.P.), University of California, San Francisco
| | - Manuel Elepano
- Institute for Neurodegenerative Diseases (K.G., D.B.B., C.C., R.C.H., M.E., S.B., S.P., B.M.S., S.G., S.J.D., S.B.P); Small Molecule Discovery Center (A.G.-G., C.B., A.R.R.); and Departments of Neurology (K.G., C.C., R.C.H., B.M.S., S.B.P), Pharmaceutical Chemistry (A.G.-G., C.B., S.G., A.R.R.), Pathology (A.O., S.J.D.), Bioengineering and Therapeutic Sciences (B.M.S.), and Biochemistry and Biophysics (S.B.P.), University of California, San Francisco
| | - Sumita Bhardwaj
- Institute for Neurodegenerative Diseases (K.G., D.B.B., C.C., R.C.H., M.E., S.B., S.P., B.M.S., S.G., S.J.D., S.B.P); Small Molecule Discovery Center (A.G.-G., C.B., A.R.R.); and Departments of Neurology (K.G., C.C., R.C.H., B.M.S., S.B.P), Pharmaceutical Chemistry (A.G.-G., C.B., S.G., A.R.R.), Pathology (A.O., S.J.D.), Bioengineering and Therapeutic Sciences (B.M.S.), and Biochemistry and Biophysics (S.B.P.), University of California, San Francisco
| | - Smita Patel
- Institute for Neurodegenerative Diseases (K.G., D.B.B., C.C., R.C.H., M.E., S.B., S.P., B.M.S., S.G., S.J.D., S.B.P); Small Molecule Discovery Center (A.G.-G., C.B., A.R.R.); and Departments of Neurology (K.G., C.C., R.C.H., B.M.S., S.B.P), Pharmaceutical Chemistry (A.G.-G., C.B., S.G., A.R.R.), Pathology (A.O., S.J.D.), Bioengineering and Therapeutic Sciences (B.M.S.), and Biochemistry and Biophysics (S.B.P.), University of California, San Francisco
| | - B Michael Silber
- Institute for Neurodegenerative Diseases (K.G., D.B.B., C.C., R.C.H., M.E., S.B., S.P., B.M.S., S.G., S.J.D., S.B.P); Small Molecule Discovery Center (A.G.-G., C.B., A.R.R.); and Departments of Neurology (K.G., C.C., R.C.H., B.M.S., S.B.P), Pharmaceutical Chemistry (A.G.-G., C.B., S.G., A.R.R.), Pathology (A.O., S.J.D.), Bioengineering and Therapeutic Sciences (B.M.S.), and Biochemistry and Biophysics (S.B.P.), University of California, San Francisco
| | - Shenheng Guan
- Institute for Neurodegenerative Diseases (K.G., D.B.B., C.C., R.C.H., M.E., S.B., S.P., B.M.S., S.G., S.J.D., S.B.P); Small Molecule Discovery Center (A.G.-G., C.B., A.R.R.); and Departments of Neurology (K.G., C.C., R.C.H., B.M.S., S.B.P), Pharmaceutical Chemistry (A.G.-G., C.B., S.G., A.R.R.), Pathology (A.O., S.J.D.), Bioengineering and Therapeutic Sciences (B.M.S.), and Biochemistry and Biophysics (S.B.P.), University of California, San Francisco
| | - Stephen J DeArmond
- Institute for Neurodegenerative Diseases (K.G., D.B.B., C.C., R.C.H., M.E., S.B., S.P., B.M.S., S.G., S.J.D., S.B.P); Small Molecule Discovery Center (A.G.-G., C.B., A.R.R.); and Departments of Neurology (K.G., C.C., R.C.H., B.M.S., S.B.P), Pharmaceutical Chemistry (A.G.-G., C.B., S.G., A.R.R.), Pathology (A.O., S.J.D.), Bioengineering and Therapeutic Sciences (B.M.S.), and Biochemistry and Biophysics (S.B.P.), University of California, San Francisco
| | - Adam R Renslo
- Institute for Neurodegenerative Diseases (K.G., D.B.B., C.C., R.C.H., M.E., S.B., S.P., B.M.S., S.G., S.J.D., S.B.P); Small Molecule Discovery Center (A.G.-G., C.B., A.R.R.); and Departments of Neurology (K.G., C.C., R.C.H., B.M.S., S.B.P), Pharmaceutical Chemistry (A.G.-G., C.B., S.G., A.R.R.), Pathology (A.O., S.J.D.), Bioengineering and Therapeutic Sciences (B.M.S.), and Biochemistry and Biophysics (S.B.P.), University of California, San Francisco
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases (K.G., D.B.B., C.C., R.C.H., M.E., S.B., S.P., B.M.S., S.G., S.J.D., S.B.P); Small Molecule Discovery Center (A.G.-G., C.B., A.R.R.); and Departments of Neurology (K.G., C.C., R.C.H., B.M.S., S.B.P), Pharmaceutical Chemistry (A.G.-G., C.B., S.G., A.R.R.), Pathology (A.O., S.J.D.), Bioengineering and Therapeutic Sciences (B.M.S.), and Biochemistry and Biophysics (S.B.P.), University of California, San Francisco
| |
Collapse
|
10
|
The standard scrapie cell assay: development, utility and prospects. Viruses 2015; 7:180-98. [PMID: 25602372 PMCID: PMC4306833 DOI: 10.3390/v7010180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/06/2015] [Indexed: 11/23/2022] Open
Abstract
Prion diseases are a family of fatal neurodegenerative diseases that involve the misfolding of a host protein, PrPC. Measuring prion infectivity is necessary for determining efficacy of a treatment or infectivity of a prion purification procedure; animal bioassays are, however, very expensive and time consuming. The Standard Scrapie Cell Assay (SSCA) provides an alternative approach. The SSCA facilitates quantitative in vitro analysis of prion strains, titres and biological properties. Given its robust nature and potential for high throughput, the SSCA has substantial utility for in vitro characterization of prions and can be deployed in a number of settings. Here we provide an overview on establishing the SSCA, its use in studies of disease dissemination and pathogenesis, potential pitfalls and a number of remaining challenges.
Collapse
|
11
|
Oelschlegel AM, Geissen M, Lenk M, Riebe R, Angermann M, Schaetzl H, Groschup MH. A bovine cell line that can be infected by natural sheep scrapie prions. PLoS One 2015; 10:e0117154. [PMID: 25565633 PMCID: PMC4286239 DOI: 10.1371/journal.pone.0117154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/19/2014] [Indexed: 11/18/2022] Open
Abstract
Cell culture systems represent a crucial part in basic prion research; yet, cell lines that are susceptible to prions, especially to field isolated prions that were not adapted to rodents, are very rare. The purpose of this study was to identify and characterize a cell line that was susceptible to ruminant-derived prions and to establish a stable prion infection within it. Based on species and tissue of origin as well as PrP expression rate, we pre-selected a total of 33 cell lines that were then challenged with natural and with mouse propagated BSE or scrapie inocula. Here, we report the successful infection of a non-transgenic bovine cell line, a sub-line of the bovine kidney cell line MDBK, with natural sheep scrapie prions. This cell line retained the scrapie infection for more than 200 passages. Selective cloning resulted in cell populations with increased accumulation of PrPres, although this treatment was not mandatory for retaining the infection. The infection remained stable, even under suboptimal culture conditions. The resulting infectivity of the cells was confirmed by mouse bioassay (Tgbov mice, Tgshp mice). We believe that PES cells used together with other prion permissive cell lines will prove a valuable tool for ongoing efforts to understand and defeat prions and prion diseases.
Collapse
Affiliation(s)
- Anja M. Oelschlegel
- Institute of Novel and Emerging Infectious Diseases at the Friedrich-Loeffler-Institut, Greifswald—Isle of Riems, Germany
- Project Group Neuropharmacology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Markus Geissen
- Institute of Novel and Emerging Infectious Diseases at the Friedrich-Loeffler-Institut, Greifswald—Isle of Riems, Germany
- Department of Vascular Medicine, University Heart Centre Hamburg, UKE, Hamburg, Germany
| | - Matthias Lenk
- Department of Experimental Animal Facilities and Biorisk Management at the Friedrich-Loeffler-Institut, Greifswald—Isle of Riems, Germany
| | - Roland Riebe
- Department of Experimental Animal Facilities and Biorisk Management at the Friedrich-Loeffler-Institut, Greifswald—Isle of Riems, Germany
| | - Marlies Angermann
- Institute of Novel and Emerging Infectious Diseases at the Friedrich-Loeffler-Institut, Greifswald—Isle of Riems, Germany
- Administrative District Office Goerlitz, Goerlitz, Germany
| | - Hermann Schaetzl
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Martin H. Groschup
- Institute of Novel and Emerging Infectious Diseases at the Friedrich-Loeffler-Institut, Greifswald—Isle of Riems, Germany
- * E-mail:
| |
Collapse
|
12
|
Mediano DR, Sanz-Rubio D, Ranera B, Bolea R, Martín-Burriel I. The potential of mesenchymal stem cell in prion research. Zoonoses Public Health 2014; 62:165-78. [PMID: 24854140 DOI: 10.1111/zph.12138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Indexed: 01/09/2023]
Abstract
Scrapie and bovine spongiform encephalopathy are fatal neurodegenerative diseases caused by the accumulation of a misfolded protein (PrP(res)), the pathological form of the cellular prion protein (PrP(C)). For the last decades, prion research has greatly progressed, but many questions need to be solved about prion replication mechanisms, cell toxicity, differences in genetic susceptibility, species barrier or the nature of prion strains. These studies can be developed in murine models of transmissible spongiform encephalopathies, although development of cell models for prion replication and sample titration could reduce economic and timing costs and also serve for basic research and treatment testing. Some murine cell lines can replicate scrapie strains previously adapted in mice and very few show the toxic effects of prion accumulation. Brain cell primary cultures can be more accurate models but are difficult to develop in naturally susceptible species like humans or domestic ruminants. Stem cells can be differentiated into neuron-like cells and be infected by prions. However, the use of embryo stem cells causes ethical problems in humans. Mesenchymal stem cells (MSCs) can be isolated from many adult tissues, including bone marrow, adipose tissue or even peripheral blood. These cells differentiate into neuronal cells, express PrP(C) and can be infected by prions in vitro. In addition, in the last years, these cells are being used to develop therapies for many diseases, including neurodegenerative diseases. We review here the use of cell models in prion research with a special interest in the potential use of MSCs.
Collapse
Affiliation(s)
- D R Mediano
- Facultad de Veterinaria, Laboratorio de Genética Bioquímica, Universidad de Zaragoza, Zaragoza, Spain
| | | | | | | | | |
Collapse
|
13
|
Unique drug screening approach for prion diseases identifies tacrolimus and astemizole as antiprion agents. Proc Natl Acad Sci U S A 2013; 110:7044-9. [PMID: 23576755 DOI: 10.1073/pnas.1303510110] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prion diseases such as Creutzfeldt-Jakob disease (CJD) are incurable and rapidly fatal neurodegenerative diseases. Because prion protein (PrP) is necessary for prion replication but dispensable for the host, we developed the PrP-FRET-enabled high throughput assay (PrP-FEHTA) to screen for compounds that decrease PrP expression. We screened a collection of drugs approved for human use and identified astemizole and tacrolimus, which reduced cell-surface PrP and inhibited prion replication in neuroblastoma cells. Tacrolimus reduced total cellular PrP levels by a nontranscriptional mechanism. Astemizole stimulated autophagy, a hitherto unreported mode of action for this pharmacophore. Astemizole, but not tacrolimus, prolonged the survival time of prion-infected mice. Astemizole is used in humans to treat seasonal allergic rhinitis in a chronic setting. Given the absence of any treatment option for CJD patients and the favorable drug characteristics of astemizole, including its ability to cross the blood-brain barrier, it may be considered as therapy for CJD patients and for prophylactic use in familial prion diseases. Importantly, our results validate PrP-FEHTA as a method to identify antiprion compounds and, more generally, FEHTA as a unique drug discovery platform.
Collapse
|
14
|
Cancellotti E, Mahal SP, Somerville R, Diack A, Brown D, Piccardo P, Weissmann C, Manson JC. Post-translational changes to PrP alter transmissible spongiform encephalopathy strain properties. EMBO J 2013; 32:756-69. [PMID: 23395905 PMCID: PMC3590993 DOI: 10.1038/emboj.2013.6] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 01/02/2013] [Indexed: 01/09/2023] Open
Abstract
The agents responsible for transmissible spongiform encephalopathies (TSEs), or prion diseases, contain as a major component PrP(Sc), an abnormal conformer of the host glycoprotein PrP(C). TSE agents are distinguished by differences in phenotypic properties in the host, which nevertheless can contain PrP(Sc) with the same amino-acid sequence. If PrP alone carries information defining strain properties, these must be encoded by post-translational events. Here we investigated whether the glycosylation status of host PrP affects TSE strain characteristics. We inoculated wild-type mice with three TSE strains passaged through transgenic mice with PrP devoid of glycans at the first, second or both N-glycosylation sites. We compared the infectious properties of the emerging isolates with TSE strains passaged in wild-type mice by in vivo strain typing and by the standard scrapie cell assay in vitro. Strain-specific characteristics of the 79A TSE strain changed when PrP(Sc) was devoid of one or both glycans. Thus infectious properties of a TSE strain can be altered by post-translational changes to PrP which we propose result in the selection of mutant TSE strains.
Collapse
Affiliation(s)
- Enrico Cancellotti
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Sukhvir P Mahal
- Department of Infectology, Scripps Florida, Jupiter, FL, USA
| | - Robert Somerville
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Abigail Diack
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Deborah Brown
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Pedro Piccardo
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK,Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, MD, USA
| | | | - Jean C Manson
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK,Division of Neurobiology, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK. Tel.:+44 131 651900; Fax:+44 131 6519105; E-mail:
| |
Collapse
|
15
|
Heterogeneity of the Abnormal Prion Protein (PrPSc) of the Chandler Scrapie Strain. Pathogens 2013; 2:92-104. [PMID: 25436883 PMCID: PMC4235706 DOI: 10.3390/pathogens2010092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/07/2013] [Accepted: 02/09/2013] [Indexed: 01/16/2023] Open
Abstract
The pathological prion protein, PrPSc, displays various sizes of aggregates. In this study, we investigated the conformation, aggregation stability and proteinase K (PK)-sensitivity of small and large PrPSc aggregates of mouse-adapted prion strains. We showed that small PrPSc aggregates, previously thought to be PK-sensitive, are resistant to PK digestion. Furthermore, we showed that small PrPSc aggregates of the Chandler scrapie strain have greater resistance to PK digestion and aggregation-denaturation than large PrPSc aggregates of this strain. We conclude that this strain consists of heterogeneous PrPSc.
Collapse
|
16
|
Oelschlegel AM, Weissmann C. Acquisition of drug resistance and dependence by prions. PLoS Pathog 2013; 9:e1003158. [PMID: 23408888 PMCID: PMC3567182 DOI: 10.1371/journal.ppat.1003158] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 10/25/2012] [Indexed: 11/18/2022] Open
Abstract
We have reported that properties of prion strains may change when propagated in different environments. For example, when swainsonine-sensitive 22L prions were propagated in PK1 cells in the presence of swainsonine, drug-resistant variants emerged. We proposed that prions constitute quasi- populations comprising a range of variants with different properties, from which the fittest are selected in a particular environment. Prion populations developed heterogeneity even after biological cloning, indicating that during propagation mutation-like processes occur at the conformational level. Because brain-derived 22L prions are naturally swainsonine resistant, it was not too surprising that prions which had become swa sensitive after propagation in cells could revert to drug resistance. Because RML prions, both after propagation in brain or in PK1 cells, are swainsonine sensitive, we investigated whether it was nonetheless possible to select swainsonine-resistant variants by propagation in the presence of the drug. Interestingly, this was not possible with the standard line of PK1 cells, but in certain PK1 sublines not only swainsonine-resistant, but even swainsonine-dependent populations (i.e. that propagated more rapidly in the presence of the drug) could be isolated. Once established, they could be passaged indefinitely in PK1 cells, even in the absence of the drug, without losing swainsonine dependence. The misfolded prion protein (PrP(Sc)) associated with a swainsonine-dependent variant was less rapidly cleared in PK1 cells than that associated with its drug-sensitive counterpart, indicating that likely structural differences of the misfolded PrP underlie the properties of the prions. In summary, propagation of prions in the presence of an inhibitory drug may not only cause the selection of drug-resistant prions but even of stable variants that propagate more efficiently in the presence of the drug. These adaptations are most likely due to conformational changes of the abnormal prion protein.
Collapse
Affiliation(s)
- Anja M. Oelschlegel
- Department of Infectology, Scripps Florida, Jupiter, Florida, United States of America
- Department of Neuroscience, Scripps Florida, Jupiter, Florida, United States of America
| | - Charles Weissmann
- Department of Infectology, Scripps Florida, Jupiter, Florida, United States of America
| |
Collapse
|
17
|
Abstract
Several lines of evidence suggest that various cofactors may be required for prion replication. PrP binds to polyanions, and RNAs were shown to promote the conversion of PrP(C) into PrP(Sc) in vitro. In the present study, we investigated strain-specific differences in RNA requirement during in vitro conversion and the potential role of RNA as a strain-specifying component of infectious prions. We found that RNase treatment impairs PrP(Sc)-converting activity of 9 murine prion strains by protein misfolding cyclic amplification (PMCA) in a strain-specific fashion. While the addition of RNA restored PMCA conversion efficiency, the effect of synthetic polynucleotides or DNA was strain dependent, showing a different promiscuity of prion strains in cofactor utilization. The biological properties of RML propagated by PMCA under RNA-depleted conditions were compared to those of brain-derived and PMCA material generated in the presence of RNA. Inoculation of RNA-depleted RML in Tga20 mice resulted in an increased incidence of a distinctive disease phenotype characterized by forelimb paresis. However, this abnormal phenotype was not conserved in wild-type mice or upon secondary transmission. Immunohistochemical and cell panel assay analyses of mouse brains did not reveal significant differences between mice injected with the different RML inocula. We conclude that replication under RNA-depleted conditions did not modify RML prion strain properties. Our study cannot, however, exclude small variations of RML properties that would explain the abnormal clinical phenotype observed. We hypothesize that RNA molecules may act as catalysts of prion replication and that variable capacities of distinct prion strains to utilize different cofactors may explain strain-specific dependency upon RNA.
Collapse
|
18
|
Mahal SP, Jablonski J, Suponitsky-Kroyter I, Oelschlegel AM, Herva ME, Oldstone M, Weissmann C. Propagation of RML prions in mice expressing PrP devoid of GPI anchor leads to formation of a novel, stable prion strain. PLoS Pathog 2012; 8:e1002746. [PMID: 22685404 PMCID: PMC3369955 DOI: 10.1371/journal.ppat.1002746] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/27/2012] [Indexed: 12/03/2022] Open
Abstract
PrP(C), a host protein which in prion-infected animals is converted to PrP(Sc), is linked to the cell membrane by a GPI anchor. Mice expressing PrP(C) without GPI anchor (tgGPI⁻ mice), are susceptible to prion infection but accumulate anchorless PrP(Sc) extra-, rather than intracellularly. We investigated whether tgGPI⁻ mice could faithfully propagate prion strains despite the deviant structure and location of anchorless PrP(Sc). We found that RML and ME7, but not 22L prions propagated in tgGPI⁻ brain developed novel cell tropisms, as determined by the Cell Panel Assay (CPA). Surprisingly, the levels of proteinase K-resistant PrP(Sc) (PrP(res)) in RML- or ME7-infected tgGPI⁻ brain were 25-50 times higher than in wild-type brain. When returned to wild-type brain, ME7 prions recovered their original properties, however RML prions had given rise to a novel prion strain, designated SFL, which remained unchanged even after three passages in wild-type mice. Because both RML PrP(Sc) and SFL PrP(Sc) are stably propagated in wild-type mice we propose that the two conformations are separated by a high activation energy barrier which is abrogated in tgGPI⁻ mice.
Collapse
Affiliation(s)
- Sukhvir Paul Mahal
- Department of Infectology, Scripps Florida, Jupiter, Florida, United States of America
| | - Joseph Jablonski
- Department of Infectology, Scripps Florida, Jupiter, Florida, United States of America
| | | | | | - Maria Eugenia Herva
- Department of Infectology, Scripps Florida, Jupiter, Florida, United States of America
| | - Michael Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Charles Weissmann
- Department of Infectology, Scripps Florida, Jupiter, Florida, United States of America
| |
Collapse
|
19
|
Bovine Spongiform Encephalopathy: A Tipping Point in One Health and Food Safety. Curr Top Microbiol Immunol 2012. [DOI: 10.1007/978-3-662-45791-7_264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|