1
|
Dai J, SoRelle ED, Heckenberg E, Song L, Cable JM, Crawford GE, Luftig MA. Epstein-Barr virus induces germinal center light zone chromatin architecture and promotes survival through enhancer looping at the BCL2A1 locus. mBio 2024; 15:e0244423. [PMID: 38059622 PMCID: PMC10790771 DOI: 10.1128/mbio.02444-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/20/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE Epstein-Barr virus has evolved with its human host leading to an intimate relationship where infection of antibody-producing B cells mimics the process by which these cells normally recognize foreign antigens and become activated. Virtually everyone in the world is infected by adulthood and controls this virus pushing it into life-long latency. However, immune-suppressed individuals are at high risk for EBV+ cancers. Here, we isolated B cells from tonsils and compare the underlying molecular genetic differences between these cells and those infected with EBV. We find similar regulatory mechanism for expression of an important cellular protein that enables B cells to survive in lymphoid tissue. These findings link an underlying relationship at the molecular level between EBV-infected B cells in vitro with normally activated B cells in vivo. Our studies also characterize the role of a key viral control mechanism for B cell survival involved in long-term infection.
Collapse
Affiliation(s)
- Joanne Dai
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Elliott D. SoRelle
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Emma Heckenberg
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Lingyun Song
- Center for Genomic & Computational Biology, Duke University, Durham, North Carolina, USA
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Jana M. Cable
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Gregory E. Crawford
- Center for Genomic & Computational Biology, Duke University, Durham, North Carolina, USA
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
2
|
Wyżewski Z, Mielcarska MB, Gregorczyk-Zboroch KP, Myszka A. Virus-Mediated Inhibition of Apoptosis in the Context of EBV-Associated Diseases: Molecular Mechanisms and Therapeutic Perspectives. Int J Mol Sci 2022; 23:ijms23137265. [PMID: 35806271 PMCID: PMC9266970 DOI: 10.3390/ijms23137265] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Epstein-Barr virus (EBV), the representative of the Herpesviridae family, is a pathogen extensively distributed in the human population. One of its most characteristic features is the capability to establish latent infection in the host. The infected cells serve as a sanctuary for the dormant virus, and therefore their desensitization to apoptotic stimuli is part of the viral strategy for long-term survival. For this reason, EBV encodes a set of anti-apoptotic products. They may increase the viability of infected cells and enhance their resistance to chemotherapy, thereby contributing to the development of EBV-associated diseases, including Burkitt’s lymphoma (BL), Hodgkin’s lymphoma (HL), gastric cancer (GC), nasopharyngeal carcinoma (NPC) and several other malignancies. In this paper, we have described the molecular mechanism of anti-apoptotic actions of a set of EBV proteins. Moreover, we have reviewed the pro-survival role of non-coding viral transcripts: EBV-encoded small RNAs (EBERs) and microRNAs (miRNAs), in EBV-carrying malignant cells. The influence of EBV on the expression, activity and/or intracellular distribution of B-cell lymphoma 2 (Bcl-2) protein family members, has been presented. Finally, we have also discussed therapeutic perspectives of targeting viral anti-apoptotic products or their molecular partners.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland;
- Correspondence: ; Tel.: +48-728-208-338
| | - Matylda Barbara Mielcarska
- Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland; (M.B.M.); (K.P.G.-Z.)
| | | | - Anna Myszka
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland;
| |
Collapse
|
3
|
Lang F, Pei Y, Lamplugh ZL, Robertson ES. Molecular Biology of EBV in Relationship to HIV/AIDS-Associated Oncogenesis. Cancer Treat Res 2019; 177:81-103. [PMID: 30523622 DOI: 10.1007/978-3-030-03502-0_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Herpesvirus-induced disease is one of the most lethal factors which leads to high mortality in HIV/AIDS patients. EBV, also known as human herpesvirus 4, can transform naive B cells into immortalized cells in vitro through the regulation of cell cycle, cell proliferation, and apoptosis. EBV infection is associated with several lymphoma and epithelial cancers in humans, which occurs at a much higher rate in immune deficient individuals than in healthy people, demonstrating that the immune system plays a vital role in inhibiting EBV activities. EBV latency infection proteins can mimic suppression cytokines or upregulate PD-1 on B cells to repress the cytotoxic T cells response. Many malignancies, including Hodgkin Lymphoma and non-Hodgkin's lymphomas occur at a much higher frequency in EBV positive individuals than in EBV negative people during the development of HIV infection. Importantly, understanding EBV pathogenesis at the molecular level will aid the development of novel therapies for EBV-induced diseases in HIV/AIDS patients.
Collapse
Affiliation(s)
- Fengchao Lang
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology and Global Cancer Programs, Abramson Cancer Center, Philadelphia, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yonggang Pei
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology and Global Cancer Programs, Abramson Cancer Center, Philadelphia, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zachary L Lamplugh
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology and Global Cancer Programs, Abramson Cancer Center, Philadelphia, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Erle S Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology and Global Cancer Programs, Abramson Cancer Center, Philadelphia, USA. .,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,, 3610 Hamilton Walk, 201E Johnson Pavilion, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
El-Sharkawy A, Al Zaidan L, Malki A. Epstein-Barr Virus-Associated Malignancies: Roles of Viral Oncoproteins in Carcinogenesis. Front Oncol 2018; 8:265. [PMID: 30116721 PMCID: PMC6082928 DOI: 10.3389/fonc.2018.00265] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022] Open
Abstract
The Epstein–Barr virus (EBV) is the first herpesvirus identified to be associated with human cancers known to infect the majority of the world population. EBV-associated malignancies are associated with a latent form of infection, and several of the EBV-encoded latent proteins are known to mediate cellular transformation. These include six nuclear antigens and three latent membrane proteins (LMPs). In lymphoid and epithelial tumors, viral latent gene expressions have distinct pattern. In both primary and metastatic tumors, the constant expression of latent membrane protein 2A (LMP2A) at the RNA level suggests that this protein is the key player in the EBV-associated tumorigenesis. While LMP2A contributing to the malignant transformation possibly by cooperating with the aberrant host genome. This can be done in part by dysregulating signaling pathways at multiple points, notably in the cell cycle and apoptotic pathways. Recent studies also have confirmed that LMP1 and LMP2 contribute to carcinoma progression and that this may reflect the combined effects of these proteins on activation of multiple signaling pathways. This review article aims to investigate the aforementioned EBV-encoded proteins that reveal established roles in tumor formation, with a greater emphasis on the oncogenic LMPs (LMP1 and LMP2A) and their roles in dysregulating signaling pathways. It also aims to provide a quick look on the six members of the EBV nuclear antigens and their roles in dysregulating apoptosis.
Collapse
Affiliation(s)
- Ahmed El-Sharkawy
- Human Molecular Genetics Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso" (IGB)-CNR, Naples, Italy.,Biomolecular Science Programme, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - Lobna Al Zaidan
- Biomedical Science Department, College of Health Sciences, Qatar University, Doha, Qatar
| | - Ahmed Malki
- Biomedical Science Department, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
5
|
Blockade of RBP-J-Mediated Notch Signaling Pathway Exacerbates Cardiac Remodeling after Infarction by Increasing Apoptosis in Mice. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5207031. [PMID: 30065940 PMCID: PMC6051300 DOI: 10.1155/2018/5207031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/01/2018] [Accepted: 04/18/2018] [Indexed: 01/09/2023]
Abstract
Background Ischemic heart disease (IHD) is the major cause of death in patients with cardiovascular disease. Cardiac remodeling is a common pathological change following myocardial infarction (MI), and cardiomyocyte apoptosis plays a key role in this change. Transcription factor recombination signal-binding protein-J (RBP-J)-mediated Notch signaling pathway has been implicated in several inherited cardiovascular diseases, including aortic valve diseases, but whether the RBP-J-mediated Notch signaling pathway plays a role in cardiomyocyte apoptosis after MI is unclear. Method We crossed RBP-Jfl/fl mice and Myh6-Cre/Esr1 transgenic mice to delete RBP-J in vivo and to partly inhibit the canonical Notch signaling pathway. MI was induced in mice by permanent ligation of the left anterior descending coronary artery followed by the knockout of RBP-J. Cardiac function and morphology were assessed by echocardiography and histological analysis 4 weeks after infarction. In addition, the expression and regulation of apoptosis-related molecules were examined by real time PCR and western blot. Results RBP-J knockout decreased the survival rate and deteriorated post-MI remodeling and function in mice, and this effect was associated with increased cardiomyocyte apoptosis. The potential mechanisms might be related to the downregulated expression of bcl-2, upregulated expression of bax, and cleaved-caspase 3 to exacerbate cardiomyocyte apoptosis. Conclusion These findings show that the RBP-J-mediated Notch signaling pathway in cardiomyocytes limits ventricular remodeling and improves cardiac function after MI. The RBP-J-mediated Notch signaling pathway has a protective role in cardiomyocyte apoptosis following cardiac injury.
Collapse
|
6
|
Fitzsimmons L, Kelly GL. EBV and Apoptosis: The Viral Master Regulator of Cell Fate? Viruses 2017; 9:E339. [PMID: 29137176 PMCID: PMC5707546 DOI: 10.3390/v9110339] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) was first discovered in cells from a patient with Burkitt lymphoma (BL), and is now known to be a contributory factor in 1-2% of all cancers, for which there are as yet, no EBV-targeted therapies available. Like other herpesviruses, EBV adopts a persistent latent infection in vivo and only rarely reactivates into replicative lytic cycle. Although latency is associated with restricted patterns of gene expression, genes are never expressed in isolation; always in groups. Here, we discuss (1) the ways in which the latent genes of EBV are known to modulate cell death, (2) how these mechanisms relate to growth transformation and lymphomagenesis, and (3) how EBV genes cooperate to coordinately regulate key cell death pathways in BL and lymphoblastoid cell lines (LCLs). Since manipulation of the cell death machinery is critical in EBV pathogenesis, understanding the mechanisms that underpin EBV regulation of apoptosis therefore provides opportunities for novel therapeutic interventions.
Collapse
Affiliation(s)
- Leah Fitzsimmons
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Gemma L Kelly
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC 3052, Australia.
| |
Collapse
|
7
|
Glaser LV, Rieger S, Thumann S, Beer S, Kuklik-Roos C, Martin DE, Maier KC, Harth-Hertle ML, Grüning B, Backofen R, Krebs S, Blum H, Zimmer R, Erhard F, Kempkes B. EBF1 binds to EBNA2 and promotes the assembly of EBNA2 chromatin complexes in B cells. PLoS Pathog 2017; 13:e1006664. [PMID: 28968461 PMCID: PMC5638620 DOI: 10.1371/journal.ppat.1006664] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 10/12/2017] [Accepted: 09/22/2017] [Indexed: 12/26/2022] Open
Abstract
Epstein-Barr virus (EBV) infection converts resting human B cells into permanently proliferating lymphoblastoid cell lines (LCLs). The Epstein-Barr virus nuclear antigen 2 (EBNA2) plays a key role in this process. It preferentially binds to B cell enhancers and establishes a specific viral and cellular gene expression program in LCLs. The cellular DNA binding factor CBF1/CSL serves as a sequence specific chromatin anchor for EBNA2. The ubiquitous expression of this highly conserved protein raises the question whether additional cellular factors might determine EBNA2 chromatin binding selectively in B cells. Here we used CBF1 deficient B cells to identify cellular genes up or downregulated by EBNA2 as well as CBF1 independent EBNA2 chromatin binding sites. Apparently, CBF1 independent EBNA2 target genes and chromatin binding sites can be identified but are less frequent than CBF1 dependent EBNA2 functions. CBF1 independent EBNA2 binding sites are highly enriched for EBF1 binding motifs. We show that EBNA2 binds to EBF1 via its N-terminal domain. CBF1 proficient and deficient B cells require EBF1 to bind to CBF1 independent binding sites. Our results identify EBF1 as a co-factor of EBNA2 which conveys B cell specificity to EBNA2. Epstein-Barr virus (EBV) infection is closely linked to cancer development. At particular risk are immunocompromised individuals like post-transplant patients which can develop B cell lymphomas. In healthy individuals EBV preferentially infects B cells and establishes a latent infection without causing apparent clinical symptoms in most cases. Upon infection, Epstein-Barr virus nuclear antigen 2 (EBNA2) initiates a B cell specific gene expression program that causes activation and proliferation of the infected cells. EBNA2 is a transcription factor well known to use a cellular protein, CBF1/CSL, as a DNA adaptor. CBF1/CSL is a sequence specific DNA binding protein robustly expressed in all tissues. Here we show that EBNA2 can form complexes with early B cell factor 1 (EBF1), a B cell specific DNA binding transcription factor, and EBF1 stabilizes EBNA2 chromatin binding. This EBNA2/EBF1 complex might serve as a novel target to develop future small molecule strategies that act as antivirals in latent B cell infection.
Collapse
Affiliation(s)
- Laura V Glaser
- Department of Gene Vectors, Helmholtz Center Munich, Munich, Germany
| | - Simone Rieger
- Department of Gene Vectors, Helmholtz Center Munich, Munich, Germany
| | - Sybille Thumann
- Department of Gene Vectors, Helmholtz Center Munich, Munich, Germany
| | - Sophie Beer
- Department of Gene Vectors, Helmholtz Center Munich, Munich, Germany
| | | | | | | | | | - Björn Grüning
- Bioinformatics, Institute for Informatics, Albert-Ludwigs-University, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics, Institute for Informatics, Albert-Ludwigs-University, Freiburg, Germany
| | - Stefan Krebs
- Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Helmut Blum
- Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Ralf Zimmer
- Teaching and Research Unit Bioinformatics, Institute of Informatics, Ludwig-Maximilians-University, Munich, Germany
| | - Florian Erhard
- Teaching and Research Unit Bioinformatics, Institute of Informatics, Ludwig-Maximilians-University, Munich, Germany
| | - Bettina Kempkes
- Department of Gene Vectors, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
8
|
Price AM, Dai J, Bazot Q, Patel L, Nikitin PA, Djavadian R, Winter PS, Salinas CA, Barry AP, Wood KC, Johannsen EC, Letai A, Allday MJ, Luftig MA. Epstein-Barr virus ensures B cell survival by uniquely modulating apoptosis at early and late times after infection. eLife 2017; 6. [PMID: 28425914 PMCID: PMC5425254 DOI: 10.7554/elife.22509] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/19/2017] [Indexed: 12/16/2022] Open
Abstract
Latent Epstein-Barr virus (EBV) infection is causally linked to several human cancers. EBV expresses viral oncogenes that promote cell growth and inhibit the apoptotic response to uncontrolled proliferation. The EBV oncoprotein LMP1 constitutively activates NFκB and is critical for survival of EBV-immortalized B cells. However, during early infection EBV induces rapid B cell proliferation with low levels of LMP1 and little apoptosis. Therefore, we sought to define the mechanism of survival in the absence of LMP1/NFκB early after infection. We used BH3 profiling to query mitochondrial regulation of apoptosis and defined a transition from uninfected B cells (BCL-2) to early-infected (MCL-1/BCL-2) and immortalized cells (BFL-1). This dynamic change in B cell survival mechanisms is unique to virus-infected cells and relies on regulation of MCL-1 mitochondrial localization and BFL-1 transcription by the viral EBNA3A protein. This study defines a new role for EBNA3A in the suppression of apoptosis with implications for EBV lymphomagenesis. DOI:http://dx.doi.org/10.7554/eLife.22509.001 Over 90% of adults around the world are infected with the Epstein-Barr virus. Like other closely related viruses, such as those that cause chicken pox and cold sores, an infection lasts for the rest of the person’s life, although the virus generally remains in a latent or dormant state. However, under certain conditions the latent viruses can cause cancers to develop; in fact, it is estimated that such infections are responsible for nearly 2% of all cancer deaths worldwide. One way that healthy human cells prevent cancer is by triggering their own death in a process called apoptosis. The Epstein-Barr virus can block apoptosis, therefore making the cells more likely to become cancerous. Previous research identified one protein in the Epstein-Barr virus that promotes cancer by preventing infected cells from dying as normal. However, even in the absence of this protein, Epstein-Barr virus-infected cells remain resistant to apoptosis. This suggests that the virus has another way of blocking cell death. Price et al. have now used a technique that stresses living cells in a way that reveals which proteins prevent apoptosis to study human cells infected with the Epstein-Barr virus. This revealed that soon after infection, the virus could force the human cell to produce MCL-1, a protein that prevents cell death. Later, the Epstein-Barr virus enlisted a second human protein called BFL-1, which makes the infected cell further resistant to apoptosis. Price et al. discovered that a protein in the Epstein-Barr virus called EBNA3A controls the production of the MCL-1 and BFL-1 proteins. In the future, developing therapies that target these proteins may lead to new treatments for cancers caused by the Epstein-Barr virus. Such treatments would be likely to have fewer side effects for patients than traditional chemotherapies. DOI:http://dx.doi.org/10.7554/eLife.22509.002
Collapse
Affiliation(s)
- Alexander M Price
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, United States
| | - Joanne Dai
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, United States
| | - Quentin Bazot
- Molecular Virology, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, United Kingdom
| | - Luv Patel
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Pavel A Nikitin
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, United States
| | - Reza Djavadian
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, United States.,Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - Peter S Winter
- Department of Pharmacology and Cancer Biology, Duke University, Durham, United States.,Program in Genetics and Genomics, Duke University, Durham, United States
| | - Cristina A Salinas
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, United States
| | - Ashley Perkins Barry
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, United States
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, United States
| | - Eric C Johannsen
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, United States.,Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - Anthony Letai
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Martin J Allday
- Molecular Virology, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, United Kingdom
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, United States
| |
Collapse
|
9
|
Sochalska M, Schuler F, Weiss JG, Prchal-Murphy M, Sexl V, Villunger A. MYC selects against reduced BCL2A1/A1 protein expression during B cell lymphomagenesis. Oncogene 2016; 36:2066-2073. [PMID: 27694901 PMCID: PMC5395700 DOI: 10.1038/onc.2016.362] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/03/2016] [Accepted: 08/10/2016] [Indexed: 12/14/2022]
Abstract
Rearrangements of MYC or ABL proto-oncogenes lead to deregulated expression of key-regulators of cell cycle and cell survival, thereby constituting important drivers of blood cancer. Members of the BCL-2 family of apoptosis regulators contribute to oncogenic transformation downstream of these oncogenes, but the role of anti-apoptotic BCL2A1/A1 in transformation and drug resistance caused by deregulation of these oncogenes remains enigmatic. Here we analyzed the role of A1 in MYC as well as ABL kinase-driven blood cancer in mice, employing in vivo RNAi. We report that overexpression of either oncogene leads to a significant increase in A1 protein levels in otherwise A1-negative B cell progenitors, indicating a key role downstream of these oncogenes to secure survival during transformation. Knockdown of A1 by RNAi, however, did not impact on tumor latency in v-Abl-driven pre-B-ALL. In contrast, A1 knockdown in premalignant Eμ-MYC mice caused a significant reduction of transgenic pre-B cells without impacting on tumor latency as the emerging lymphomas escaped silencing of A1 expression. These findings identify A1 as a MYC target that can be induced prematurely during B cell development to aid expansion of otherwise cell-death-prone MYC transgenic pre-B cells. Hence, A1 should be considered as a putative drug target in MYC-driven blood cancer.
Collapse
Affiliation(s)
- M Sochalska
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - F Schuler
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - J G Weiss
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - M Prchal-Murphy
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - V Sexl
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - A Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| |
Collapse
|
10
|
Banerjee S, Uppal T, Strahan R, Dabral P, Verma SC. The Modulation of Apoptotic Pathways by Gammaherpesviruses. Front Microbiol 2016; 7:585. [PMID: 27199919 PMCID: PMC4847483 DOI: 10.3389/fmicb.2016.00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/11/2016] [Indexed: 12/11/2022] Open
Abstract
Apoptosis or programmed cell death is a tightly regulated process fundamental for cellular development and elimination of damaged or infected cells during the maintenance of cellular homeostasis. It is also an important cellular defense mechanism against viral invasion. In many instances, abnormal regulation of apoptosis has been associated with a number of diseases, including cancer development. Following infection of host cells, persistent and oncogenic viruses such as the members of the Gammaherpesvirus family employ a number of different mechanisms to avoid the host cell’s “burglar” alarm and to alter the extrinsic and intrinsic apoptotic pathways by either deregulating the expressions of cellular signaling genes or by encoding the viral homologs of cellular genes. In this review, we summarize the recent findings on how gammaherpesviruses inhibit cellular apoptosis via virus-encoded proteins by mediating modification of numerous signal transduction pathways. We also list the key viral anti-apoptotic proteins that could be exploited as effective targets for novel antiviral therapies in order to stimulate apoptosis in different types of cancer cells.
Collapse
Affiliation(s)
- Shuvomoy Banerjee
- Amity Institute of Virology and Immunology, Amity University Noida, India
| | - Timsy Uppal
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Roxanne Strahan
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Prerna Dabral
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Subhash C Verma
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| |
Collapse
|
11
|
Abstract
While all herpesviruses can switch between lytic and latent life cycle, which are both driven by specific transcription programs, a unique feature of latent EBV infection is the expression of several distinct and well-defined viral latent transcription programs called latency I, II, and III. Growth transformation of B-cells by EBV in vitro is based on the concerted action of Epstein-Barr virus nuclear antigens (EBNAs) and latent membrane proteins(LMPs). EBV growth-transformed B-cells express a viral transcriptional program, termed latency III, which is characterized by the coexpression of EBNA2 and EBNA-LP with EBNA1, EBNA3A, -3B, and -3C as well as LMP1, LMP2A, and LMP2B. The focus of this review will be to discuss the current understanding of how two of these proteins, EBNA2 and EBNA-LP, contribute to EBV-mediated B-cell growth transformation.
Collapse
Affiliation(s)
- Bettina Kempkes
- Department of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health, Marchioninistr. 25, 81377, Munich, Germany.
| | - Paul D Ling
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Campion EM, Hakimjavadi R, Loughran ST, Phelan S, Smith SM, D'Souza BN, Tierney RJ, Bell AI, Cahill PA, Walls D. Repression of the proapoptotic cellular BIK/NBK gene by Epstein-Barr virus antagonizes transforming growth factor β1-induced B-cell apoptosis. J Virol 2014; 88:5001-13. [PMID: 24554662 PMCID: PMC3993823 DOI: 10.1128/jvi.03642-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/13/2014] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED The Epstein-Barr virus (EBV) establishes a lifelong latent infection in humans. EBV infection of primary B cells causes cell activation and proliferation, a process driven by the viral latency III gene expression program, which includes EBV nuclear proteins (EBNAs), latent membrane proteins, and untranslated RNAs, including microRNAs. Some latently infected cells enter the long-lived memory B-cell compartment and express only EBNA1 transiently (Lat I) or no EBV protein at all (Lat 0). Targeting the molecular machinery that controls B-cell fate decisions, including the Bcl-2 family of apoptosis-regulating proteins, is crucial to the EBV cycle of infection. Here, we show that BIK (also known as NBK), which encodes a proapoptotic "sensitizer" protein, is repressed by the EBNA2-driven Lat III program but not the Lat I program. BIK repression occurred soon after infection of primary B cells by EBV but not by a recombinant EBV in which the EBNA2 gene had been knocked out. Ectopic BIK induced apoptosis in Lat III cells by a mechanism dependent on its BH3 domain and the activation of caspases. We show that EBNA2 represses BIK in EBV-negative B-cell lymphoma-derived cell lines and that this host-virus interaction can inhibit the proapoptotic effect of transforming growth factor β1 (TGF-β1), a key physiological mediator of B-cell homeostasis. Reduced levels of TGF-β1-associated regulatory SMAD proteins were bound to the BIK promoter in response to EBV Lat III or ectopic EBNA2. These data are evidence of an additional mechanism used by EBV to promote B-cell survival, namely, the transcriptional repression of the BH3-only sensitizer BIK. IMPORTANCE Over 90% of adult humans are infected with the Epstein-Barr virus (EBV). EBV establishes a lifelong silent infection, with its DNA residing in small numbers of blood B cells that are a reservoir from which low-level virus reactivation and shedding in saliva intermittently occur. Importantly, EBV DNA is found in some B-cell-derived tumors in which viral genes play a key role in tumor cell emergence and progression. Here, we report for the first time that EBV can shut off a B-cell gene called BIK. When activated by a molecular signal called transforming growth factor β1 (TGF-β1), BIK plays an important role in killing unwanted B cells, including those infected by viruses. We describe the key EBV-B-cell molecular interactions that lead to BIK shutoff. These findings further our knowledge of how EBV prevents the death of its host cell during infection. They are also relevant to certain posttransplant lymphomas where unregulated cell growth is caused by EBV genes.
Collapse
Affiliation(s)
- Eva M. Campion
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Roya Hakimjavadi
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Sinéad T. Loughran
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Susan Phelan
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Sinéad M. Smith
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Brendan N. D'Souza
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Rosemary J. Tierney
- School of Cancer Sciences, College of Medicine and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Andrew I. Bell
- School of Cancer Sciences, College of Medicine and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Paul A. Cahill
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
- Vascular Biology Research Group, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Dermot Walls
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| |
Collapse
|
13
|
Spender LC, Inman GJ. Developments in Burkitt's lymphoma: novel cooperations in oncogenic MYC signaling. Cancer Manag Res 2014; 6:27-38. [PMID: 24426788 PMCID: PMC3890408 DOI: 10.2147/cmar.s37745] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Burkitt's lymphoma (BL) is an aggressive disorder associated with extremely high rates of cell proliferation tempered by high levels of apoptosis. Despite the high levels of cell death, the net effect is one of rapid tumor growth. The tumor arises within the germinal centers of secondary lymphoid tissues and is identifiable by translocation of the c-MYC gene into the immunoglobulin gene loci, resulting in deregulation of the proto-oncogene. Many of the major players involved in determining the development of BL have been characterized in human BL cell lines or in mouse models of MYC-driven lymphomagenesis. Both systems have been useful so far in characterizing the role of tumor suppressor genes (for example, p53), prosurvival signaling pathways, and members of the B-cell lymphoma-2 family of apoptosis regulators in determining the fate of c-MYC overexpressing B-cells, and ultimately in regulating lymphoma development. Signaling through phosphoinositide (PI)3-kinase stands out as being critical for BL cell survival. Recurrent mutations in ID3 or TCF3 (E2A) that promote signaling through PI3-kinase have recently been identified in human BL samples, and new therapeutic strategies based on coordinately targeting both the prosurvival factor, B-cell lymphoma-XL, and the PI3-kinase/AKT/mammalian target of rapamycin (mTOR) signaling pathway to synergistically induced BL apoptosis have been proposed. Now, engineering both constitutive c-MYC expression and PI3-kinase activity, specifically in murine B-cells undergoing the germinal center reaction, has revealed that there is synergistic cooperation between c-MYC and PI3-kinase during BL development. The resulting tumors phenocopy the human malignancy, and acquire tertiary mutations also present in human tumors. This model may, therefore, prove useful in further studies to identify functionally relevant mutational events necessary for BL pathogenesis. This review discusses these cooperating interactions, the possible influence of BL tumor-associated viruses, and highlights potential new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Lindsay C Spender
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Gareth J Inman
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
14
|
Fu Q, He C, Mao ZR. Epstein-Barr virus interactions with the Bcl-2 protein family and apoptosis in human tumor cells. J Zhejiang Univ Sci B 2013; 14:8-24. [PMID: 23303627 DOI: 10.1631/jzus.b1200189] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epstein-Barr virus (EBV), a human gammaherpesvirus carried by more than 90% of the world's population, is associated with malignant tumors such as Burkitt's lymphoma (BL), Hodgkin lymphoma, post-transplant lymphoma, extra-nodal natural killer/T cell lymphoma, and nasopharyngeal and gastric carcinomas in immune-compromised patients. In the process of infection, EBV faces challenges: the host cell environment is harsh, and the survival and apoptosis of host cells are precisely regulated. Only when host cells receive sufficient survival signals may they immortalize. To establish efficiently a lytic or long-term latent infection, EBV must escape the host cell immunologic mechanism and resist host cell apoptosis by interfering with multiple signaling pathways. This review details the apoptotic pathway disrupted by EBV in EBV-infected cells and describes the interactions of EBV gene products with host cellular factors as well as the function of these factors, which decide the fate of the host cell. The relationships between other EBV-encoded genes and proteins of the B-cell leukemia/lymphoma (Bcl) family are unknown. Still, EBV seems to contribute to establishing its own latency and the formation of tumors by modifying events that impact cell survival and proliferation as well as the immune response of the infected host. We discuss potential therapeutic drugs to provide a foundation for further studies of tumor pathogenesis aimed at exploiting novel therapeutic strategies for EBV-associated diseases.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | | | | |
Collapse
|
15
|
Inhibition of germinal centre apoptotic programmes by epstein-barr virus. Adv Hematol 2011; 2011:829525. [PMID: 22110506 PMCID: PMC3202104 DOI: 10.1155/2011/829525] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/26/2011] [Indexed: 01/20/2023] Open
Abstract
To establish a persistent latent infection, Epstein-Barr virus (EBV) faces a challenge in that the virus-infected host cell must transit through the germinal centre reaction. This is a site of B cell differentiation where antibody responses are optimised, and the selection criteria for B cells are stringent. The germinal centre environment is harsh, and the vast majority of B cells here die by apoptosis. Only cells receiving adequate survival signals will differentiate fully to be released into the periphery as long-term memory B cells (the site of persistence). In this review, we detail the apoptotic pathways potentially encountered by EBV-infected B cells during the process of infection, and we describe the functions of those EBV-regulated cellular and viral genes that help promote survival of the host B cell.
Collapse
|
16
|
Loughran ST, Campion EM, D'Souza BN, Smith SM, Vrzalikova K, Wen K, Murray PG, Walls D. Bfl-1 is a crucial pro-survival nuclear factor-κB target gene in Hodgkin/Reed-Sternberg cells. Int J Cancer 2011; 129:2787-96. [DOI: 10.1002/ijc.25950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 12/30/2010] [Indexed: 11/10/2022]
|
17
|
Yenamandra SP, Hellman U, Kempkes B, Darekar SD, Petermann S, Sculley T, Klein G, Kashuba E. Epstein-Barr virus encoded EBNA-3 binds to vitamin D receptor and blocks activation of its target genes. Cell Mol Life Sci 2010; 67:4249-56. [PMID: 20593215 PMCID: PMC11115686 DOI: 10.1007/s00018-010-0441-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 06/01/2010] [Accepted: 06/17/2010] [Indexed: 02/06/2023]
Abstract
Epstein-Barr virus (EBV) is a human gamma herpes virus that infects B cells and induces their transformation into immortalized lymphoblasts that can grow as cell lines (LCLs) in vitro. EBNA-3 is a member of the EBNA-3-protein family that can regulate transcription of cellular and viral genes. The identification of EBNA-3 cellular partners and a study of its influence on cellular pathways are important for understanding the transforming action of the virus. In this work, we have identified the vitamin D receptor (VDR) protein as a binding partner of EBNA-3. We found that EBNA3 blocks the activation of VDR-dependent genes and protects LCLs against vitamin-D3-induced growth arrest and/or apoptosis. The presented data shed some light on the anti-apoptotic EBV program and the role of the EBNA-3-VDR interaction in the viral strategy.
Collapse
Affiliation(s)
- Surya Pavan Yenamandra
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institute, 171 77 Stockholm, Sweden
- Present Address: Bioinformatics Institute, 30 Biopolis Street, No. 07-01, 138671 Matrix, Singapore
| | - Ulf Hellman
- Ludwig Institute for Cancer Research, Uppsala Branch, 751 24 Uppsala, Sweden
| | - Bettina Kempkes
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Center for Environmental Health, 81377 Munich, Germany
| | - Suhas Deoram Darekar
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institute, 171 77 Stockholm, Sweden
| | - Sabine Petermann
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Center for Environmental Health, 81377 Munich, Germany
| | - Tom Sculley
- Queensland Institute for Medical Research, Brisbane, QLD 4029 Australia
| | - George Klein
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institute, 171 77 Stockholm, Sweden
| | - Elena Kashuba
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institute, 171 77 Stockholm, Sweden
- R. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NASU, 03022 Kyiv, Ukraine
| |
Collapse
|
18
|
Spender LC, Inman GJ. Targeting the BCL-2 family in malignancies of germinal centre origin. Expert Opin Ther Targets 2010; 13:1459-72. [PMID: 19922301 DOI: 10.1517/14728220903379565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The germinal centre is a dynamic microenvironment where B-cell responses are honed. Antigen-specific cells undergo clonal expansion followed by antibody affinity maturation and class switching through somatic hypermutation and recombination of immunoglobulin genes respectively. The huge proliferative capacity of the B-cells and the potential for generating non-functional or autoreactive immunoglobulins, necessitate strict control measures. Pro-apoptotic signalling pathways via B-cell receptors, FAS and the TGF-beta receptor, ALK5, ensure that apoptosis of germinal centre B-cells is the norm and cells only survive to differentiate fully if they receive sufficient pro-survival signals to overcome their 'primed for death' status. Several of the B-cell signalling pathways converge on the intrinsic apoptotic machinery to control expression of the BCL-2 family of apoptosis regulators including BIM, the pro-survival factor BCL-X(L) and the BH3-only protein, BIK (recently identified as a mediator of a TGF-beta-induced default apoptosis pathway in human B-cells). It is a foreseeable hazard that cells undergoing genetic mutation and recombination events might unintentionally target some of these factors, resulting in defective programmed cell death. Here we discuss the function of BCL-2 family proteins in germinal centre reactions, their deregulation in malignancies of germinal centre origin, and the potential for targeting BCL-2-related proteins therapeutically in lymphomas.
Collapse
Affiliation(s)
- Lindsay C Spender
- Growth Factor Signalling Laboratory, The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK.
| | | |
Collapse
|
19
|
Meningococcal porin PorB prevents cellular apoptosis in a toll-like receptor 2- and NF-kappaB-independent manner. Infect Immun 2009; 78:994-1003. [PMID: 20028813 DOI: 10.1128/iai.00156-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Meningococcal porin PorB is an inhibitor of apoptosis induced via the intrinsic pathway in various cell types. This effect is attributed to prevention of mitochondrial depolarization and of subsequent release of proapoptotic mitochondrial factors. To determine whether apoptosis is globally inhibited by PorB, we compared the intrinsic and extrinsic pathways in HeLa cells. Interestingly, PorB does not prevent extrinsic apoptosis induced by tumor necrosis factor alpha plus cycloheximide, suggesting a unique mitochondrial pathway specificity. Several intracellular factors regulated by NF-kappaB, including members of the Bcl-2 family and of the inhibitor of apoptosis (IAP) family, play major roles in controlling apoptosis, and some of them are thought to contribute to the antiapoptotic effect of the gonococcal porin, PIB. However, most of the members of the Bcl-2 family and the IAP family are not induced by meningococcal PorB in HeLa cells, with the exception of Bfl-1/A1. Interestingly, PorB does not induce NF-kappaB activation in HeLa cells, likely due to a lack of Toll-like receptor 2 (TLR2) expression in these cells. Bfl-1/A1 expression is also regulated by CBF1, a nuclear component of the Notch signaling pathway, independent of NF-kappaB activation. Since HeLa cells are protected by PorB from intrinsic apoptosis events, regardless of TLR2 and NF-kappaB expression, the possibility of a contribution of alternative signaling pathways to this effect cannot be excluded. In this paper, we describe an initial dissection of the cascade of cellular events involved in the antiapoptotic effect of PorB in the absence of TLR2.
Collapse
|
20
|
Rowe M, Kelly GL, Bell AI, Rickinson AB. Burkitt's lymphoma: the Rosetta Stone deciphering Epstein-Barr virus biology. Semin Cancer Biol 2009; 19:377-88. [PMID: 19619657 PMCID: PMC3764430 DOI: 10.1016/j.semcancer.2009.07.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 07/10/2009] [Indexed: 02/07/2023]
Abstract
Epstein-Barr virus was originally identified in the tumour cells of a Burkitt's lymphoma, and was the first virus to be associated with the pathogenesis of a human cancer. Studies on the relationship of EBV with Burkitt's lymphoma have revealed important general principles that are relevant to other virus-associated cancers. In addition, the impact of such studies on the knowledge of EBV biology has been enormous. Here, we review some of the key historical observations arising from studies on Burkitt's lymphoma that have informed our understanding of EBV, and we summarise the current hypotheses regarding the role of EBV in the pathogenesis of Burkitt's lymphoma.
Collapse
Affiliation(s)
- Martin Rowe
- Institute for Cancer Studies, School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | |
Collapse
|
21
|
Allday MJ. How does Epstein-Barr virus (EBV) complement the activation of Myc in the pathogenesis of Burkitt's lymphoma? Semin Cancer Biol 2009; 19:366-76. [PMID: 19635566 PMCID: PMC3770905 DOI: 10.1016/j.semcancer.2009.07.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 07/10/2009] [Indexed: 12/12/2022]
Abstract
A defining characteristic of the aggressive B cell tumour Burkitt's lymphoma (BL) is a reciprocal chromosomal translocation that activates the Myc oncogene by juxtaposing it to one of the immunoglobulin gene loci. The consequences of activating Myc include cell growth and proliferation that can lead to lymphomagenesis; however, as part of a fail-safe mechanism that has evolved in metazoans to reduce the likelihood of neoplastic disease, activated oncogenes such as Myc may also induce cell death by apoptosis and/or an irreversible block to proliferation called senescence. For lymphoma to develop it is necessary that these latter processes are repressed. More than 95% of a subset of BL – known as endemic (e)BL because they are largely restricted to regions of equatorial Africa and similar geographical regions – carry latent Epstein–Barr virus (EBV) in the form of nuclear extra-chromosomal episomes. Although EBV is not generally regarded as a driving force of BL cell proliferation, it plays an important role in the pathogenesis of eBL. Latency-associated EBV gene products can inhibit a variety of pathways that lead to apoptosis and senescence; therefore EBV probably counteracts the proliferation-restricting activities of deregulated Myc and so facilitates the development of BL.
Collapse
Affiliation(s)
- Martin J Allday
- Department of Virology, Faculty of Medicine, Imperial College London, Norfolk Place, London W2 1PG, UK.
| |
Collapse
|
22
|
Noguchi K, Fukazawa H, Murakami Y, Takahashi N, Yamagoe S, Uehara Y. Gamma-herpesviruses and cellular signaling in AIDS-associated malignancies. Cancer Sci 2007; 98:1288-96. [PMID: 17640300 PMCID: PMC11158765 DOI: 10.1111/j.1349-7006.2007.00555.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Revised: 04/24/2007] [Accepted: 04/30/2007] [Indexed: 11/29/2022] Open
Abstract
gamma-Herpesviruses, Epstein-Barr virus (EBV/HHV-4) and Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8), are involved in human carcinogenesis, particularly in immunocompromised patients. Virus-associated malignancies are becoming of significant concern for the mortality of long-lived immunocompromised patients, and therefore, research of advanced strategies for AIDS-related malignancies is an important field in cancer chemotherapy. Detailed understanding of the EBV and KSHV lifecycle and related cancers at the molecular level is required for novel strategies of molecular-targeted cancer chemotherapy. The present review gives a simple outline of the functional interactions between KSHV- and EBV-viral gene products and host cell deregulated signaling pathways as possible targets of chemotherapy against AIDS-related malignancies.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/pathogenicity
- Herpesvirus 4, Human/physiology
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/pathogenicity
- Herpesvirus 8, Human/physiology
- Humans
- Lymphoma, AIDS-Related/drug therapy
- Lymphoma, AIDS-Related/metabolism
- Lymphoma, AIDS-Related/pathology
- Lymphoma, AIDS-Related/virology
- Sarcoma, Kaposi/drug therapy
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/pathology
- Sarcoma, Kaposi/virology
- Signal Transduction/genetics
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Kohji Noguchi
- Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | |
Collapse
|