1
|
Medina GN, Diaz San Segundo F. Virulence and Immune Evasion Strategies of FMDV: Implications for Vaccine Design. Vaccines (Basel) 2024; 12:1071. [PMID: 39340101 PMCID: PMC11436118 DOI: 10.3390/vaccines12091071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Foot-and-mouth disease (FMD) is globally recognized as a highly economically devastating and prioritized viral disease affecting livestock. Vaccination remains a crucial preventive measure against FMD. The improvement of current vaccine platforms could help control outbreaks, leading to the potential eradication of the disease. In this review, we describe the variances in virulence and immune responses among FMD-susceptible host species, specifically bovines and pigs, highlighting the details of host-pathogen interactions and their impact on the severity of the disease. This knowledge serves as an important foundation for translating our insights into the rational design of vaccines and countermeasure strategies, including the use of interferon as a biotherapeutic agent. Ultimately, in this review, we aim to bridge the gap between our understanding of FMDV biology and the practical approaches to control and potentially eradicate FMD.
Collapse
Affiliation(s)
- Gisselle N Medina
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, KS 66502, USA
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Orient Point, NY 11957, USA
| | | |
Collapse
|
2
|
Li L, Li X, Zhong H, Li M, Wan B, He W, Zhang Y, Du Y, Chen D, Zhang W, Ji P, Jiang D, Han S. VP3 protein of Senecavirus A promotes viral IRES-driven translation and attenuates innate immunity by specifically relocalizing hnRNPA2B1. J Virol 2024; 98:e0122724. [PMID: 39207136 PMCID: PMC11406996 DOI: 10.1128/jvi.01227-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Viruses deploy sophisticated strategies to hijack the host's translation machinery to favor viral protein synthesis and counteract innate cellular defenses. However, little is known about the mechanisms by which Senecavirus A (SVA) controls the host's translation. Using a series of sophisticated molecular cell manipulation techniques, heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) was identified as an essential host factor involved in translation control in SVA-infected cells. It was also determined that the SVA structural protein, VP3, binds to and relocalizes hnRNPA2B1, which interferes with the host's protein synthesis machinery to establish a cellular environment that facilitates viral propagation via a two-pronged strategy: first, hnRNPA2B1 serves as a potent internal ribosome entry site (IRES) trans-acting factor, which is selectively co-opted to promote viral IRES-driven translation by supporting the assembly of translation initiation complexes. Second, a strong repression of host cell translation occurs in the context of the VP3-hnRNPA2B1 interaction, resulting in attenuation of the interferons response. This is the first study to demonstrate the interaction between SVA VP3 and hnRNPA2B1, and to characterize their key roles in manipulating translation. This novel dual mechanism, which regulates selective mRNA translation and immune evasion of virus-infected cells, highlights the VP3-hnRNPA2B1 complex as a potential target for the development of modified antiviral or oncolytic reagents. IMPORTANCE Viral reproduction is contingent on viral protein synthesis, which relies entirely on the host's translation machinery. As such, viruses often need to control the cellular translational apparatus to favor viral protein production and avoid host innate defenses. Senecavirus A (SVA) is an important virus, both as an emerging pathogen in the pork industry and as a potential oncolytic virus for neuroendocrine cancers. Here, heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) was identified as a critical regulator of the translational landscape during SVA infection. This study supports a model whereby the VP3 protein of SVA efficiently subverts the host's protein synthesis machinery through its ability to bind to and relocalize hnRNPA2B1, not only selectively promoting viral internal ribosome entry site-driven translation but also resulting in global translation shutdown and immune evasion. Together, these data provide new insights into how the complex interactions between translation machinery, SVA, and innate immunity contribute to the pathogenicity of the SVA.
Collapse
Affiliation(s)
- Lu Li
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xinwei Li
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Han Zhong
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Mingyang Li
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Bo Wan
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Wenrui He
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Yuhang Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Yongkun Du
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Dongjie Chen
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Wei Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengchao Ji
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Dawei Jiang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Shichong Han
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
3
|
Wang X, Liao Y, Abdullah SW, Wu J, Zhang Y, Ren M, Dong H, Bai M, Sun S, Guo H. FGFR1-mediated enhancement of foot-and-mouth disease virus entry. Vet Microbiol 2024; 298:110237. [PMID: 39217891 DOI: 10.1016/j.vetmic.2024.110237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Foot-and-mouth disease virus (FMDV), a member of picornavirus, can enter into host cell via macropinocytosis. Although it is known that receptor tyrosine kinases (RTKs) play a crucial role in FMDV macropinocytic entry, the specific RTK responsible for regulating this process and the intricacies of RTK-mediated downstream signaling remain to be elucidated. Here, we conducted a screening of RTK inhibitors to assess their efficacy against FMDV. Our findings revealed that two compounds specifically targeting fibroblast growth factor receptor 1 (FGFR1) and FMS-like tyrosine kinase 3 (FLT3) significantly disrupted FMDV entry. Furthermore, additional evaluation through gene knockdown and overexpression confirmed the promotion effect of FGFR1 and FLT3 on FMDV entry. Interestingly, we discovered that the increasement of FMDV entry facilitated by FGFR1 and FLT3 can be ascribed to increased macropinocytic uptake. Additionally, in-depth mechanistic study demonstrated that FGFR1 interacts with FMDV VP3 and undergoes phosphorylation during FMDV entry. Furthermore, the FGFR1 inhibitor inhibited FMDV-induced activation of p21-activated kinase 1 (PAK1) on Thr212 and Thr423 sites. Consistent with these findings, the ectopic expression of FGFR1 resulted in a concomitant increase in phosphorylation level of PAK1 on Thr212 and Thr423 sites. Taken together, our findings represent the initial exploration of FGFR1's involvement in FMDV macropinocytic entry, providing novel insights with potential implications for the development of antiviral strategies.
Collapse
Affiliation(s)
- Xuefei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Sahibzada Waheed Abdullah
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Jin'en Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Yun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Mei Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (Gembloux Agro-Bio Tech), University of Liège (ULg), Avenue de l'Hôpital, 11, Liège 4000, Belgium
| | - Hu Dong
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Manyuan Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China.
| |
Collapse
|
4
|
Deb A, Nagpal S, Yadav RK, Thakur H, Nair D, Krishnan V, Vrati S. Japanese encephalitis virus NS5 protein interacts with nucleolin to enhance the virus replication. J Virol 2024; 98:e0085824. [PMID: 39078257 PMCID: PMC11334521 DOI: 10.1128/jvi.00858-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/29/2024] [Indexed: 07/31/2024] Open
Abstract
Japanese encephalitis virus (JEV) is an arthropod-borne, plus-strand flavivirus causing viral encephalitis in humans with a high case fatality rate. The JEV non-structural protein 5 (NS5) with the RNA-dependent RNA polymerase activity interacts with the viral and host proteins to constitute the replication complex. We have identified the multifunctional protein Nucleolin (NCL) as one of the several NS5-interacting host proteins. We demonstrate the interaction and colocalization of JEV NS5 with NCL in the virus-infected HeLa cells. The siRNA-mediated knockdown of NCL indicated that it was required for efficient viral replication. Importantly, JEV grew to higher titers in cells over-expressing exogenous NCL, demonstrating its pro-viral role. We demonstrated that NS5 interacted with the RRM and GAR domains of NCL. We show that the NCL-binding aptamer AS1411 containing the G-quadruplex (GQ) structure and the GQ ligand BRACO-19 caused significant inhibition of JEV replication. The antiviral effect of AS1411 and BRACO-19 could be overcome in HeLa cells by the overexpression of exogenous NCL. We demonstrated that the synthetic RNAs derived from the 3'-NCR of JEV genomic RNA containing the GQ sequence could bind NCL in vitro. The replication complex binding to the 3'-NCR is required for the viral RNA synthesis. It is likely that NCL present in the replication complex destabilizes the GQ structures in the genomic RNA, thus facilitating the movement of the replication complex resulting in efficient virus replication.IMPORTANCEJapanese encephalitis virus (JEV) is endemic in most parts of South-East Asia and the Western Pacific region, causing epidemics of encephalitis with a high case fatality rate. While a tissue culture-derived JEV vaccine is available, no antiviral therapy exists. The JEV NS5 protein has RNA-dependent RNA polymerase activity. Together with several host and viral proteins, it constitutes the replication complex necessary for virus replication. Understanding the interaction of NS5 with the host proteins could help design novel antivirals. We identified Nucleolin (NCL) as a crucial host protein interactor of JEV NS5 having a pro-viral role in virus replication. The NS5-interacting NCL binds to the G-quadruplex (GQ) structure sequence in the 3'-NCR of JEV RNA. This may smoothen the movement of the replication complex along the genomic RNA, thereby facilitating the virus replication. This study is the first report on how NCL, a host protein, helps in JEV replication through GQ-binding.
Collapse
Affiliation(s)
- Arundhati Deb
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Shilpi Nagpal
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Rajnesh Kumari Yadav
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Harsh Thakur
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Deepak Nair
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Vengadesan Krishnan
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Sudhanshu Vrati
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
5
|
Wu J, Sun C, Guan J, Abdullah SW, Wang X, Ren M, Qiao L, Sun S, Guo H. Nuclear ribonucleoprotein RALY downregulates foot-and-mouth disease virus replication but antagonized by viral 3C protease. Microbiol Spectr 2024; 12:e0365823. [PMID: 38323828 PMCID: PMC10913732 DOI: 10.1128/spectrum.03658-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
The internal ribosome entry site (IRES) element constitutes a cis-acting RNA regulatory sequence that recruits the ribosomal initiation complex in a cap-independent manner, assisted by various RNA-binding proteins and IRES trans-acting factors. Foot-and-mouth disease virus (FMDV) contains a functional IRES element and takes advantage of this element to subvert host translation machinery. Our study identified a novel mechanism wherein RALY, a member of the heterogeneous nuclear ribonucleoproteins (hnRNP) family belonging to RNA-binding proteins, binds to the domain 3 of FMDV IRES via its RNA recognition motif residue. This interaction results in the downregulation of FMDV replication by inhibiting IRES-driven translation. Furthermore, our findings reveal that the inhibitory effect exerted by RALY on FMDV replication is not attributed to the FMDV IRES-mediated assembly of translation initiation complexes but rather to the impediment of 80S ribosome complex formation after binding with 40S ribosomes. Conversely, 3Cpro of FMDV counteracts RALY-mediated inhibition by the ubiquitin-proteasome pathway. Therefore, these results indicate that RALY, as a novel critical IRES-binding protein, inhibits FMDV replication by blocking the formation of 80S ribosome, providing a deeper understanding of how viruses recruit and manipulate host factors. IMPORTANCE The translation of FMDV genomic RNA driven by IRES element is a crucial step for virus infections. Many host proteins are hijacked to regulate FMDV IRES-dependent translation, but the regulatory mechanism remains unknown. Here, we report for the first time that cellular RALY specifically interacts with the IRES of FMDV and negatively regulates viral replication by blocking 80S ribosome assembly on FMDV IRES. Conversely, RALY-mediated inhibition is antagonized by the viral 3C protease by the ubiquitin-proteasome pathway. These results would facilitate further understanding of virus-host interactions and translational control during viral infection.
Collapse
Affiliation(s)
- Jin'en Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Chao Sun
- Division of Livestock Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junyong Guan
- Division of Livestock Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Sahibzada Waheed Abdullah
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuefei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Mei Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lu Qiao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- School of Animal Science, Yangtze University, Jingzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
6
|
Wang D, Hou L, Ji Y, Xie J, Zhao J, Zhu N, Yang X, Zhou J, Cui Y, Guo J, Feng X, Liu J. Ubiquitination-dependent degradation of nucleolin mediated by porcine circovirus type 3 capsid protein. J Virol 2023; 97:e0089423. [PMID: 38032196 PMCID: PMC10734473 DOI: 10.1128/jvi.00894-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Porcine circovirus type 3 (PCV3) is an emerging pathogen that causes multisystem disease in pigs and poses a severe threat to the swine industry. However, the mechanisms of how PCV3 uses host proteins to regulate its own life cycle are not well understood. In this study, we found that PCV3 capsid protein interacts with nucleolin and degrades it. Degradation of nucleolin by the PCV3 capsid protein requires recruitment of the enzyme RNF34, which is transported to the nucleolus from the cytoplasm in the presence of the PCV3 capsid protein. Nucleolin also decreases PCV3 replication by promoting the release of interferon β. These findings clarify the mechanism by which nucleolin modulates PCV3 replication in cells, thereby facilitating to provide an important strategy for preventing and controlling PCV3 infection.
Collapse
Affiliation(s)
- Dedong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ying Ji
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jiali Xie
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jie Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ning Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoyu Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongqiu Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xufei Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Zhang XY, Li YY, Huang HX, Zhao CC, Lei XX, Zhao BP, Lu JY, Lan T, Sun WC. Seneca Valley virus 3C pro antagonizes host innate immune responses and programmed cell death. Front Microbiol 2023; 14:1235620. [PMID: 37869659 PMCID: PMC10588452 DOI: 10.3389/fmicb.2023.1235620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Seneca Valley virus (SVV), a member of the Picornaviridae family, may cause serious water blister diseases in pregnant sows and acute death in newborn piglets, which have resulted in economic losses in pig production. The 3C protease is a vital enzyme for SVV maturation and is capable of regulating protein cleavage and RNA replication of the virus. Additionally, this protease can impede the host's innate immune response by targeting the interferon pathway's principal factor and enhance virus replication by modulating the host's RNA metabolism while simultaneously triggering programmed cell death. This article reviews recent studies on SVV 3C functions, which include viral replication promotion, cell apoptosis modulation and host immune response evasion, and provides a theoretical basis for research on preventing and controlling SVV infection.
Collapse
Affiliation(s)
- Xin-yu Zhang
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Yu-ying Li
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Hai-xin Huang
- Institute of Virology, Wenzhou University, Wenzhou, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Chen-chen Zhao
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Xiao-xiao Lei
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Bao-peng Zhao
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Jing-yi Lu
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Tian Lan
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Wen-chao Sun
- Institute of Virology, Wenzhou University, Wenzhou, China
| |
Collapse
|
8
|
Wang X, Abdullah SW, Wu J, Tang J, Zhang Y, Dong H, Bai M, Wei S, Sun S, Guo H. Foot-and-mouth disease virus downregulates vacuolar protein sorting 28 to promote viral replication. J Virol 2023; 97:e0018123. [PMID: 37565750 PMCID: PMC10506468 DOI: 10.1128/jvi.00181-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/11/2023] [Indexed: 08/12/2023] Open
Abstract
Vacuolar protein sorting 28 (Vps28), a component of the ESCRT-I (endosomal sorting complex required for transport I), plays an important role in the pathogen life cycle. Here, we investigated the reciprocal regulation between Vps28 and the foot-and-mouth disease virus (FMDV). Overexpression of Vps28 decreased FMDV replication. On the contrary, the knockdown of Vps28 increased viral replication. Subsequently, the mechanistic study showed that Vps28 destabilized the replication complex (RC) by associating with 3A rather than 2C protein. In addition, Vps28 targeted FMDV VP0, VP1, and VP3 for degradation to inhibit viral replication. To counteract this, FMDV utilized tactics to restrict Vps28 to promote viral replication. FMDV degraded Vps28 mainly through the ubiquitin-proteasome pathway. Additional data demonstrated that 2B and 3A proteins recruited E3 ubiquitin ligase tripartite motif-containing protein 21 to degrade Vps28 at Lys58 and Lys25, respectively, and FMDV 3Cpro degraded Vps28 through autophagy and its protease activity. Meantime, the 3Cpro-mediated Vps28 degradation principally alleviated the ability to inhibit viral propagation. Intriguingly, we also demonstrated that the N-terminal and C-terminal domains of Vps28 were responsible for the suppression of FMDV replication, which suggested the elaborated counteraction between FMDV and Vps28. Collectively, our results first investigate the role of ESCRTs in host defense against picornavirus and unveil underlying strategies utilized by FMDV to evade degradation machinery for triumphant propagation. IMPORTANCE ESCRT machinery plays positive roles in virus entry, replication, and budding. However, little has been reported on its negative regulation effects during viral infection. Here, we uncovered the novel roles of ESCRT-I subunit Vps28 on FMDV replication. The data indicated that Vps28 destabilized the RC and impaired viral structural proteins VP0, VP1, and VP3 to inhibit viral replication. To counteract this, FMDV hijacked intracellular protein degradation pathways to downregulate Vps28 expression and thus promoted viral replication. Our findings provide insights into how ESCRT regulates pathogen life cycles and elucidate additional information regarding FMDV counteraction of host antiviral activity.
Collapse
Affiliation(s)
- Xuefei Wang
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Sahibzada Waheed Abdullah
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jin'en Wu
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jianli Tang
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Hu Dong
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Manyuan Bai
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Sumin Wei
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
9
|
Kiliszek A, Rypniewski W, Błaszczyk L. Exploring structural determinants and the role of nucleolin in formation of the long-range interactions between untranslated regions of p53 mRNA. RNA (NEW YORK, N.Y.) 2023; 29:630-643. [PMID: 36653114 PMCID: PMC10158990 DOI: 10.1261/rna.079378.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/02/2023] [Indexed: 05/06/2023]
Abstract
p53 protein is a key regulator of cellular homeostasis by coordinating the framework of antiproliferative pathways as a response to various stress factors. Although the main mechanism of stress-dependent induction of p53 protein relies on post-translational modifications influencing its stability and activity, a growing amount of evidence suggests that complex regulation of p53 expression occurs also at the mRNA level. This study explores structural determinants of long-range RNA-RNA interactions in p53 mRNA, crucial for stress-dependent regulation of p53 protein translation. We demonstrate that the 8-nt bulge motif plays a key structural role in base-pairing of complementary sequences from the 5' and 3' untranslated regions of p53 mRNA. We also show that one of the p53 translation regulators, nucleolin, displays an RNA chaperone activity and facilitates the association of sequences involved in the formation of long-range interactions in p53 mRNA. Nucleolin promotes base-pairing of complementary sequences through the bulge motif, because mutations of this region reduce or inhibit pairing while compensatory mutations restore this interaction. Mutational analysis of nucleolin reveals that all four RNA recognition motifs are indispensable for optimal RNA chaperone activity of nucleolin. These observations help to decipher the unique mechanism of p53 protein translation regulation pointing to bulge motif and nucleolin as the critical factors during intramolecular RNA-RNA recognition in p53 mRNA.
Collapse
Affiliation(s)
- Agnieszka Kiliszek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| | - Leszek Błaszczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| |
Collapse
|
10
|
Abstract
Viruses lack the properties to replicate independently due to the limited resources encoded in their genome; therefore, they hijack the host cell machinery to replicate and survive. Picornaviruses get the prerequisite for effective protein synthesis through specific sequences known as internal ribosome entry sites (IRESs). In the past 2 decades, significant progress has been made in identifying different types of IRESs in picornaviruses. This review will discuss the past and current findings related to the five different types of IRESs and various internal ribosome entry site trans-acting factors (ITAFs) that either promote or suppress picornavirus translation and replication. Some IRESs are inefficient and thus require ITAFs. To achieve their full efficiency, they recruit various ITAFs, which enable them to translate more effectively and efficiently, except type IV IRES, which does not require any ITAFs. Although there are two kinds of ITAFs, one promotes viral IRES-dependent translation, and the second type restricts. Picornaviruses IRESs are classified into five types based on their use of sequence, ITAFs, and initiation factors. Some ITAFs regulate IRES activity by localizing to the viral replication factories in the cytoplasm. Also, some drugs, chemicals, and herbal extracts also regulate viral IRES-dependent translation and replication. Altogether, this review will elaborate on our understanding of the past and recent advancements in the IRES-dependent translation and replication of picornaviruses. IMPORTANCE The family Picornaviridae is divided into 68 genera and 158 species. The viruses belonging to this family range from public health importance, such as poliovirus, enterovirus A71, and hepatitis A virus, to animal viruses of great economic importance, such as foot-and-mouth disease virus. The genomes of picornaviruses contain 5' untranslated regions (5' UTRs), which possess crucial and highly structured stem-loops known as IRESs. IRES assemble the ribosomes and facilitate the cap-independent translation. Virus-host interaction is a hot spot for researchers, which warrants deep insight into understanding viral pathogenesis better and discovering new tools and ways for viral restriction to improve human and animal health. The cap-independent translation in the majority of picornaviruses is modulated by ITAFs, which bind to various IRES regions to initiate the translation. The discoveries of ITAFs substantially contributed to understanding viral replication behavior and enhanced our knowledge about virus-host interaction more effectively than ever before. This review discussed the various types of IRESs found in Picornaviridae, past and present discoveries regarding ITAFs, and their mechanism of action. The herbal extracts, drugs, and chemicals, which indicated their importance in controlling viruses, were also summarized. In addition, we discussed the movement of ITAFs from the nucleus to viral replication factories. We believe this review will stimulate researchers to search for more novel ITAFs, drugs, herbal extracts, and chemicals, enhancing the understanding of virus-host interaction.
Collapse
|
11
|
Li Y, Wei L, Cheng A, Wang M, Ou X, Mao S, Tian B, Yang Q, Wu Y, Zhang S, Huang J, Gao Q, Sun D, Zhao X, Jia R, Liu M, Zhu D, Chen S, Yu Y, Zhang L, Pan L. Specific DNAzymes cleave the 300-618 nt of 5'UTR to inhibit DHAV-1 translation and replication. Front Microbiol 2022; 13:1064612. [PMID: 36578574 PMCID: PMC9791187 DOI: 10.3389/fmicb.2022.1064612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
DNAzymes effectively inhibit the expression of viral genes. Duck hepatitis A virus type-1 (DHAV-1) genomic RNA carries an internal ribosome entry site (IRES). The IRES initiates the translation of DHAV-1 via a mechanism that differs from that of cap-dependent translation. Therefore, it is an attractive target for the treatment of DHAV-1. In this study, we designed 6 DNAzymes (Dzs) specifically targeting 300-618 nt sequence in the DHAV-1 5'untranslated region (UTR; a predicted IRES-like element). In the presence of divalent metal ions, three designed DNAzymes (DZ369, DZ454, and DZ514) efficiently cleaved the 300-618 nt sequence of the DHAV-1 5'UTR RNA. The activity of the Dzs was particularly dependent on Mg2+ ions. Subsequently, the translation inhibitory activity of these Dzs was determined by western blotting experiments. The Dzs effectively inhibited the translation mediated by the 300-618 nt of DHAV-1 5'UTR in duck embryo fibroblasts (DEFs). Importantly, DZ454 showed the strongest inhibitory effect, and its inhibition was time and dose dependent. However, none of the Dzs showed significant inhibition of cap-dependent translation. These results suggest that these Dzs show specificity for target RNA. Moreover, DZ454 inhibited the replication of DHAV-1. In conclusion, the designed DNAzymes can be used as inhibitors of DHAV-1 RNA translation and replication, providing new insights useful for the development of anti-DHAV-1 drugs.
Collapse
Affiliation(s)
- Yanglin Li
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Wei
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,*Correspondence: Mingshu Wang,
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
12
|
Wang D, Hou L, Zhu N, Yang X, Zhou J, Cui Y, Guo J, Feng X, Liu J. Interaction of Nucleolin with the Fusion Protein of Avian Metapneumovirus Subgroup C Contributes to Viral Replication. Viruses 2022; 14:v14071402. [PMID: 35891383 PMCID: PMC9317408 DOI: 10.3390/v14071402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
Avian metapneumovirus subgroup C (aMPV/C) is highly pathogenic to various avian species with acute respiratory tract clinicopathology and/or drops in egg production. Nucleolin (NCL), an important nucleolar protein, has been shown to regulate multiple viral replication and serve as a functional receptor for viral entry and internalization. Whether NCL is involved in aMPV/C pathogenesis is not known. In this study, we found that aMPV/C infection altered the subcellular localization of NCL in cultured cells. siRNA-targeted NCL resulted in a remarkable decline in aMPV/C replication in Vero cells. DF-1 cells showed a similar response after CRISPR/Cas9-mediated knock out of NCL during aMPV/C infection. Conversely, NCL overexpression significantly increased aMPV/C replication. Pretreatment with AS1411-a aptamer, a guanine (G)-rich oligonucleotide that forms four-stranded structures and competitively binding to NCL, decreased aMPV/C replication and viral titers in cultured cells. Additionally, we found that the aMPV/C fusion (F) protein specifically interacts with NCL through its central domain and that AS1411 disrupts this interaction, thus inhibiting viral replication. Taken together, these results reveal that the aMPV/C F protein interacts with NCL, which is employed by aMPV/C for efficient replication, thereby highlighting the strategic potential for control and therapy of aMPV/C infection.
Collapse
Affiliation(s)
- Dedong Wang
- College of Veterimary Medicine, Yangzhou University, Yangzhou 225009, China; (D.W.); (L.H.); (N.Z.); (X.Y.); (J.Z.); (Y.C.); (J.G.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Lei Hou
- College of Veterimary Medicine, Yangzhou University, Yangzhou 225009, China; (D.W.); (L.H.); (N.Z.); (X.Y.); (J.Z.); (Y.C.); (J.G.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Ning Zhu
- College of Veterimary Medicine, Yangzhou University, Yangzhou 225009, China; (D.W.); (L.H.); (N.Z.); (X.Y.); (J.Z.); (Y.C.); (J.G.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyu Yang
- College of Veterimary Medicine, Yangzhou University, Yangzhou 225009, China; (D.W.); (L.H.); (N.Z.); (X.Y.); (J.Z.); (Y.C.); (J.G.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jianwei Zhou
- College of Veterimary Medicine, Yangzhou University, Yangzhou 225009, China; (D.W.); (L.H.); (N.Z.); (X.Y.); (J.Z.); (Y.C.); (J.G.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yongqiu Cui
- College of Veterimary Medicine, Yangzhou University, Yangzhou 225009, China; (D.W.); (L.H.); (N.Z.); (X.Y.); (J.Z.); (Y.C.); (J.G.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jinshuo Guo
- College of Veterimary Medicine, Yangzhou University, Yangzhou 225009, China; (D.W.); (L.H.); (N.Z.); (X.Y.); (J.Z.); (Y.C.); (J.G.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xufei Feng
- College of Veterimary Medicine, Yangzhou University, Yangzhou 225009, China; (D.W.); (L.H.); (N.Z.); (X.Y.); (J.Z.); (Y.C.); (J.G.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jue Liu
- College of Veterimary Medicine, Yangzhou University, Yangzhou 225009, China; (D.W.); (L.H.); (N.Z.); (X.Y.); (J.Z.); (Y.C.); (J.G.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
13
|
Song J, Quan R, Wang D, Liu J. Seneca Valley Virus 3C pro Mediates Cleavage and Redistribution of Nucleolin To Facilitate Viral Replication. Microbiol Spectr 2022; 10:e0030422. [PMID: 35357201 PMCID: PMC9045095 DOI: 10.1128/spectrum.00304-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/04/2022] [Indexed: 11/21/2022] Open
Abstract
Seneca Valley virus (SVV) is a recently discovered pathogen that poses a significant threat to the global pig industry. It has been shown that many viruses are reliant on nucleocytoplasmic trafficking of nucleolin (NCL) for their own replication. Here, we demonstrate that NCL, a critical protein component of the nucleolus, is cleaved and translocated out of the nucleoli following SVV infection. Furthermore, our data suggest that SVV 3C protease (3Cpro) is responsible for this cleavage and subsequent delocalization from the nucleoli, and that inactivation of this protease activity abolished this cleavage and translocation. SVV 3Cpro cleaved NCL at residue Q545, and the cleavage fragment (aa 1 to 545) facilitated viral replication, which was similar to the activities described for full-length NCL. Small interfering RNA-mediated knockdown indicated that NCL is required for efficient viral replication and viral protein expression. In contrast, lentivirus-mediated overexpression of NCL significantly enhanced viral replication. Taken together, these results indicate that SVV 3Cpro targets NCL for its cleavage and redistribution, which contributes to efficient viral replication, thereby emphasizing the potential target of antiviral strategies for the control of SVV infection. IMPORTANCE The nucleolus is a subnuclear cellular compartment, and nucleolin (NCL) resides predominantly in the nucleolus. NCL participates in viral replication, translation, internalization, and also serves as a receptor for virus entry. The interaction between NCL and SVV is still unknown. Here, we demonstrate that SVV 3Cpro targets NCL for its cleavage and nucleocytoplasmic transportation, which contributes to efficient viral replication. Our results reveal novel function of SVV 3Cpro and provide further insight into the mechanisms by which SVV utilizes nucleoli for efficient replication.
Collapse
Affiliation(s)
- Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China
| |
Collapse
|
14
|
Francisco-Velilla R, Embarc-Buh A, Abellan S, Martinez-Salas E. Picornavirus translation strategies. FEBS Open Bio 2022; 12:1125-1141. [PMID: 35313388 PMCID: PMC9157412 DOI: 10.1002/2211-5463.13400] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/02/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
The genome of viruses classified as picornaviruses consists of a single monocistronic positive strand RNA. The coding capacity of these RNA viruses is rather limited, and thus, they rely on the cellular machinery for their viral replication cycle. Upon the entry of the virus into susceptible cells, the viral RNA initially competes with cellular mRNAs for access to the protein synthesis machinery. Not surprisingly, picornaviruses have evolved specialized strategies that successfully allow the expression of viral gene products, which we outline in this review. The main feature of all picornavirus genomes is the presence of a heavily structured RNA element on the 5´UTR, referred to as an internal ribosome entry site (IRES) element, which directs viral protein synthesis as well and, consequently, triggers the subsequent steps required for viral replication. Here, we will summarize recent studies showing that picornavirus IRES elements consist of a modular structure, providing sites of interaction for ribosome subunits, eIFs, and a selective group of RNA‐binding proteins.
Collapse
Affiliation(s)
| | - Azman Embarc-Buh
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Salvador Abellan
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | | |
Collapse
|
15
|
RNA-Binding Proteins as Regulators of Internal Initiation of Viral mRNA Translation. Viruses 2022; 14:v14020188. [PMID: 35215780 PMCID: PMC8879377 DOI: 10.3390/v14020188] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
Viruses are obligate intracellular parasites that depend on the host’s protein synthesis machinery for translating their mRNAs. The viral mRNA (vRNA) competes with the host mRNA to recruit the translational machinery, including ribosomes, tRNAs, and the limited eukaryotic translation initiation factor (eIFs) pool. Many viruses utilize non-canonical strategies such as targeting host eIFs and RNA elements known as internal ribosome entry sites (IRESs) to reprogram cellular gene expression, ensuring preferential translation of vRNAs. In this review, we discuss vRNA IRES-mediated translation initiation, highlighting the role of RNA-binding proteins (RBPs), other than the canonical translation initiation factors, in regulating their activity.
Collapse
|
16
|
Phase Separation of Intrinsically Disordered Nucleolar Proteins Relate to Localization and Function. Int J Mol Sci 2021; 22:ijms222313095. [PMID: 34884901 PMCID: PMC8657925 DOI: 10.3390/ijms222313095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Accepted: 11/28/2021] [Indexed: 01/10/2023] Open
Abstract
The process of phase separation allows for the establishment and formation of subcompartmentalized structures, thus enabling cells to perform simultaneous processes with precise organization and low energy requirements. Chemical modifications of proteins, RNA, and lipids alter the molecular environment facilitating enzymatic reactions at higher concentrations in particular regions of the cell. In this review, we discuss the nucleolus as an example of the establishment, dynamics, and maintenance of a membraneless organelle with a high level of organization.
Collapse
|
17
|
He L, Man C, Xiang S, Yao L, Wang X, Fan Y. Circular RNAs' cap-independent translation protein and its roles in carcinomas. Mol Cancer 2021; 20:119. [PMID: 34526007 PMCID: PMC8442428 DOI: 10.1186/s12943-021-01417-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
Circular RNAs a kind of covalently closed RNA and widely expressed in eukaryotes. CircRNAs are involved in a variety of physiological and pathological processes, but their regulatory mechanisms are not fully understood. Given the development of the RNA deep-sequencing technology and the improvement of algorithms, some CircRNAs are discovered to encode proteins through the cap-independent mechanism and participate in the important process of tumorigenesis and development. Based on an overview of CircRNAs, this paper summarizes its translation mechanism and research methods, and reviews the research progress of CircRNAs translation in the field of oncology in recent years. Moreover, this paper aims to provide new ideas for tumor diagnosis and treatment through CircRNAs translation.
Collapse
Affiliation(s)
- Lian He
- Cancer Institue, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu Province, 212002, People's Republic of China
| | - Changfeng Man
- Cancer Institue, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu Province, 212002, People's Republic of China
| | - Shouyan Xiang
- Cancer Institue, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu Province, 212002, People's Republic of China
| | - Lin Yao
- Cancer Institue, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu Province, 212002, People's Republic of China
| | - Xiaoyan Wang
- Department of Gastroenterology, Affiliated Suqian First People's Hospital of Nanjing Medical University, No 120, Suzhi Road, Suqian, Jiangsu Province, 223812, People's Republic of China.
| | - Yu Fan
- Cancer Institue, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu Province, 212002, People's Republic of China.
| |
Collapse
|
18
|
Abdullah SW, Wu J, Zhang Y, Bai M, Guan J, Liu X, Sun S, Guo H. DDX21, a Host Restriction Factor of FMDV IRES-Dependent Translation and Replication. Viruses 2021; 13:v13091765. [PMID: 34578346 PMCID: PMC8473184 DOI: 10.3390/v13091765] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
In cells, the contributions of DEAD-box helicases (DDXs), without which cellular life is impossible, are of utmost importance. The extremely diverse roles of the nucleolar helicase DDX21, ranging from fundamental cellular processes such as cell growth, ribosome biogenesis, protein translation, protein–protein interaction, mediating and sensing transcription, and gene regulation to viral manipulation, drew our attention. We designed this project to study virus–host interactions and viral pathogenesis. A pulldown assay was used to investigate the association between foot-and-mouth disease virus (FMDV) and DDX21. Further insight into the DDX21–FMDV interaction was obtained through dual-luciferase, knockdown, overexpression, qPCR, and confocal microscopy assays. Our results highlight the antagonistic feature of DDX21 against FMDV, as it progressively inhibited FMDV internal ribosome entry site (IRES) -dependent translation through association with FMDV IRES domains 2, 3, and 4. To subvert this host helicase antagonism, FMDV degraded DDX21 through its non-structural proteins 2B, 2C, and 3C protease (3Cpro). Our results suggest that DDX21 is degraded during 2B and 2C overexpression and FMDV infection through the caspase pathway; however, DDX21 is degraded through the lysosomal pathway during 3Cpro overexpression. Further investigation showed that DDX21 enhanced interferon-beta and interleukin-8 production to restrict viral replication. Together, our results demonstrate that DDX21 is a novel FMDV IRES trans-acting factor, which negatively regulates FMDV IRES-dependent translation and replication.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shiqi Sun
- Correspondence: (S.S.); (H.G.); Tel.: +86-0931-8312213 (S.S. & H.G.)
| | - Huichen Guo
- Correspondence: (S.S.); (H.G.); Tel.: +86-0931-8312213 (S.S. & H.G.)
| |
Collapse
|