1
|
Adenovector 26 encoded prefusion conformation stabilized RSV-F protein induces long-lasting Th1-biased immunity in neonatal mice. NPJ Vaccines 2020; 5:49. [PMID: 32566260 PMCID: PMC7293210 DOI: 10.1038/s41541-020-0200-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
While RSV is a major cause of respiratory morbidity in infants, vaccine development is hindered by the immaturity and Th2-bias of the infant immune system and the legacy of enhanced respiratory disease (ERD) after RSV infection following immunization with formalin inactivated (FI)-RSV vaccine in earlier clinical trials. Preclinical studies have demonstrated that an adenoviral vector-based RSV F vaccine candidate (Ad26.RSV.FA2) induces Th1-biased protective immune responses, without signs of ERD upon subsequent RSV challenge. We here developed an Ad26 vector encoding the RSV F protein stabilized in its prefusion conformation (Ad26.RSV.preF). In adult mice, Ad26.RSV.preF induced superior, Th1-biased IgG2a-dominated humoral responses as compared to Ad26.RSV.FA2, while maintaining the strong Th1-biased cellular responses. Similar to adult mice, Ad26.RSV.preF induced robust and durable humoral immunity in neonatal mice, again characterized by IgG2a-dominated RSV F-binding antibodies, and high and stable virus-neutralizing titers. In addition, vaccine-elicited cellular immune responses were durable and characterized by IFN-γ-producing CD4+ and CD8+ T cells, with a profound Th1 bias. In contrast, immunization of neonatal mice with FI-RSV resulted in IgG1 RSV F-binding antibodies associated with a Th2 phenotype, no detectable virus-neutralizing antibodies, and a Th2-biased cellular response. These results are supportive for the clinical development of Ad26.RSV.preF for use in infants.
Collapse
|
2
|
Neukirch L, Fougeroux C, Andersson AMC, Holst PJ. The potential of adenoviral vaccine vectors with altered antigen presentation capabilities. Expert Rev Vaccines 2020; 19:25-41. [PMID: 31889453 DOI: 10.1080/14760584.2020.1711054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Despite their appeal as vaccine vectors, adenoviral vectors are yet unable to induce protective immune responses against some weakly immunogenic antigens. Additionally, the maximum doses of adenovirus-based vaccines are limited by vector-induced toxicity, causing vector elimination and diminished immune responses against the target antigen. In order to increase immune responses to the transgene, while maintaining a moderate vector dose, new technologies for improved transgene presentation have been developed for adenoviral vaccine vectors.Areas covered: This review provides an overview of different genetic-fusion adjuvants that aim to improve antigen presentation in the context of adenoviral vector-based vaccines. The influence on both T cell and B cell responses are discussed, with a main focus on two technologies: MHC class II-associated invariant chain and virus-like-vaccines.Expert opinion: Different strategies have been tested to improve adenovirus-based vaccinations with varying degrees of success. The reviewed genetic adjuvants were designed to increase antigen processing and MHC presentation, or promote humoral immune responses with an improved conformational antigen display. While none of the introduced technologies is universally applicable, this review shall give an overview to identify potential improvements for future vaccination approaches.
Collapse
Affiliation(s)
- Lasse Neukirch
- Clinical Cooperation Unit "Applied Tumor Immunity", National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Cyrielle Fougeroux
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Marie Carola Andersson
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,InProTher ApS, Copenhagen, Denmark
| | - Peter Johannes Holst
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,InProTher ApS, Copenhagen, Denmark
| |
Collapse
|
3
|
Chung H, Kim HJ, Kim JS, Yoon IH, Min BH, Shin JS, Kim JM, Lee WW, Park CG. CD4 + /CD8 + T-cell ratio correlates with the graft fate in pig-to-non-human primate islet xenotransplantation. Xenotransplantation 2019; 27:e12562. [PMID: 31642566 DOI: 10.1111/xen.12562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/17/2019] [Accepted: 10/07/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Xenogeneic islet transplantation using porcine pancreata has been a promising option for substituting human islet transplantation. Moreover, recent advances in pre-clinical results have put islet xenotransplantation closer to the possibility of clinical application. While preparing for the era of clinical xenotransplantation, developing non-invasive immune monitoring method which could predict the graft fate could benefit the patient. However, there are few reports showing predictive immune parameters associated with the fate of the graft in islet xenotransplantation. METHODS The absolute number and ratio of T-cell subsets have been measured via flow cytometry from the peripheral blood of 16 rhesus monkeys before and after porcine islet xenotransplantation. The correlation between the graft survival and the absolute number or ratio of T cells was retrospectively analyzed. RESULTS The ratio of CD4+ versus CD8+ T cells was significantly reduced due to CD8+ effector memory cells' increase. Correlation analyses revealed that CD4+ /CD8+ , CD4+ /CD8+ naïve, CD4+ naïve/CD8+ naïve, and CD4+ central memory/CD8+ naïve cell ratios negatively correlated with the duration of graft survival. Conversely, further analyses discovered strong, positive correlation of CD4+ /CD8+ cell ratios within the early graft-rejected monkeys (≤60 days). CONCLUSIONS This retrospective study demonstrated that CD4+ /CD8+ ratios correlated with graft survival, especially in recipients which rejected the graft in early post-transplantation periods. CD4+ /CD8+ ratios could be used as a surrogate marker to predict the graft fate in pig-to-NHP islet xenotransplantation.
Collapse
Affiliation(s)
- Hyunwoo Chung
- Seoul National University College of Medicine, Xenotransplantation Research Center, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Hyun-Je Kim
- Seoul National University College of Medicine, Xenotransplantation Research Center, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Jung-Sik Kim
- Seoul National University College of Medicine, Xenotransplantation Research Center, Seoul, Korea
| | - Il-Hee Yoon
- VHS Veterans Medical Research Institute, VHS Medical Center, Seoul, Korea
| | - Byoung-Hoon Min
- Seoul National University College of Medicine, Xenotransplantation Research Center, Seoul, Korea
| | - Jun-Seop Shin
- Seoul National University College of Medicine, Xenotransplantation Research Center, Seoul, Korea
| | - Jong-Min Kim
- Seoul National University College of Medicine, Xenotransplantation Research Center, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Korea
| | - Won-Woo Lee
- Seoul National University College of Medicine, Xenotransplantation Research Center, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Chung-Gyu Park
- Seoul National University College of Medicine, Xenotransplantation Research Center, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
4
|
Zhu Y, Du S, Zhang Y, Liu J, Guo Y, Liu C, Bai J, Wang M, Zhao F, Cao T, Xu W, Bai B, Zhang K, Ma Y, Li C, Jin N. SIV-Specific Antibodies are Elicited by a Recombinant Fowlpox Virus Co-expressing SIV Gag and envT. Indian J Microbiol 2018; 58:345-352. [PMID: 30013279 DOI: 10.1007/s12088-018-0728-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/20/2018] [Indexed: 10/17/2022] Open
Abstract
Given the failures of past HIV-1 vaccine clinical trials, potential HIV-1 vaccine candidates should be rigorously screened in preclinical models including simian immunodeficiency virus (SIV) primate models and small animal models. In this study, we tested the immunogenicity of a recombinant fowlpox virus (rFPV) expressing the SIV gag and SIV envT (rFPVsg-se) proteins in BALB/c mice, to establish a foundation for further development. rFPVsg-se was constructed through homologous recombination techniques and purified through plaque screening assays using enhanced green fluorescent protein as the reporter gene. The integration, transcription, and translation of the SIV genes were measured by PCR (genomic DNA), RT-PCR (RNA), Western-blot, respectively. The levels of SIV-specific antibodies were assessed by ELISA following a single immunization (n = 18/group) or a prime-boost strategy (n = 24/group) with rFPVsg-se and compared to FPV and PBS controls. Residual virus was measured in distant organs following immunization using PCR. SIV-specific IgG titers against gag and gp120 were detected following single vaccination and the prime-boost. As expected the titers were higher following the prime-boost approach. The levels of Gag- and gp120-specific antibodies were significantly higher than controls (p < 0.01) 14 days after the booster immunization. Residual rFPVSg-Se was detected in the muscle at the site of injection, but not in distant organs, from day 1-7 post immunization. In summary, rFPVsg-se induced high levels of SIV-specific antibodies suggesting it may be a viable candidate for further development.
Collapse
Affiliation(s)
- Yilong Zhu
- 1Changchun University of Chinese Medicine, Changchun, 130117 People's Republic of China.,3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Shouwen Du
- 3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Yang Zhang
- 4Department of Neurosurgery, First Hospital, Jilin University, Changchun, 130021 People's Republic of China
| | - Jingwei Liu
- 4Department of Neurosurgery, First Hospital, Jilin University, Changchun, 130021 People's Republic of China
| | - Yan Guo
- 1Changchun University of Chinese Medicine, Changchun, 130117 People's Republic of China
| | - Cunxia Liu
- 3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Jieying Bai
- 3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Maopeng Wang
- 3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Fei Zhao
- 3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Tingting Cao
- 3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Wang Xu
- 3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Bing Bai
- 1Changchun University of Chinese Medicine, Changchun, 130117 People's Republic of China.,3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Kelong Zhang
- 3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Yizhen Ma
- 1Changchun University of Chinese Medicine, Changchun, 130117 People's Republic of China
| | - Chang Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 People's Republic of China.,3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| | - Ningyi Jin
- 1Changchun University of Chinese Medicine, Changchun, 130117 People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 People's Republic of China.,3Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122 People's Republic of China
| |
Collapse
|
5
|
Highlights from the 9th International Workshop on Pediatrics 21–22 July 2017, Paris France. J Virus Erad 2017. [DOI: 10.1016/s2055-6640(20)30703-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
6
|
Highlights from the 9 th International Workshop on Pediatrics 21-22 July 2017, Paris France. J Virus Erad 2017; 3:253-261. [PMID: 29057092 PMCID: PMC5632555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Recombinant low-seroprevalent adenoviral vectors Ad26 and Ad35 expressing the respiratory syncytial virus (RSV) fusion protein induce protective immunity against RSV infection in cotton rats. Vaccine 2015; 33:5406-5414. [PMID: 26319741 DOI: 10.1016/j.vaccine.2015.08.056] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 11/22/2022]
Abstract
RSV is an important cause of lower respiratory tract infections in children, the elderly and in those with underlying medical conditions. Although the high disease burden indicates an urgent need for a vaccine against RSV, no licensed RSV vaccine is currently available. We developed an RSV vaccine candidate based on the low-seroprevalent human adenovirus serotypes 26 and 35 (Ad26 and Ad35) encoding the RSV fusion (F) gene. Single immunization of mice with either one of these vectors induced high titers of RSV neutralizing antibodies and high levels of F specific interferon-gamma-producing T cells. A Th1-type immune response was indicated by a high IgG2a/IgG1 ratio of RSV-specific antibodies, strong induction of RSV-specific interferon-gamma and tumor necrosis factor-alpha cytokine producing CD8 Tcells, and low RSV-specific CD4 T-cell induction. Both humoral and cellular responses were increased upon a boost with RSV-F expressing heterologous adenovirus vector (Ad35 boost after Ad26 prime or vice versa). Both single immunization and prime-boost immunization of cotton rats induced high and long-lasting RSV neutralizing antibody titers and protective immunity against lung and nasal RSV A2 virus load up to at least 30 weeks after immunization. Cotton rats were also completely protected against challenge with a RSV B strain (B15/97) after heterologous prime-boost immunization. Lungs from vaccinated animals showed minimal damage or inflammatory infiltrates post-challenge, in contrast to animals vaccinated with formalin-inactivated virus. Our results suggest that recombinant human adenoviral Ad26 and Ad35 vectors encoding the RSV F gene have the potential to provide broad and durable protection against RSV in humans, and appear safe to be investigated in infants.
Collapse
|
8
|
Abstract
In spite of several attempts over many years at developing a HIV vaccine based on classical strategies, none has convincingly succeeded to date. As HIV is transmitted primarily by the mucosal route, particularly through sexual intercourse, understanding antiviral immunity at mucosal sites is of major importance. An ideal vaccine should elicit HIV-specific antibodies and mucosal CD8⁺ cytotoxic T-lymphocyte (CTL) as a first line of defense at a very early stage of HIV infection, before the virus can disseminate into the secondary lymphoid organs in mucosal and systemic tissues. A primary focus of HIV preventive vaccine research is therefore the induction of protective immune responses in these crucial early stages of HIV infection. Numerous approaches are being studied in the field, including building upon the recent RV144 clinical trial. In this article, we will review current strategies and briefly discuss the use of adjuvants in designing HIV vaccines that induce mucosal immune responses.
Collapse
|
9
|
Whitney JB, Hill AL, Sanisetty S, Penaloza-MacMaster P, Liu J, Shetty M, Parenteau L, Cabral C, Shields J, Blackmore S, Smith JY, Brinkman AL, Peter LE, Mathew SI, Smith KM, Borducchi EN, Rosenbloom DIS, Lewis MG, Hattersley J, Li B, Hesselgesser J, Geleziunas R, Robb ML, Kim JH, Michael NL, Barouch DH. Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys. Nature 2014; 512:74-7. [PMID: 25042999 PMCID: PMC4126858 DOI: 10.1038/nature13594] [Citation(s) in RCA: 489] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 06/19/2014] [Indexed: 02/06/2023]
Abstract
The viral reservoir represents a critical challenge facing HIV-1 eradication strategies1–5. However, it remains unclear when and where the viral reservoir is seeded during acute infection and the extent to which it is susceptible to early antiretroviral therapy (ART). Here we show that the viral reservoir is seeded very early following mucosal SIV infection of rhesus monkeys and prior to systemic viremia. We initiated suppressive ART in groups of monkeys on days 3, 7, 10, and 14 following intrarectal SIVmac251 infection. Treatment on day 3 blocked the emergence of viral RNA and proviral DNA in peripheral blood and also substantially reduced levels of proviral DNA in lymph nodes and gastrointestinal mucosa as compared with treatment at later timepoints. In addition, treatment on day 3 abrogated the induction of SIV-specific humoral and cellular immune responses. Nevertheless, following discontinuation of ART after 24 weeks of fully suppressive therapy, virus rebounded in all animals, although animals treated on day 3 exhibited a delayed viral rebound as compared with animals treated on days 7, 10 and 14. The time to viral rebound correlated with total viremia during acute infection and with proviral DNA at the time of ART discontinuation. These data demonstrate that the viral reservoir is seeded very early following intrarectal SIV infection of rhesus monkeys, during the “eclipse” phase, and prior to viremia. This strikingly early seeding of the refractory viral reservoir raises important new challenges for HIV-1 eradication strategies.
Collapse
Affiliation(s)
- James B Whitney
- 1] Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA [2] Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA
| | - Alison L Hill
- Program for Evolutionary Dynamics, Harvard University, Cambridge, Massachusetts 02138 USA
| | - Srisowmya Sanisetty
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Pablo Penaloza-MacMaster
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Jinyan Liu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Mayuri Shetty
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Lily Parenteau
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Crystal Cabral
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Jennifer Shields
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Stephen Blackmore
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Jeffrey Y Smith
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Amanda L Brinkman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Lauren E Peter
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Sheeba I Mathew
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Kaitlin M Smith
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Erica N Borducchi
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Daniel I S Rosenbloom
- Program for Evolutionary Dynamics, Harvard University, Cambridge, Massachusetts 02138 USA
| | | | | | - Bei Li
- Gilead Sciences, Foster City, California 94404, USA
| | | | | | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA
| | - Jerome H Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA
| | - Nelson L Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA
| | - Dan H Barouch
- 1] Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA [2] Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
10
|
Majhen D, Calderon H, Chandra N, Fajardo CA, Rajan A, Alemany R, Custers J. Adenovirus-based vaccines for fighting infectious diseases and cancer: progress in the field. Hum Gene Ther 2014; 25:301-17. [PMID: 24580050 DOI: 10.1089/hum.2013.235] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The field of adenovirology is undergoing rapid change in response to increasing appreciation of the potential advantages of adenoviruses as the basis for new vaccines and as vectors for gene and cancer therapy. Substantial knowledge and understanding of adenoviruses at a molecular level has made their manipulation for use as vaccines and therapeutics relatively straightforward in comparison with other viral vectors. In this review we summarize the structure and life cycle of the adenovirus and focus on the use of adenovirus-based vectors in vaccines against infectious diseases and cancers. Strategies to overcome the problem of preexisting antiadenovirus immunity, which can hamper the immunogenicity of adenovirus-based vaccines, are discussed. When armed with tumor-associated antigens, replication-deficient and oncolytic adenoviruses can efficiently activate an antitumor immune response. We present concepts on how to use adenoviruses as therapeutic cancer vaccines and consider some of the strategies used to further improve antitumor immune responses. Studies that explore the prospect of adenoviruses as vaccines against infectious diseases and cancer are underway, and here we give an overview of the latest developments.
Collapse
|
11
|
Resistance to infection, early and persistent suppression of simian immunodeficiency virus SIVmac251 viremia, and significant reduction of tissue viral burden after mucosal vaccination in female rhesus macaques. J Virol 2013; 88:212-24. [PMID: 24155376 DOI: 10.1128/jvi.02523-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The efficacy of oral, intestinal, nasal, and vaginal vaccinations with DNA simian immunodeficiency virus (SIV)/interleukin-2 (IL-2)/IL-15, SIV Gag/Pol/Env recombinant modified vaccinia virus Ankara (rMVA), and AT-2 SIVmac239 inactivated particles was compared in rhesus macaques after low-dose vaginal challenge with SIVmac251. Intestinal immunization provided better protection from infection, as a significantly greater median number of challenges was necessary in this group than in the others. Oral and nasal vaccinations provided the most significant control of disease progression. Fifty percent of the orally and nasally vaccinated animals suppressed viremia to undetectable levels, while this occurred to a significantly lower degree in intestinally and vaginally vaccinated animals and in controls. Viremia remained undetectable after CD8(+) T-cell depletion in seven vaccinated animals that had suppressed viremia after infection, and tissue analysis for SIV DNA and RNA was negative, a result consistent with a significant reduction of viral activity. Regardless of the route of vaccination, mucosal vaccinations prevented loss of CD4(+) central memory and CD4(+)/α4β7(+) T-cell populations and reduced immune activation to different degrees. None of the orally vaccinated animals and only one of the nasally vaccinated animals developed AIDS after 72 to 84 weeks of infection, when the trial was closed. The levels of anti-SIV gamma interferon-positive, CD4(+), and CD8(+) T cells at the time of first challenge inversely correlated with viremia and directly correlated with protection from infection and longer survival.
Collapse
|
12
|
Valentine M, Song K, Maresh GA, Mack H, Huaman MC, Polacino P, Ho O, Cristillo A, Kyung Chung H, Hu SL, Pincus SH. Expression of the memory marker CD45RO on helper T cells in macaques. PLoS One 2013; 8:e73969. [PMID: 24023920 PMCID: PMC3762710 DOI: 10.1371/journal.pone.0073969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 07/25/2013] [Indexed: 11/18/2022] Open
Abstract
Background In humans it has been reported that a major site of the latent reservoir of HIV is within CD4+ T cells expressing the memory marker CD45RO, defined by the mAb UCHL1. There are conflicting reports regarding the expression of this antigen in macaques, the most relevant animal species for studying HIV pathogenesis and testing new therapies. There is now a major effort to eradicate HIV reservoirs and cure the infection. One approach is to eliminate subsets of cells housing the latent reservoir, using UCHL1 to target these cells. So that such studies may be performed in macaques, it is essential to determine expression of CD45RO. Methods We have used immunofluorescence and flow cytometry to study cell surface expression of CD45RO on lymphocytes from PBMC, lymphoid, and GI organs of rhesus, pigtailed, and cynomolgus macaques. Both direct and indirect immunofluorescence experiments were performed. Findings CD45RO is expressed on a subset of CD4+ lymphocytes of all pigtailed, a fraction of rhesus, and neither of the cynomolgus macaques studied. The binding of UCHL1 to macaque cells was of lower avidity than to human cells. This could be overcome by forming UCHL1 multimers. Directly conjugating fluors to UCHL1 can inhibit UCHL1 binding to macaque cells. Patterns of UCHL1 expression differ somewhat in macaques and humans, and from that of other memory markers often used in macaques. Conclusions CD45RO, defined with mAb UCHL1, is well expressed on CD4+ cells in pigtailed macaques. Using tissues recovered from latently infected pigtailed macaques we are determining whether UCHL1, or other memory markers, can define the cellular locus of the reservoir. The low avidity of this interaction could limit the utility of UCHL1, in its conventional form, to eliminate cells in vivo and test this approach in macaque models of HIV infection.
Collapse
Affiliation(s)
- Michael Valentine
- Research Institute for Children, Children’s Hospital, New Orleans, Louisiana, United States of America
- Departments of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Kejing Song
- Research Institute for Children, Children’s Hospital, New Orleans, Louisiana, United States of America
| | - Grace A. Maresh
- Research Institute for Children, Children’s Hospital, New Orleans, Louisiana, United States of America
| | - Heather Mack
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Maria Cecilia Huaman
- Advanced BioScience Laboratories Inc., Rockville, Maryland, United States of America
| | - Patricia Polacino
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - On Ho
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Anthony Cristillo
- Advanced BioScience Laboratories Inc., Rockville, Maryland, United States of America
| | - Hye Kyung Chung
- Advanced BioScience Laboratories Inc., Rockville, Maryland, United States of America
| | - Shiu-Lok Hu
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Seth H. Pincus
- Research Institute for Children, Children’s Hospital, New Orleans, Louisiana, United States of America
- Departments of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Pediatrics, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|