1
|
May AJ, Lella M, Lindenberger J, Berkman A, Dutta M, Barr M, Parks R, Newman A, Huang X, Kumar U, Song K, Ilevbare V, Sammour S, Park CS, Adhikari RD, Devkota P, Janowska K, Liu Y, Scapellato G, Spence TN, Mansouri K, Edwards RJ, Haynes BF, Acharya P. Structural and antigenic characterization of novel and diverse Henipavirus glycoproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627382. [PMID: 39713338 PMCID: PMC11661166 DOI: 10.1101/2024.12.11.627382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Henipaviruses (HNVs), a genus within the Paramyxoviridae family, includes the highly virulent Nipah and Hendra viruses that cause yearly reoccurring outbreaks of deadly disease. Recent discoveries of several new Henipavirus species, including the zoonotic Langya virus, have revealed much higher antigenic diversity than currently characterized. Here, to explore the limits of structural and antigenic variation in HNVs, we construct an expanded, antigenically diverse panel of HNV fusion (F) and attachment (G) glycoproteins from 56 unique HNV strains that better reflects global HNV diversity. We expressed and purified the F ectodomains and the G head domains, characterized their biochemical, biophysical and structural properties. We performed immunization experiments in mice leading to the elicitation of antibodies reactive to multiple HNV F proteins. Cryo-EM structures of diverse F proteins elucidate molecular determinants of differential pre-fusion state metastability and higher order contacts. A crystal structure of the Gamak virus G head domain revealed an additional domain added to the conserved 6-bladed, β-propeller fold. Taken together, these studies expand the known structural and antigenic limits of the Henipavirus genus, reveal new cross-reactive epitopes within the HNV genus and provide foundational data needed for the development of broadly reactive countermeasures.
Collapse
Affiliation(s)
- Aaron J. May
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
- Duke University, Department of Biochemistry, Durham NC 27710, USA
| | | | | | - Alex Berkman
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
| | - Moumita Dutta
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
| | - Maggie Barr
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
| | - Rob Parks
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
| | - Amanda Newman
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
| | - Xiao Huang
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
| | - Ujjwal Kumar
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
| | - Kijun Song
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
- Duke University, Department of Biochemistry, Durham NC 27710, USA
| | - Victor Ilevbare
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
| | - Salam Sammour
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
| | - Chan Soo Park
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
| | | | - Priyanka Devkota
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
| | | | - Yanshun Liu
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
| | | | - Taylor N. Spence
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
| | | | - Robert J Edwards
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
- Duke University, Department of Medicine, Durham, NC 27710, USA
| | - Barton F. Haynes
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
- Duke University, Department of Medicine, Durham, NC 27710, USA
- Duke University, Department of Integrative Immunology, Durham NC 27710, USA
| | - Priyamvada Acharya
- Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA
- Duke University, Department of Biochemistry, Durham NC 27710, USA
- Duke University, Department of Integrative Immunology, Durham NC 27710, USA
- Lead contact
| |
Collapse
|
2
|
Loomis RJ, Lai YT, Sowers SB, Fisher B, Derrien-Colemyn A, Ambrozak DR, Tsybovsky Y, Crooke SN, Latner DR, Kong WP, Ruckwardt TJ, Plotkin SA, Kwong PD, Mascola JR, Graham BS, Hickman CJ, Stewart-Jones GBE. Structure-based design of glycoprotein subunit vaccines for mumps. Proc Natl Acad Sci U S A 2024; 121:e2404053121. [PMID: 39527740 PMCID: PMC11588112 DOI: 10.1073/pnas.2404053121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/17/2024] [Indexed: 11/16/2024] Open
Abstract
Mumps virus (MuV) is a highly contagious paramyxovirus that is endemic in most regions of the world and continues to cause outbreaks even in highly immunized populations. Outbreaks of mumps in countries with high measles, mumps, and rubella vaccination coverage have been attributed to waning immunity and antigenic differences between the Jeryl Lynn vaccine strain (genotype A) and circulating wild-type viruses. To obtain a subunit vaccine, we used structure-based design to engineer the mumps fusion (F) glycoprotein stabilized in its prefusion conformation (Pre-F) as well as a chimeric immunogen comprising Pre-F linked to mumps hemagglutinin neuraminidase (HN); in mice, both Pre-F antigen and the chimeric antigen elicited potent cross-reactive plaque reducing neutralizing titers to genotypes A, G, and H mumps. A crystal structure of mumps Pre-F at 2.16 Å resolution validated the stabilization strategy, while a post-fusion form of F was engineered as a comparator. Monoclonal antibodies to mumps Pre-F and HN were isolated from immunized mice; 7 of 14 Pre-F-specific antibodies and 9 of 15 HN-specific antibodies were capable of neutralizing genotype G MuV with a range of potencies. Additionally, 7 of 14 Pre-F-specific antibodies neutralized genotype A mumps. Structural and binding analyses of Pre-F-specific antibodies revealed binding to four discrete neutralizing antigenic sites and binding analyses of HN-specific antibodies revealed binding to five discrete neutralizing antigenic sites. Overall, the PreF and the chimeric Pre-F/HN immunogens are promising candidates to boost MMR-elicited immunity to mumps or as a next-generation vaccine.
Collapse
Affiliation(s)
| | | | - Sun B. Sowers
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA30333
| | | | | | | | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD21701
| | - Stephen N. Crooke
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA30333
| | - Donald R. Latner
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA30333
| | | | | | - Stanley A. Plotkin
- Department of Pediatrics, University of Pennsylvania, Doylestown, PA18902
| | | | | | | | - Carole J. Hickman
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA30333
| | | |
Collapse
|
3
|
Thakur B, Katte RH, Xu W, Janowska K, Sammour S, Henderson R, Lu M, Kwong PD, Acharya P. Conformational trajectory of the HIV-1 fusion peptide during CD4-induced envelope opening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613076. [PMID: 39314380 PMCID: PMC11419153 DOI: 10.1101/2024.09.14.613076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The hydrophobic fusion peptide (FP), a critical component of the HIV-1 entry machinery, is located at the N terminal stretch of the envelope (Env) gp41 subunit 1-3 . The receptor-binding gp120 subunit of Env forms a heterodimer with gp41 and assembles into a trimer, in which FP is accessible for antibody binding 3 . Env conformational changes or "opening" that follow receptor binding result in FP relocating to a newly formed interprotomer pocket at the gp41-gp120 interface where it is sterically inaccessible to antibody 4 . The mechanistic steps connecting the entry-related transition of antibody accessible-to-inaccessible FP configurations remain unresolved. Here, using SOSIP-stabilized Env ectodomains 5 , we visualized atomic-level details of a functional entry intermediate, where partially open Env was bound to receptor CD4, co-receptor mimetic antibody 17b, and FP-targeting antibody VRC34.01, demonstrating that FP remains antibody accessible despite substantial receptor-induced Env opening. We determined a series of structures delineating stepwise opening of Env from its closed state to a newly resolved intermediate and defining downstream re-organizations of the gp120-gp41 interface that ultimately resulted in FP burial in an antibody-inaccessible configuration. Our studies improve our understanding of HIV-1 entry and provide information on entry-related conformation reorganization of a key site of HIV vulnerability to neutralizing antibody.
Collapse
|
4
|
Vukovich MJ, Shiakolas AR, Lindenberger J, Richardson RA, Bass LE, Barr M, Liu Y, Go EP, Park CS, May AJ, Sammour S, Kambarami C, Huang X, Janowska K, Edwards RJ, Mansouri K, Spence TN, Abu-Shmais AA, Manamela NP, Richardson SI, Leonard SEW, Gripenstraw KR, Setliff I, Saunders KO, Bonami RH, Ross TM, Desaire H, Moore PL, Parks R, Haynes BF, Sheward DJ, Acharya P, Sautto GA, Georgiev IS. Isolation and characterization of IgG3 glycan-targeting antibodies with exceptional cross-reactivity for diverse viral families. PLoS Pathog 2024; 20:e1012499. [PMID: 39292703 PMCID: PMC11410209 DOI: 10.1371/journal.ppat.1012499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/13/2024] [Indexed: 09/20/2024] Open
Abstract
Broadly reactive antibodies that target sequence-diverse antigens are of interest for vaccine design and monoclonal antibody therapeutic development because they can protect against multiple strains of a virus and provide a barrier to evolution of escape mutants. Using LIBRA-seq (linking B cell receptor to antigen specificity through sequencing) data for the B cell repertoire of an individual chronically infected with human immunodeficiency virus type 1 (HIV-1), we identified a lineage of IgG3 antibodies predicted to bind to HIV-1 Envelope (Env) and influenza A Hemagglutinin (HA). Two lineage members, antibodies 2526 and 546, were confirmed to bind to a large panel of diverse antigens, including several strains of HIV-1 Env, influenza HA, coronavirus (CoV) spike, hepatitis C virus (HCV) E protein, Nipah virus (NiV) F protein, and Langya virus (LayV) F protein. We found that both antibodies bind to complex glycans on the antigenic surfaces. Antibody 2526 targets the stem region of influenza HA and the N-terminal domain (NTD) region of SARS-CoV-2 spike. A crystal structure of 2526 Fab bound to mannose revealed the presence of a glycan-binding pocket on the light chain. Antibody 2526 cross-reacted with antigens from multiple pathogens and displayed no signs of autoreactivity. These features distinguish antibody 2526 from previously described glycan-reactive antibodies. Further study of this antibody class may aid in the selection and engineering of broadly reactive antibody therapeutics and can inform the development of effective vaccines with exceptional breadth of pathogen coverage.
Collapse
Affiliation(s)
- Matthew J. Vukovich
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Andrea R. Shiakolas
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jared Lindenberger
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Robert A. Richardson
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
| | - Lindsay E. Bass
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Maggie Barr
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Yanshun Liu
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Eden P. Go
- Department of Chemistry, University of Kansas, Lawrence, Kansas, United States of America
| | - Chan Soo Park
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Aaron J. May
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Salam Sammour
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Chipo Kambarami
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Xiao Huang
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Katarzyna Janowska
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Taylor N. Spence
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Alexandra A. Abu-Shmais
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Nelia P. Manamela
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Simone I. Richardson
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Sabina E. W. Leonard
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Kathryn R. Gripenstraw
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Ian Setliff
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Rachel H. Bonami
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Ted M. Ross
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Heather Desaire
- Department of Chemistry, University of Kansas, Lawrence, Kansas, United States of America
| | - Penny L. Moore
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Robert Parks
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
- Department of Medicine and Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Daniel J. Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Giuseppe A. Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
5
|
Wang C, Li M, Wang Y, Ding Q, Fan S, Lan J. Structural insights into the Langya virus attachment glycoprotein. Structure 2024; 32:1090-1098.e3. [PMID: 38815575 DOI: 10.1016/j.str.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/23/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024]
Abstract
Langya virus (LayV) was recently detected in patients with acute pneumonic diseases in China. Genome alignment indicated that LayV is a type of zoonotic henipavirus (HNV) that might also infect domestic animals. Previous studies revealed that HNVs mainly use ephrin-B1, ephrin-B2, or ephrin-B3 as cell receptors and the attachment glycoprotein (G) is the host cell receptor-binding protein. However, the LayV receptor remains unknown. Here, we present the 2.77 Å crystal structure of the LayV G C-terminal domain (CTD). We show that the LayV G protein CTD possesses a similar architecture as the Mojiang virus (MojV) G protein but is markedly different from the Nipah virus (NiV), Hendra virus (HeV), and Cedar virus (CedV) G proteins. Surface plasmon resonance (SPR) experiments indicate that LayV G does not bind ephrin-B proteins. Steric hindrance may prevent interactions between LayV G and ephrin-B. Our data might facilitate drug development targeting LayV.
Collapse
Affiliation(s)
- Chenghai Wang
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Min Li
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yufan Wang
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Shilong Fan
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Jun Lan
- School of Biomedical Sciences, Hunan University, Changsha, China.
| |
Collapse
|
6
|
Meier K, Olejnik J, Hume AJ, Mühlberger E. A Comparative Assessment of the Pathogenic Potential of Newly Discovered Henipaviruses. Pathogens 2024; 13:587. [PMID: 39057814 PMCID: PMC11280395 DOI: 10.3390/pathogens13070587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Recent advances in high-throughput sequencing technologies have led to the discovery of a plethora of previously unknown viruses in animal samples. Some of these newly detected viruses are closely related to human pathogens. A prime example are the henipaviruses. Both Nipah (NiV) and Hendra virus (HeV) cause severe disease in humans. Henipaviruses are of zoonotic origin, and animal hosts, including intermediate hosts, play a critical role in viral transmission to humans. The natural reservoir hosts of NiV and HeV seem to be restricted to a few fruit bat species of the Pteropus genus in distinct geographic areas. However, the recent discovery of novel henipa- and henipa-like viruses suggests that these viruses are far more widespread than was originally thought. To date, these new viruses have been found in a wide range of animal hosts, including bats, shrews, and rodents in Asia, Africa, Europe, and South America. Since these viruses are closely related to human pathogens, it is important to learn whether they pose a threat to human health. In this article, we summarize what is known about the newly discovered henipaviruses, highlight differences to NiV and HeV, and discuss their pathogenic potential.
Collapse
Affiliation(s)
- Kristina Meier
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (K.M.); (J.O.); (A.J.H.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Judith Olejnik
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (K.M.); (J.O.); (A.J.H.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Adam J. Hume
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (K.M.); (J.O.); (A.J.H.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Elke Mühlberger
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (K.M.); (J.O.); (A.J.H.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| |
Collapse
|
7
|
Zyla DS, Della Marca R, Niemeyer G, Zipursky G, Stearns K, Leedale C, Sobolik EB, Callaway HM, Hariharan C, Peng W, Parekh D, Marcink TC, Diaz Avalos R, Horvat B, Mathieu C, Snijder J, Greninger AL, Hastie KM, Niewiesk S, Moscona A, Porotto M, Ollmann Saphire E. A neutralizing antibody prevents postfusion transition of measles virus fusion protein. Science 2024; 384:eadm8693. [PMID: 38935733 DOI: 10.1126/science.adm8693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/28/2024] [Indexed: 06/29/2024]
Abstract
Measles virus (MeV) presents a public health threat that is escalating as vaccine coverage in the general population declines and as populations of immunocompromised individuals, who cannot be vaccinated, increase. There are no approved therapeutics for MeV. Neutralizing antibodies targeting viral fusion are one potential therapeutic approach but have not yet been structurally characterized or advanced to clinical use. We present cryo-electron microscopy (cryo-EM) structures of prefusion F alone [2.1-angstrom (Å) resolution], F complexed with a fusion-inhibitory peptide (2.3-Å resolution), F complexed with the neutralizing and protective monoclonal antibody (mAb) 77 (2.6-Å resolution), and an additional structure of postfusion F (2.7-Å resolution). In vitro assays and examination of additional EM classes show that mAb 77 binds prefusion F, arrests F in an intermediate state, and prevents transition to the postfusion conformation. These structures shed light on antibody-mediated neutralization that involves arrest of fusion proteins in an intermediate state.
Collapse
Affiliation(s)
- Dawid S Zyla
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Roberta Della Marca
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," 81100 Caserta, Italy
| | - Gele Niemeyer
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Luebeck, D-23538 Luebeck, Germany
| | - Gillian Zipursky
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Kyle Stearns
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Cameron Leedale
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Elizabeth B Sobolik
- Department of Laboratory Medicine and Pathology Virology Division, University of Washington, Seattle, WA 98109, USA
| | - Heather M Callaway
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Chitra Hariharan
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Weiwei Peng
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, Netherlands
- Netherlands Proteomics Center, 3584 CH Utrecht, Netherlands
| | - Diptiben Parekh
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Tara C Marcink
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ruben Diaz Avalos
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Branka Horvat
- Immunobiology of Viral Infections, International Center for Infectiology Research-CIRI, INSERM U1111, CNRS UMR5308, University Lyon 1, ENS de Lyon, 69007 Lyon, France
| | - Cyrille Mathieu
- Centre International de Recherche en Infectiologie équipe Neuro-Invasion, TROpism and VIRal Encephalitis (NITROVIRE), INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, 69007 Lyon, France
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, Netherlands
- Netherlands Proteomics Center, 3584 CH Utrecht, Netherlands
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology Virology Division, University of Washington, Seattle, WA 98109, USA
| | - Kathryn M Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Anne Moscona
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Matteo Porotto
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," 81100 Caserta, Italy
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
8
|
Langedijk JPM, Cox F, Johnson NV, van Overveld D, Le L, van den Hoogen W, Voorzaat R, Zahn R, van der Fits L, Juraszek J, McLellan JS, Bakkers MJG. Universal paramyxovirus vaccine design by stabilizing regions involved in structural transformation of the fusion protein. Nat Commun 2024; 15:4629. [PMID: 38821950 PMCID: PMC11143371 DOI: 10.1038/s41467-024-48059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/19/2024] [Indexed: 06/02/2024] Open
Abstract
The Paramyxoviridae family encompasses medically significant RNA viruses, including human respiroviruses 1 and 3 (RV1, RV3), and zoonotic pathogens like Nipah virus (NiV). RV3, previously known as parainfluenza type 3, for which no vaccines or antivirals have been approved, causes respiratory tract infections in vulnerable populations. The RV3 fusion (F) protein is inherently metastable and will likely require prefusion (preF) stabilization for vaccine effectiveness. Here we used structure-based design to stabilize regions involved in structural transformation to generate a preF protein vaccine antigen with high expression and stability, and which, by stabilizing the coiled-coil stem region, does not require a heterologous trimerization domain. The preF candidate induces strong neutralizing antibody responses in both female naïve and pre-exposed mice and provides protection in a cotton rat challenge model (female). Despite the evolutionary distance of paramyxovirus F proteins, their structural transformation and local regions of instability are conserved, which allows successful transfer of stabilizing substitutions to the distant preF proteins of RV1 and NiV. This work presents a successful vaccine antigen design for RV3 and provides a toolbox for future paramyxovirus vaccine design and pandemic preparedness.
Collapse
Affiliation(s)
- Johannes P M Langedijk
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
- ForgeBio, Amsterdam, The Netherlands
| | - Freek Cox
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | - Nicole V Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | | | - Lam Le
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | | | | | - Roland Zahn
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | | | - Jarek Juraszek
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Mark J G Bakkers
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands.
- ForgeBio, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Wang Z, McCallum M, Yan L, Gibson CA, Sharkey W, Park YJ, Dang HV, Amaya M, Person A, Broder CC, Veesler D. Structure and design of Langya virus glycoprotein antigens. Proc Natl Acad Sci U S A 2024; 121:e2314990121. [PMID: 38593070 PMCID: PMC11032465 DOI: 10.1073/pnas.2314990121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/04/2024] [Indexed: 04/11/2024] Open
Abstract
Langya virus (LayV) is a recently discovered henipavirus (HNV), isolated from febrile patients in China. HNV entry into host cells is mediated by the attachment (G) and fusion (F) glycoproteins which are the main targets of neutralizing antibodies. We show here that the LayV F and G glycoproteins promote membrane fusion with human, mouse, and hamster target cells using a different, yet unknown, receptor than Nipah virus (NiV) and Hendra virus (HeV) and that NiV- and HeV-elicited monoclonal and polyclonal antibodies do not cross-react with LayV F and G. We determined cryoelectron microscopy structures of LayV F, in the prefusion and postfusion states, and of LayV G, revealing their conformational landscape and distinct antigenicity relative to NiV and HeV. We computationally designed stabilized LayV G constructs and demonstrate the generalizability of an HNV F prefusion-stabilization strategy. Our data will support the development of vaccines and therapeutics against LayV and closely related HNVs.
Collapse
Affiliation(s)
- Zhaoqian Wang
- Department of Biochemistry, University of Washington, Seattle, WA98195
| | - Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA98195
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD20814
| | - Cecily A. Gibson
- Department of Biochemistry, University of Washington, Seattle, WA98195
| | - William Sharkey
- Department of Biochemistry, University of Washington, Seattle, WA98195
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA98195
- HHMI, Seattle, WA98195
| | - Ha V. Dang
- Department of Biochemistry, University of Washington, Seattle, WA98195
| | - Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD20814
| | - Ashley Person
- Department of Biochemistry, University of Washington, Seattle, WA98195
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD20814
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA98195
- HHMI, Seattle, WA98195
| |
Collapse
|
10
|
Byrne PO, Blade EG, Fisher BE, Ambrozak DR, Ramamohan AR, Graham BS, Loomis RJ, McLellan JS. Prefusion stabilization of the Hendra and Langya virus F proteins. J Virol 2024; 98:e0137223. [PMID: 38214525 PMCID: PMC10878279 DOI: 10.1128/jvi.01372-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Nipah virus (NiV) and Hendra virus (HeV) are pathogenic paramyxoviruses that cause mild-to-severe disease in humans. As members of the Henipavirus genus, NiV and HeV use an attachment (G) glycoprotein and a class I fusion (F) glycoprotein to invade host cells. The F protein rearranges from a metastable prefusion form to an extended postfusion form to facilitate host cell entry. Prefusion NiV F elicits higher neutralizing antibody titers than postfusion NiV F, indicating that stabilization of prefusion F may aid vaccine development. A combination of amino acid substitutions (L104C/I114C, L172F, and S191P) is known to stabilize NiV F in its prefusion conformation, although the extent to which substitutions transfer to other henipavirus F proteins is not known. Here, we perform biophysical and structural studies to investigate the mechanism of prefusion stabilization in F proteins from three henipaviruses: NiV, HeV, and Langya virus (LayV). Three known stabilizing substitutions from NiV F transfer to HeV F and exert similar structural and functional effects. One engineered disulfide bond, located near the fusion peptide, is sufficient to stabilize the prefusion conformations of both HeV F and LayV F. Although LayV F shares low overall sequence identity with NiV F and HeV F, the region around the fusion peptide exhibits high sequence conservation across all henipaviruses. Our findings indicate that substitutions targeting this site of conformational change might be applicable to prefusion stabilization of other henipavirus F proteins and support the use of NiV as a prototypical pathogen for henipavirus vaccine antigen design.IMPORTANCEPathogenic henipaviruses such as Nipah virus (NiV) and Hendra virus (HeV) cause respiratory symptoms, with severe cases resulting in encephalitis, seizures, and coma. The work described here shows that the NiV and HeV fusion (F) proteins share common structural features with the F protein from an emerging henipavirus, Langya virus (LayV). Sequence alignment alone was sufficient to predict which known prefusion-stabilizing amino acid substitutions from NiV F would stabilize the prefusion conformations of HeV F and LayV F. This work also reveals an unexpected oligomeric interface shared by prefusion HeV F and NiV F. Together, these advances lay a foundation for future antigen design targeting henipavirus F proteins. In this way, Nipah virus can serve as a prototypical pathogen for the development of protective vaccines and monoclonal antibodies to prepare for potential henipavirus outbreaks.
Collapse
Affiliation(s)
- Patrick O. Byrne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Elizabeth G. Blade
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Brian E. Fisher
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - David R. Ambrozak
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ajit R. Ramamohan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | | | - Rebecca J. Loomis
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
11
|
Guo Y, Wu S, Li W, Yang H, Shi T, Ju B, Zhang Z, Yan R. The cryo-EM structure of homotetrameric attachment glycoprotein from langya henipavirus. Nat Commun 2024; 15:812. [PMID: 38280880 PMCID: PMC10821904 DOI: 10.1038/s41467-024-45202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/18/2024] [Indexed: 01/29/2024] Open
Abstract
Langya Henipavirus (LayV) infection is an emerging zoonotic disease that has been causing respiratory symptoms in China since 2019. For virus entry, LayV's genome encodes the fusion protein F and the attachment glycoprotein G. However, the structural and functional information regarding LayV-G remains unclear. In this study, we revealed that LayV-G cannot bind to the receptors found in other HNVs, such as ephrin B2/B3, and it shows different antigenicity from HeV-G and NiV-G. Furthermore, we determined the near full-length structure of LayV-G, which displays a distinct mushroom-shaped configuration, distinguishing it from other attachment glycoproteins of HNV. The stalk and transmembrane regions resemble the stem and root of mushroom and four downward-tilted head domains as mushroom cap potentially interact with the F protein and influence membrane fusion process. Our findings enhance the understanding of emerging HNVs that cause human diseases through zoonotic transmission and provide implication for LayV related vaccine development.
Collapse
Affiliation(s)
- Yingying Guo
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| | - Songyue Wu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Wenting Li
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Haonan Yang
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Tianhao Shi
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Bin Ju
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| | - Renhong Yan
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
12
|
May AJ, Acharya P. Structural Studies of Henipavirus Glycoproteins. Viruses 2024; 16:195. [PMID: 38399971 PMCID: PMC10892422 DOI: 10.3390/v16020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Henipaviruses are a genus of emerging pathogens that includes the highly virulent Nipah and Hendra viruses that cause reoccurring outbreaks of disease. Henipaviruses rely on two surface glycoproteins, known as the attachment and fusion proteins, to facilitate entry into host cells. As new and divergent members of the genus have been discovered and structurally characterized, key differences and similarities have been noted. This review surveys the available structural information on Henipavirus glycoproteins, complementing this with information from related biophysical and structural studies of the broader Paramyxoviridae family of which Henipaviruses are members. The process of viral entry is a primary focus for vaccine and drug development, and this review aims to identify critical knowledge gaps in our understanding of the mechanisms that drive Henipavirus fusion.
Collapse
Affiliation(s)
- Aaron J. May
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
- Department of Surgery, Duke University, Durham, NC 27710, USA
| |
Collapse
|
13
|
Wang Z, McCallum M, Yan L, Sharkey W, Park YJ, Dang HV, Amaya M, Person A, Broder CC, Veesler D. Structure and design of Langya virus glycoprotein antigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.554025. [PMID: 37645760 PMCID: PMC10462157 DOI: 10.1101/2023.08.20.554025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Langya virus (LayV) is a recently discovered henipavirus (HNV), isolated from febrile patients in China. HNV entry into host cells is mediated by the attachment (G) and fusion (F) glycoproteins which are the main targets of neutralizing antibodies. We show here that the LayV F and G glycoproteins promote membrane fusion with human, mouse and hamster target cells using a different, yet unknown, receptor than NiV and HeV and that NiV- and HeV-elicited monoclonal and polyclonal antibodies do not cross-react with LayV F and G. We determined cryo-electron microscopy structures of LayV F, in the prefusion and postfusion states, and of LayV G, revealing previously unknown conformational landscapes and their distinct antigenicity relative to NiV and HeV. We computationally designed stabilized LayV G constructs and demonstrate the generalizability of an HNV F prefusion-stabilization strategy. Our data will support the development of vaccines and therapeutics against LayV and closely related HNVs.
Collapse
Affiliation(s)
- Zhaoqian Wang
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - William Sharkey
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Ha V. Dang
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Ashley Person
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| |
Collapse
|
14
|
Chavda VP, Apostolopoulos V, Sah R. Langya henipavirus outbreak. Expert Rev Anti Infect Ther 2023; 21:1021-1024. [PMID: 37724512 DOI: 10.1080/14787210.2023.2260561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, Gujarat, India
| | | | - Ranjit Sah
- Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
- D.Y Patil Medical College, Hospital and Research Centre, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|