1
|
Żychowska J, Ćmil M, Skórka P, Olejnik-Wojciechowska J, Plewa P, Bakinowska E, Kiełbowski K, Pawlik A. The Role of Epigenetic Mechanisms in the Pathogenesis of Hepatitis C Infection. Biomolecules 2024; 14:986. [PMID: 39199374 PMCID: PMC11352264 DOI: 10.3390/biom14080986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Hepatitis C virus (HCV) is a hepatotropic virus that can be transmitted through unsafe medical procedures, such as injections, transfusions, and dental treatment. The infection may be self-limiting or manifest as a chronic form that induces liver fibrosis, cirrhosis, or progression into hepatocellular carcinoma (HCC). Epigenetic mechanisms are major regulators of gene expression. These mechanisms involve DNA methylation, histone modifications, and the activity of non-coding RNAs, which can enhance or suppress gene expression. Abnormal activity or the dysregulated expression of epigenetic molecules plays an important role in the pathogenesis of various pathological disorders, including inflammatory diseases and malignancies. In this review, we summarise the current evidence on epigenetic mechanisms involved in HCV infection and progression to HCC.
Collapse
Affiliation(s)
- Justyna Żychowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| | - Maciej Ćmil
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| | - Patryk Skórka
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| | | | - Paulina Plewa
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| |
Collapse
|
2
|
Yang D, Tian R, Deng R, Xue B, Liu S, Wang L, Li H, Liu Q, Wan M, Tang S, Wang X, Zhu H. The dual functions of KDM7A in HBV replication and immune microenvironment. Microbiol Spectr 2023; 11:e0164123. [PMID: 37623314 PMCID: PMC10581003 DOI: 10.1128/spectrum.01641-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/15/2023] [Indexed: 08/26/2023] Open
Abstract
KDM7A (lysine demethylase 7A, also known as JHDM1D) is a histone demethylase, it is mainly involved in the intracellular post-translational modifications process. Recently, it has been proved that the histone demethylase members can regulate the replication of hepatitis B virus (HBV) and the expression of key molecules in the Janus-activated kinase-signal transducer and activator of the transcription (JAK/STAT) signaling pathway by chromatin modifying mechanisms. In our study, we identify novel roles of KDM7A in HBV replication and immune microenvironment through two subjects: pathogen and host. On the one hand, KDM7A is highly expressed in HBV-infected cells and promotes HBV replication in vitro and in vivo. Moreover, KDM7A interacts with HBV covalently closed circular DNA and augments the activity of the HBV core promoter. On the other hand, KDM7A can remodel the immune microenvironment. It inhibits the expression of interferon-stimulated genes (ISGs) through the IFN-γ/JAK2/STAT1 signaling pathway in both hepatocytes and macrophages. Further study shows that KDM7A interacts with JAK2 and STAT1 and affects their methylation. In general, we demonstrate the dual functions of KDM7A in HBV replication and immune microenvironment, and then we propose a new therapeutic target for HBV infection and immunotherapy. IMPORTANCE Histone lysine demethylase KDM7A can interact with covalently closed circular DNA and promote the replication of hepatitis B virus (HBV). The IFN-γ/JAK2/STAT1 signaling pathway in macrophages and hepatocytes is also downregulated by KDM7A. This study provides new insights into the mechanism of HBV infection and the remodeling of the immune microenvironment.
Collapse
Affiliation(s)
- Di Yang
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Renyun Tian
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Rilin Deng
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Binbin Xue
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology and Immunology, Institute of Pathogen Biology and Immunology, School of Basic Medicine and Life Science, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The First Affiliated Hospital and The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan, China
| | - Shun Liu
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Luoling Wang
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Huiyi Li
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Qian Liu
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Mengyu Wan
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Songqing Tang
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Xiaohong Wang
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
| | - Haizhen Zhu
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology and Immunology, Institute of Pathogen Biology and Immunology, School of Basic Medicine and Life Science, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The First Affiliated Hospital and The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan, China
| |
Collapse
|
3
|
Xie R, Fan J, Wen J, Jin K, Zhan J, Yuan S, Tang Y, Nie X, Wen Z, Li H, Chen C, Wang DW. LncRNA ZNF593-AS alleviates diabetic cardiomyopathy via suppressing IRF3 signaling pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:689-703. [PMID: 37215148 PMCID: PMC10199406 DOI: 10.1016/j.omtn.2023.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/28/2023] [Indexed: 05/24/2023]
Abstract
Diabetes could directly induce cardiac injury, leading to cardiomyopathy. However, treatment strategies for diabetic cardiomyopathy remain limited. ZNF593-AS knockout and cardiomyocyte-specific transgenic mice were constructed. In addition, high-fat diet (HFD)-induced diabetic mouse model and db/db mice, another classic diabetic mouse model, were employed. ZNF593-AS was silenced using GapmeR, a modified antisense oligonucleotide, while overexpressed using a recombinant adeno-associated virus serotype 9-mediated gene delivery system. Transcriptome sequencing, RNA pull-down assays, and RNA immunoprecipitation assays were also performed to investigate the underlying mechanisms. ZNF593-AS expression was decreased in diabetic hearts. ZNF593-AS attenuated the palmitic acid-induced apoptosis of cardiomyocytes in vitro. In HFD-induced diabetic mice, ZNF593-AS deletion aggravated cardiac dysfunction and enhanced cardiac apoptosis and inflammation. In contrast, HFD-induced cardiac dysfunction was improved in ZNF593-AS transgenic mice. Consistently, ZNF593-AS exerted the same cardioprotective effects in db/db mice. Mechanistically, ZNF593-AS directly interacted with the functional domain of interferon regulatory factor 3 (IRF3), and suppressed fatty acid-induced phosphorylation and activation of IRF3, contributing to the amelioration of cardiac cell death and inflammation. In conclusion, our results identified the protective role of ZNF593-AS in diabetic cardiomyopathy, suggesting a novel potential therapeutic target.
Collapse
Affiliation(s)
- Rong Xie
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiahui Fan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jianpei Wen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kunying Jin
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiabing Zhan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuai Yuan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuyan Tang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiang Nie
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng Wen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
4
|
Lv H, Peng Z, Jia B, Jing H, Cao S, Xu Z, Dong W. Transcriptome analysis of PK-15 cells expressing CSFV NS4A. BMC Vet Res 2022; 18:434. [PMID: 36503524 PMCID: PMC9742017 DOI: 10.1186/s12917-022-03533-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Classical swine fever (CSF) is a severe disease of pigs that results in huge economic losses worldwide and is caused by classical swine fever virus (CSFV). CSFV nonstructural protein 4 A (NS4A) plays a crucial role in infectious CSFV particle formation. However, the function of NS4A during CSFV infection is not well understood. RESULTS: In this study, we used RNA-seq to investigate the functional role of CSFV NS4A in PK-15 cells. A total of 3893 differentially expressed genes (DEGs) were identified in PK-15 cells expressing NS4A compared to cells expressing the empty vector (NC). Twelve DEGs were selected and further verified by RT‒qPCR. GO and KEGG enrichment analyses revealed that these DEGs were associated with multiple biological functions, including cell adhesion, apoptosis, host defence response, the inflammatory response, the immune response, and autophagy. Interestingly, some genes associated with host immune defence and inflammatory response were downregulated, and some genes associated with host apoptosis and autophagy were upregulated. CONCLUSION CSFV NS4A inhibits the innate immune response, and suppresses the expression of important genes associated with defence response to viruses and inflammatory response, and regulates cell adhesion, apoptosis and autophagy.
Collapse
Affiliation(s)
- Huifang Lv
- grid.256922.80000 0000 9139 560XKey Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, 450046 Zhengzhou, China
| | - Zhifeng Peng
- grid.256922.80000 0000 9139 560XKey Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, 450046 Zhengzhou, China
| | - Bingxin Jia
- grid.256922.80000 0000 9139 560XKey Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, 450046 Zhengzhou, China
| | - Huiyuan Jing
- grid.256922.80000 0000 9139 560XKey Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, 450046 Zhengzhou, China
| | - Sufang Cao
- grid.256922.80000 0000 9139 560XKey Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, 450046 Zhengzhou, China
| | - Zhikun Xu
- grid.256922.80000 0000 9139 560XKey Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, 450046 Zhengzhou, China
| | - Wang Dong
- grid.256922.80000 0000 9139 560XKey Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, 450046 Zhengzhou, China
| |
Collapse
|
5
|
Xu J, Chen S, Liang J, Hao T, Wang H, Liu G, Jin X, Li H, Zhang J, Zhang C, He Y. Schlafen family is a prognostic biomarker and corresponds with immune infiltration in gastric cancer. Front Immunol 2022; 13:922138. [PMID: 36090985 PMCID: PMC9452737 DOI: 10.3389/fimmu.2022.922138] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The Schlafen (SLFN) gene family plays an important role in immune cell differentiation and immune regulation. Previous studies have found that the increased SLFN5 expression in patients with intestinal metaplasia correlates with gastric cancer (GC) progression. However, no investigation has been conducted on the SLFN family in GC. Therefore, we systematically explore the expression and prognostic value of SLFN family members in patients with GC, elucidating their possible biological function and its correlation with tumor immune cells infiltration. TCGA database results indicated that the SLFN5, SLFN11, SLFN12, SLFN12L, and SLFN13 expression was significantly higher in GC. The UALCAN and KM plotter databases indicated that enhanced the SLFN family expression was associated with lymph node metastasis, tumor stage, and tumor grade and predicted an adverse prognosis. cBioportal database revealed that the SLFN family had a high frequency of genetic alterations in GC (about 12%), including mutations and amplification. The GeneMANIA and STRING databases identified 20 interacting genes and 16 interacting proteins that act as potential targets of the SLFN family. SLFN5, SLFN11, SLFN12, SLFN12L, and SLFN14 may be implicated in the immunological response, according to Gene Set Enrichment Analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Additionally, Timer and TISIDB databases indicate that SLFN5, SLFN11, SLFN12, SLFN12L, and SLFN14 are involved in the immune response. Furthermore, Timer, TCGA, and TISIDB databases suggested that the SLFN5, SLFN11, SLFN12, SLFN12L, and SLFN14 expression in GC is highly linked with immune cell infiltration levels, immune checkpoint, and the many immune cell marker sets expression. We isolated three samples of peripheral blood mononuclear cell (PBMC) and activated T cells; the results showed the expression of SLFN family members decreased significantly when T cell active. In conclusion, the SLFN family of proteins may act as a prognostic indicator of GC and is associated with immune cell infiltration and immune checkpoint expression in GC. Additionally, it may be involved in tumor immune evasion by regulating T cell activation.
Collapse
Affiliation(s)
- Jiannan Xu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Department of Thoracic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Songyao Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jianming Liang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tengfei Hao
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Huabin Wang
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Guangyao Liu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xinghan Jin
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Huan Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Junchang Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Changhua Zhang, ; Yulong He,
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Center of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Changhua Zhang, ; Yulong He,
| |
Collapse
|