1
|
Molecular and biological factors regulating the genome packaging in single-strand positive-sense tripartite RNA plant viruses. Curr Opin Virol 2018; 33:113-119. [DOI: 10.1016/j.coviro.2018.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/20/2018] [Accepted: 07/31/2018] [Indexed: 12/11/2022]
|
2
|
Garcia-Ruiz H, Diaz A, Ahlquist P. Intermolecular RNA Recombination Occurs at Different Frequencies in Alternate Forms of Brome Mosaic Virus RNA Replication Compartments. Viruses 2018; 10:v10030131. [PMID: 29543718 PMCID: PMC5869524 DOI: 10.3390/v10030131] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 01/27/2023] Open
Abstract
Positive-strand RNA viruses replicate their genomes in membrane-bound replication compartments. Brome mosaic virus (BMV) replicates in vesicular invaginations of the endoplasmic reticulum membrane. BMV has served as a productive model system to study processes like virus-host interactions, RNA replication and recombination. Here we present multiple lines of evidence showing that the structure of the viral RNA replication compartments plays a fundamental role and that recruitment of parental RNAs to a common replication compartment is a limiting step in intermolecular RNA recombination. We show that a previously defined requirement for an RNA recruitment element on both parental RNAs is not to function as a preferred crossover site, but in order for individual RNAs to be recruited into the replication compartments. Moreover, modulating the form of the replication compartments from spherular vesicles (spherules) to more expansive membrane layers increased intermolecular RNA recombination frequency by 200- to 1000-fold. We propose that intermolecular RNA recombination requires parental RNAs to be recruited into replication compartments as monomers, and that recruitment of multiple RNAs into a contiguous space is much more common for layers than for spherules. These results could explain differences in recombination frequencies between viruses that replicate in association with smaller spherules versus larger double-membrane vesicles and convoluted membranes.
Collapse
Affiliation(s)
- Hernan Garcia-Ruiz
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA.
- Nebraska Center for Virology, Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA.
| | - Arturo Diaz
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA.
- Department of Biology, La Sierra University, Riverside, CA 92515, USA.
| | - Paul Ahlquist
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA.
- Howard Hughes Medical Institute and Morgridge Institute for Research, University of Wisconsin-Madison, MadisonWI 53706, USA.
| |
Collapse
|
3
|
Ding XS, Mannas SW, Bishop BA, Rao X, Lecoultre M, Kwon S, Nelson RS. An Improved Brome mosaic virus Silencing Vector: Greater Insert Stability and More Extensive VIGS. PLANT PHYSIOLOGY 2018; 176:496-510. [PMID: 29127260 PMCID: PMC5761774 DOI: 10.1104/pp.17.00905] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/09/2017] [Indexed: 05/07/2023]
Abstract
Virus-induced gene silencing (VIGS) is used extensively for gene function studies in plants. VIGS is inexpensive and rapid compared with silencing conducted through stable transformation, but many virus-silencing vectors, especially in grasses, induce only transient silencing phenotypes. A major reason for transient phenotypes is the instability of the foreign gene fragment (insert) in the vector during VIGS. Here, we report the development of a Brome mosaic virus (BMV)-based vector that better maintains inserts through modification of the original BMV vector RNA sequence. Modification of the BMV RNA3 sequence yielded a vector, BMVCP5, that better maintained phytoene desaturase and heat shock protein70-1 (HSP70-1) inserts in Nicotiana benthamiana and maize (Zea mays). Longer maintenance of inserts was correlated with greater target gene silencing and more extensive visible silencing phenotypes displaying greater tissue penetration and involving more leaves. The modified vector accumulated similarly to the original vector in N. benthamiana after agroinfiltration, thus maintaining a high titer of virus in this intermediate host used to produce virus inoculum for grass hosts. For HSP70, silencing one family member led to a large increase in the expression of another family member, an increase likely related to the target gene knockdown and not a general effect of virus infection. The cause of the increased insert stability in the modified vector is discussed in relationship to its recombination and accumulation potential. The modified vector will improve functional genomic studies in grasses, and the conceptual methods used to improve the vector may be applied to other VIGS vectors.
Collapse
Affiliation(s)
- Xin Shun Ding
- Noble Research Institute, LLC, Ardmore, Oklahoma 73401
| | | | | | - Xiaolan Rao
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
| | | | - Soonil Kwon
- Noble Research Institute, LLC, Ardmore, Oklahoma 73401
| | | |
Collapse
|
4
|
Kolondam B, Rao P, Sztuba-Solinska J, Weber PH, Dzianott A, Johns MA, Bujarski JJ. Co-infection with two strains of Brome mosaic bromovirus reveals common RNA recombination sites in different hosts. Virus Evol 2015; 1:vev021. [PMID: 27774290 PMCID: PMC5014487 DOI: 10.1093/ve/vev021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have previously reported intra-segmental crossovers in Brome mosaic virus (BMV) RNAs. In this work, we studied the homologous recombination of BMV RNA in three different hosts: barley (Hordeum vulgare), Chenopodium quinoa, and Nicotiana benthamiana that were co-infected with two strains of BMV: Russian (R) and Fescue (F). Our work aimed at (1) establishing the frequency of recombination, (2) mapping the recombination hot spots, and (3) addressing host effects. The F and R nucleotide sequences differ from each other at many translationally silent nucleotide substitutions. We exploited this natural variability to track the crossover sites. Sequencing of a large number of cDNA clones revealed multiple homologous crossovers in each BMV RNA segment, in both the whole plants and protoplasts. Some recombination hot spots mapped at similar locations in different hosts, suggesting a role for viral factors, but other sites depended on the host. Our results demonstrate the chimeric ('mosaic') nature of the BMV RNA genome.
Collapse
Affiliation(s)
- Beivy Kolondam
- Department of Biological Sciences and Plant Molecular Biology Center, Northern Illinois University, DeKalb, IL 60115, USA and
| | - Parth Rao
- Department of Biological Sciences and Plant Molecular Biology Center, Northern Illinois University, DeKalb, IL 60115, USA and
| | - Joanna Sztuba-Solinska
- Department of Biological Sciences and Plant Molecular Biology Center, Northern Illinois University, DeKalb, IL 60115, USA and
| | - Philipp H Weber
- Department of Biological Sciences and Plant Molecular Biology Center, Northern Illinois University, DeKalb, IL 60115, USA and
| | - Aleksandra Dzianott
- Department of Biological Sciences and Plant Molecular Biology Center, Northern Illinois University, DeKalb, IL 60115, USA and
| | - Mitrick A Johns
- Department of Biological Sciences and Plant Molecular Biology Center, Northern Illinois University, DeKalb, IL 60115, USA and
| | - Jozef J Bujarski
- Department of Biological Sciences and Plant Molecular Biology Center, Northern Illinois University, DeKalb, IL 60115, USA and; Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
5
|
Sivanandam V, Mathews D, Rao ALN. Properties of satellite tobacco mosaic virus phenotypes expressed in the presence and absence of helper virus. Virology 2015; 483:163-73. [PMID: 25974867 DOI: 10.1016/j.virol.2015.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/08/2015] [Accepted: 04/11/2015] [Indexed: 11/18/2022]
Abstract
In this study, we assembled an Agrobacterium-based transient expression system for the ectopic expression of Satellite tobacco mosaic virus (STMV) (+) or (-) transcripts and their biological activity was confirmed when Nicotiana benthamiana plants were co-expressed with helper Tobacco mosaic virus replicase. Characterization of STMV in the presence and absence of its HV revealed: (i) HV-dependent expression of STMV (+) in N. benthamiana, but not in N. tabacum, generated a replication-deficient but translation and encapsidation competent variant lacking the highly conserved 3' 150 nucleotides (nt) (STMVΔ150); (ii) mutational analysis demonstrated that a conserved 3' stem-loop structure in wild type and STMVΔ150 located between nt 874 and 897 is essential for translation of CP; (iii) helper virus-independent expression of CP from wt STMV was competent for the assembly of empty aberrant virion-like particles; whereas, CP translated from STMVΔ150 resulted in disorganized CP aggregates suggesting a role for the 3'tRNA-like structure in STMV assembly.
Collapse
Affiliation(s)
- Venkatesh Sivanandam
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA 92521, USA
| | - Deborah Mathews
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA 92521, USA
| | - A L N Rao
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
6
|
Rao ALN, Cheng Kao C. The brome mosaic virus 3' untranslated sequence regulates RNA replication, recombination, and virion assembly. Virus Res 2015; 206:46-52. [PMID: 25687214 DOI: 10.1016/j.virusres.2015.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 11/18/2022]
Abstract
The 3' untranslated region in each of the three genomic RNAs of Brome mosaic virus (BMV) is highly homologous and contains a sequence that folds into a tRNA-like structure (TLS). Experiments performed over the past four decades revealed that the BMV 3' TLS regulates many important steps in BMV infection. This review summarizes in vitro and in vivo studies of the roles of the BMV 3' TLS functioning as a minus-strand promoter, in RNA recombination, and to nucleate virion assembly.
Collapse
Affiliation(s)
- A L N Rao
- Department of Plant Pathology, University of California, Riverside, CA 925210-0122, USA.
| | - C Cheng Kao
- Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
7
|
Rao ALN, Chaturvedi S, Garmann RF. Integration of replication and assembly of infectious virions in plant RNA viruses. Curr Opin Virol 2014; 9:61-6. [DOI: 10.1016/j.coviro.2014.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/04/2014] [Accepted: 09/18/2014] [Indexed: 02/08/2023]
|
8
|
Chaturvedi S, Rao ALN. Live cell imaging of interactions between replicase and capsid protein of Brome mosaic virus using Bimolecular Fluorescence Complementation: implications for replication and genome packaging. Virology 2014; 464-465:67-75. [PMID: 25046269 DOI: 10.1016/j.virol.2014.06.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/22/2014] [Accepted: 06/22/2014] [Indexed: 10/25/2022]
Abstract
In Brome mosaic virus, it was hypothesized that a physical interaction between viral replicase and capsid protein (CP) is obligatory to confer genome packaging specificity. Here we tested this hypothesis by employing Bimolecular Fluorescent Complementation (BiFC) as a tool for evaluating protein-protein interactions in living cells. The efficacy of BiFC was validated by a known interaction between replicase protein 1a (p1a) and protein 2a (p2a) at the endoplasmic reticulum (ER) site of viral replication. Additionally, co-expression in planta of a bona fide pair of interacting protein partners of p1a and p2a had resulted in the assembly of a functional replicase. Subsequent BiFC assays in conjunction with mCherry labeled ER as a fluorescent cellular marker revealed that CP physically interacts with p2a, but not p1a, and this CP:p2a interaction occurs at the cytoplasmic phase of the ER. The significance of the CP:p2a interaction in BMV replication and genome packaging is discussed.
Collapse
Affiliation(s)
- Sonali Chaturvedi
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA 92521-0122, USA
| | - A L N Rao
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA 92521-0122, USA.
| |
Collapse
|
9
|
Kwon SJ, Chaturvedi S, Rao ALN. Repair of the 3' proximal and internal deletions of a satellite RNA associated with Cucumber mosaic virus is directed toward restoring structural integrity. Virology 2014; 450-451:222-32. [PMID: 24503085 DOI: 10.1016/j.virol.2013.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 11/29/2013] [Accepted: 12/08/2013] [Indexed: 11/27/2022]
Abstract
The phenomenon of rapid turnover of 3' proximal nucleotides (nt) lost by the action of nuclease in RNA viruses is integral to replication. Here, a set of six deletions encompassing the 3' 23 nt region of a satellite RNA (satRNA) of Cucumber mosaic virus (CMV) strain Q (Q-sat), were engineered. Repair of the 3' end was not observed in the absence of CMV. However, co-expression with CMV in planta revealed that Q-sat mutants lacking the 3' 18 nt but not the 3' 23 nt are repaired and the progeny accumulation was inversely proportional to the extent of the deletion. Progeny of the 3'Δ3 mutant were repaired to wild type (wt) while those from the remaining four mutants were heterogeneous, exhibiting a wt secondary structure. Analysis of additional 3' internal deletions mutants revealed that progeny with a repaired sequence reminiscent of wt secondary structure were competent for replication and systemic spread.
Collapse
Affiliation(s)
- Sun-Jung Kwon
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA 92521-0122, United States
| | - Sonali Chaturvedi
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA 92521-0122, United States
| | - A L N Rao
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA 92521-0122, United States.
| |
Collapse
|
10
|
Morroni M, Jacquemond M, Tepfer M. Deep sequencing of recombinant virus populations in transgenic and nontransgenic plants infected with Cucumber mosaic virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:801-11. [PMID: 23530600 DOI: 10.1094/mpmi-02-13-0057-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Recombination is a major source of virus variability, and the question of whether novel recombinant viruses would emerge in transgenic plants expressing viral sequences has been a biosafety issue. We describe the results of pyrosequencing the recombinant viral RNAs appearing in transgenic plants expressing the coat protein (CP) gene and 3' noncoding region of Cucumber mosaic virus RNA3, as well as in nontransgenic controls. The populations of recombinants in both transgenic and nontransgenic plants were similar to those previously described from Sanger sequencing but many more recombinant types were observed, including a novel class of large deletions removing all or nearly the entire CP gene. These results show that populations of recombinant viral genomes arising de novo can be characterized in detail by pyrosequencing, and confirm that the transgenic plants did not harbor novel recombinants of biosafety concern.
Collapse
Affiliation(s)
- Marco Morroni
- Plant Virology Group, ICGEB Biosafety Outstation, Ca' Tron di Roncade, I-31056, Italy
| | | | | |
Collapse
|
11
|
Delbianco A, Lanzoni C, Klein E, Rubies Autonell C, Gilmer D, Ratti C. Agroinoculation of Beet necrotic yellow vein virus cDNA clones results in plant systemic infection and efficient Polymyxa betae transmission. MOLECULAR PLANT PATHOLOGY 2013; 14:422-8. [PMID: 23384276 PMCID: PMC6638874 DOI: 10.1111/mpp.12018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Agroinoculation is a quick and easy method for the infection of plants with viruses. This method involves the infiltration of tissue with a suspension of Agrobacterium tumefaciens carrying binary plasmids harbouring full-length cDNA copies of viral genome components. When transferred into host cells, transcription of the cDNA produces RNA copies of the viral genome that initiate infection. We produced full-length cDNA corresponding to Beet necrotic yellow vein virus (BNYVV) RNAs and derived replicon vectors expressing viral and fluorescent proteins in pJL89 binary plasmid under the control of the Cauliflower mosaic virus 35S promoter. We infected Nicotiana benthamiana and Beta macrocarpa plants with BNYVV by leaf agroinfiltration of combinations of agrobacteria carrying full-length cDNA clones of BNYVV RNAs. We validated the ability of agroclones to reproduce a complete viral cycle, from replication to cell-to-cell and systemic movement and, finally, plant-to-plant transmission by its plasmodiophorid vector. We also showed successful root agroinfection of B. vulgaris, a new tool for the assay of resistance to rhizomania, the sugar beet disease caused by BNYVV.
Collapse
Affiliation(s)
- Alice Delbianco
- DipSA-Plant Pathology, University of Bologna, 40-40127, Bologna, Italy; Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 67084, Strasbourg Cedex, France
| | | | | | | | | | | |
Collapse
|
12
|
Bujarski JJ. Genetic recombination in plant-infecting messenger-sense RNA viruses: overview and research perspectives. FRONTIERS IN PLANT SCIENCE 2013; 4:68. [PMID: 23533000 PMCID: PMC3607795 DOI: 10.3389/fpls.2013.00068] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/11/2013] [Indexed: 05/09/2023]
Abstract
RNA recombination is one of the driving forces of genetic variability in (+)-strand RNA viruses. Various types of RNA-RNA crossovers were described including crosses between the same or different viral RNAs or between viral and cellular RNAs. Likewise, a variety of molecular mechanisms are known to support RNA recombination, such as replicative events (based on internal or end-to-end replicase switchings) along with non-replicative joining among RNA fragments of viral and/or cellular origin. Such mechanisms as RNA decay or RNA interference are responsible for RNA fragmentation and trans-esterification reactions which are likely accountable for ligation of RNA fragments. Numerous host factors were found to affect the profiles of viral RNA recombinants and significant differences in recombination frequency were observed among various RNA viruses. Comparative analyses of viral sequences allowed for the development of evolutionary models in order to explain adaptive phenotypic changes and co-evolving sites. Many questions remain to be answered by forthcoming RNA recombination research. (1) How various factors modulate the ability of viral replicase to switch templates, (2) What is the intracellular location of RNA-RNA template switchings, (3) Mechanisms and factors responsible for non-replicative RNA recombination, (4) Mechanisms of integration of RNA viral sequences with cellular genomic DNA, and (5) What is the role of RNA splicing and ribozyme activity. From an evolutionary stand point, it is not known how RNA viruses parasitize new host species via recombination, nor is it obvious what the contribution of RNA recombination is among other RNA modification pathways. We do not understand why the frequency of RNA recombination varies so much among RNA viruses and the status of RNA recombination as a form of sex is not well documented.
Collapse
Affiliation(s)
- Jozef J. Bujarski
- Plant Molecular Biology Center and the Department of Biological Sciences, Northern Illinois UniversityDeKalb, IL, USA
- Laboratory of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznan, Poland
- *Correspondence: Jozef J. Bujarski, Plant Molecular Biology Center and the Department of Biological Sciences, Northern Illinois University, Montgomery Hall, DeKalb, IL 60115, USA. e-mail:
| |
Collapse
|
13
|
Seo JK, Kwon SJ, Chaturvedi S, Choi SH, Rao ALN. Functional significance of a hepta nucleotide motif present at the junction of Cucumber mosaic virus satellite RNA multimers in helper-virus dependent replication. Virology 2012; 435:214-9. [PMID: 23146208 DOI: 10.1016/j.virol.2012.10.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/15/2012] [Accepted: 10/21/2012] [Indexed: 12/14/2022]
Abstract
Satellite RNAs (satRNA) associated with Cucumber mosaic virus (CMV) have been shown to generate multimers during replication. We have discovered that multimers of a CMV satRNA generated in the absence of its helper virus (HV) are characterized by the addition of a hepta nucleotide motif (HNM) at the monomer junctions. Here, we evaluated the functional significance of HNM in HV-dependent replication by ectopically expressing wild type and mutant forms of satRNA multimers in planta either in (+) or (-)-strand polarity. Comparative replication profiles revealed that (-)-strand multimers with complementary HNM (cHNM) are the preferred initial templates for HV-dependent replication than (-)-strand monomers and multimers lacking the cHNM. Further mutational analyses of the HNM accentuate that preservation of the sequence and native length of HNM is obligatory for efficient replication of satRNA. A model implicating the significance of HNM in HV-dependent production of monomeric and multimeric forms of satRNA is presented.
Collapse
Affiliation(s)
- Jang-Kyun Seo
- Department of Plant Pathology & Microbiology, University of California, Riverside, California 92521-0122, United States
| | | | | | | | | |
Collapse
|