1
|
Cui L, Li X, Liu Z, Liu X, Zhu Y, Zhang Y, Han Z, Zhang Y, Liu S, Li H. MAPK pathway orchestrates gallid alphaherpesvirus 1 infection through the biphasic activation of MEK/ERK and p38 MAPK signaling. Virology 2024; 597:110159. [PMID: 38943781 DOI: 10.1016/j.virol.2024.110159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024]
Abstract
Therapies targeting virus-host interactions are seen as promising strategies for treating gallid alphaherpesvirus 1 (ILTV) infection. Our study revealed a biphasic activation of two MAPK cascade pathways, MEK/ERK and p38 MAPK, as a notably activated host molecular event in response to ILTV infection. It exhibits antiviral functions at different stages of infection. Initially, the MEK/ERK pathway is activated upon viral invasion, leading to a broad suppression of metabolic pathways crucial for ILTV replication, thereby inhibiting viral replication from the early stage of ILTV infection. As the viral replication progresses, the p38 MAPK pathway activates its downstream transcription factor, STAT1, further hindering viral replication. Interestingly, ILTV overcomes this biphasic antiviral barrier by hijacking host p38-AKT axis, which protects infected cells from the apoptosis induced by infection and establishes an intracellular equilibrium conducive to extensive ILTV replication. These insights could provide potential therapeutic targets for ILTV infection.
Collapse
Affiliation(s)
- Lu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xuefeng Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, China; School of Basic Medical Sciences, Translational Medicine Institute, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zheyi Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xiaoxiao Liu
- School of Basic Medical Sciences, Translational Medicine Institute, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yongxin Zhu
- School of Basic Medical Sciences, Translational Medicine Institute, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yu Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yilei Zhang
- School of Basic Medical Sciences, Translational Medicine Institute, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Hai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, China; School of Basic Medical Sciences, Translational Medicine Institute, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
2
|
Cui L, Li X, Chen Z, Liu Z, Zhang Y, Han Z, Liu S, Li H. Integrative RNA-seq and ChIP-seq analysis unveils metabolic regulation as a conserved antiviral mechanism of chicken p53. Microbiol Spectr 2024; 12:e0030924. [PMID: 38888361 PMCID: PMC11302347 DOI: 10.1128/spectrum.00309-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/02/2024] [Indexed: 06/20/2024] Open
Abstract
The tumor suppressor p53, primarily functioning as a transcription factor, has exhibited antiviral capabilities against various viruses in chickens, including infectious bursal disease virus (IBDV), avian leukosis virus subgroup J (ALV-J), and avian infectious laryngotracheitis virus (ILTV). Nevertheless, the existence of a universal antiviral mechanism employed by chicken p53 (chp53) against these viruses remains uncertain. This study conducted a comprehensive comparison of molecular networks involved in chp53's antiviral function against IBDV, ALV-J, and ILTV. This was achieved through an integrated analysis of ChIP-seq data, examining chp53's genome-wide chromatin occupancy, and RNA-seq data from chicken cells infected with these viruses. The consistent observation of chp53 target gene enrichment in metabolic pathways, confirmed via ChIP-qPCR, suggests a ubiquitous regulation of host cellular metabolism by chp53 across different viruses. Further genome binding motif conservation analysis and transcriptional co-factor prediction suggest conserved transcriptional regulation mechanism by which chp53 regulates host cellular metabolism during viral infection. These findings offer novel insights into the antiviral role of chp53 and propose that targeting the virus-host metabolic interaction through regulating p53 could serve as a universal strategy for antiviral therapies in chickens.IMPORTANCEThe current study conducted a comprehensive analysis, comparing molecular networks underlying chp53's antiviral role against infectious bursal disease virus (IBDV), avian leukosis virus subgroup J (ALV-J), and avian infectious laryngotracheitis virus (ILTV). This was achieved through a combined assessment of ChIP-seq and RNA-seq data obtained from infected chicken cells. Notably, enrichment of chp53 target genes in metabolic pathways was consistently observed across viral infections, indicating a universal role of chp53 in regulating cellular metabolism during diverse viral infections. These findings offer novel insights into the antiviral capabilities of chicken p53, laying a foundation for the potential development of broad-spectrum antiviral therapies in chickens.
Collapse
Affiliation(s)
- Lu Cui
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuefeng Li
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhijie Chen
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zheyi Liu
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu Zhang
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hai Li
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
3
|
Liu Z, Cui L, Li X, Xu L, Zhang Y, Han Z, Liu S, Li H. Characterization of the Effects of Host p53 and Fos on Gallid Alpha Herpesvirus 1 Replication. Genes (Basel) 2023; 14:1615. [PMID: 37628666 PMCID: PMC10454551 DOI: 10.3390/genes14081615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Treatment options for herpesvirus infections that target the interactions between the virus and the host have been identified as promising. Our previous studies have shown that transcription factors p53 and Fos are essential host determinants of gallid alpha herpesvirus 1 (ILTV) infection. The impact of p53 and Fos on ILTV replication has 'not been fully understood yet. Using the sole ILTV-permissive chicken cell line LMH as a model, we examined the effects of hosts p53 and Fos on all phases of ILTV replication, including viral gene transcription, viral genome replication, and infectious virion generation. We achieved this by manipulating the expression of p53 and Fos in LMH cells. Our results demonstrate that the overexpression of either p53 or Fos can promote viral gene transcription at all stages of the temporal cascade of ILTV gene expression, viral genome replication, and infectious virion production, as assessed through absolute quantitative real-time PCR, ILTV-specific RT-qPCR assays, and TCID50 assays. These findings are consistent with our previous analyses of the effects of Fos and p53 knockdowns on virus production and also suggest that both p53 and Fos may be dispensable for ILTV replication. Based on the synergistic effect of regulating ILTV, we further found that there is an interaction between p53 and Fos. Interestingly, we found that p53 also has targeted sites upstream of ICP4, and these sites are very close to the Fos sites. In conclusion, our research offers an in-depth understanding of how hosts p53 and Fos affect ILTV replication. Understanding the processes by which p53 and Fos regulate ILTV infection will be improved by this knowledge, potentially paving the way for the development of novel therapeutics targeting virus-host interactions as a means of treating herpesvirus infections.
Collapse
Affiliation(s)
- Zheyi Liu
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Lu Cui
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xuefeng Li
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
| | - Li Xu
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yu Zhang
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hai Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
4
|
Xu L, Chen Z, Zhang Y, Cui L, Liu Z, Li X, Liu S, Li H. P53 maintains gallid alpha herpesvirus 1 replication by direct regulation of nucleotide metabolism and ATP synthesis through its target genes. Front Microbiol 2022; 13:1044141. [PMID: 36504811 PMCID: PMC9729838 DOI: 10.3389/fmicb.2022.1044141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
P53, a well-known tumor suppressor, has been confirmed to regulate the infection of various viruses, including chicken viruses. Our previous study observed antiviral effect of p53 inhibitor Pifithrin-α (PFT-α) on the infection of avian infectious laryngotracheitis virus (ILTV), one of the major avian viruses economically significant to the poultry industry globally. However, the potential link between this antiviral effect of PFT-α and p53 remains unclear. Using chicken LMH cell line which is permissive for ILTV infection as model, we explore the effects of p53 on ILTV replication and its underlying molecular mechanism based on genome-wide transcriptome analysis of genes with p53 binding sites. The putative p53 target genes were validated by ChIP-qPCR and RT-qPCR. Results demonstrated that, consistent with the effects of PFT-α on ILTV replication we previously reported, knockdown of p53 repressed viral gene transcription and the genome replication of ILTV effectively. The production of infectious virions was also suppressed significantly by p53 knockdown. Further bioinformatic analysis of genes with p53 binding sites revealed extensive repression of these putative p53 target genes enriched in the metabolic processes, especially nucleotide metabolism and ATP synthesis, upon p53 repression by PFT-α in ILTV infected LMH cells. Among these genes, eighteen were involved in nucleotide metabolism and ATP synthesis. Then eight of the 18 genes were selected randomly for validations, all of which were successfully identified as p53 target genes. Our findings shed light on the mechanisms through which p53 controls ILTV infection, meanwhile expand our knowledge of chicken p53 target genes.
Collapse
Affiliation(s)
- Li Xu
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhijie Chen
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu Zhang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lu Cui
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zheyi Liu
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuefeng Li
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shengwang Liu
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China,*Correspondence: Shengwang Liu,
| | - Hai Li
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China,Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China,Hai Li,
| |
Collapse
|
5
|
Chen Z, Cui L, Xu L, Liu Z, Liang Y, Li X, Zhang Y, Li Y, Liu S, Li H. Characterization of chicken p53 transcriptional function via parallel genome-wide chromatin occupancy and gene expression analysis. Poult Sci 2022; 101:102164. [PMID: 36167023 PMCID: PMC9513273 DOI: 10.1016/j.psj.2022.102164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/14/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
The tumor suppressor p53, which acts primarily as a transcription factor, can regulate infections from various viruses in chickens. However, the underlying mechanisms of the antiviral functions of chicken p53 (chp53) remain unclear due to the lack of detailed information on its transcriptional regulation. Here, to gain comprehensive insights into chp53 transcriptional regulatory function in a global and unbiased manner, we determined the genome-wide chromatin occupancy of chp53 by chromatin immunoprecipitation, which was followed by sequencing and chp53-mediated gene expression profile by RNA sequencing using chemically immortalized leghorn male hepatoma (LMH) cells with ectopic expression of chp53 as the model. The integrated parallel genome-wide chromatin occupancy and gene expression analysis characterized chp53 chromatin occupancy and identified 754 direct target genes of chp53. Furthermore, functional annotation and cross-species comparative biological analyses revealed the conserved key biological functions and DNA binding motifs of p53 between chickens and humans, which may be due to the consensus amino acid sequence and structure of p53 DNA-binding domains. The present study, to our knowledge, provides the first comprehensive characterization of the chp53 transcriptional regulatory network, and can possibly help to improve our understanding of p53 transcriptional regulatory mechanisms and their antiviral functions in chickens.
Collapse
|
6
|
Wang Z, Qiao Y, Chen Z, Liang Y, Cui L, Zhang Y, Li X, Xu L, Wei P, Liu S, Li H. Fos Facilitates Gallid Alpha-Herpesvirus 1 Infection by Transcriptional Control of Host Metabolic Genes and Viral Immediate Early Gene. Viruses 2021; 13:v13061110. [PMID: 34207926 PMCID: PMC8229045 DOI: 10.3390/v13061110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
Gallid alpha-herpesvirus 1, also known as avian infectious laryngotracheitis virus (ILTV), continues to cause huge economic losses to the poultry industry worldwide. Similar to that of other herpesvirus-encoded proteins, the expression of viral genes encoded by ILTV is regulated by a cascade, and the underlying regulatory mechanism remains largely unclear. The viral immediate-early (IE) gene ICP4 plays a prominent role in the initiation of the transcription of early and late genes during ILTV replication. In this study, we identified AP-1 as the key regulator of the transcription of ILTV genes by bioinformatics analysis of genome-wide transcriptome data. Subsequent functional studies of the key members of the AP-1 family revealed that Fos, but not Jun, regulates ILTV infection through AP-1 since knockdown of Fos, but not Jun, by gene silencing significantly reduced ICP4 transcription and subsequent viral genome replication and virion production. Using several approaches, we identified ICP4 as a bona fide target gene of Fos that regulated Fos and has Fos response elements within its promoter. Neither the physical binding of Jun to the promoter of ICP4 nor the transcriptional activity of Jun was observed. In addition, knockdown of Fos reduced the transcription of MDH1 and ATP5A1, genes encoding two host rate-limiting enzymes essential for the production of the TCA intermediates OAA and ATP. The biological significance of the transcriptional regulation of MDH1 and ATP5A1 by Fos in ILTV infection was supported by the fact that anaplerosis of OAA and ATP rescued both ICP4 transcription and virion production in infected cells under when Fos was silenced. Our study identified the transcription factor Fos as a key regulator of ILTV infection through its transcription factor function on both the virus and host sides, improving the current understanding of both avian herpesvirus–host interactions and the roles of AP-1 in viral infection.
Collapse
Affiliation(s)
- Zhitao Wang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (Y.Q.); (Z.C.); (Y.L.); (L.C.); (Y.Z.); (X.L.); (L.X.)
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yangyang Qiao
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (Y.Q.); (Z.C.); (Y.L.); (L.C.); (Y.Z.); (X.L.); (L.X.)
| | - Zhijie Chen
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (Y.Q.); (Z.C.); (Y.L.); (L.C.); (Y.Z.); (X.L.); (L.X.)
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yumeng Liang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (Y.Q.); (Z.C.); (Y.L.); (L.C.); (Y.Z.); (X.L.); (L.X.)
| | - Lu Cui
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (Y.Q.); (Z.C.); (Y.L.); (L.C.); (Y.Z.); (X.L.); (L.X.)
| | - Yanhui Zhang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (Y.Q.); (Z.C.); (Y.L.); (L.C.); (Y.Z.); (X.L.); (L.X.)
| | - Xuefeng Li
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (Y.Q.); (Z.C.); (Y.L.); (L.C.); (Y.Z.); (X.L.); (L.X.)
| | - Li Xu
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (Y.Q.); (Z.C.); (Y.L.); (L.C.); (Y.Z.); (X.L.); (L.X.)
| | - Ping Wei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (P.W.); (S.L.); (H.L.); Tel.: +86-451-51051700 (H.L.)
| | - Shengwang Liu
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (Y.Q.); (Z.C.); (Y.L.); (L.C.); (Y.Z.); (X.L.); (L.X.)
- Correspondence: (P.W.); (S.L.); (H.L.); Tel.: +86-451-51051700 (H.L.)
| | - Hai Li
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.W.); (Y.Q.); (Z.C.); (Y.L.); (L.C.); (Y.Z.); (X.L.); (L.X.)
- Correspondence: (P.W.); (S.L.); (H.L.); Tel.: +86-451-51051700 (H.L.)
| |
Collapse
|
7
|
Qiao Y, Wang Z, Han Z, Shao Y, Ma Y, Liang Y, Chen Z, Wu H, Cui L, Zhang Y, Liu S, Li H. Global exploration of the metabolic requirements of gallid alphaherpesvirus 1. PLoS Pathog 2020; 16:e1008815. [PMID: 32833996 PMCID: PMC7470321 DOI: 10.1371/journal.ppat.1008815] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 09/03/2020] [Accepted: 07/15/2020] [Indexed: 01/10/2023] Open
Abstract
Although therapeutics targeting viral metabolic processes have been considered as promising strategies to treat herpesvirus infection, the metabolic requirements of gallid alphaherpesvirus 1 (ILTV), which is economically important to the poultry industry worldwide, remain largely unknown. Using the ILTV-susceptible but nonpermissive chicken cell line DF-1 and the ILTV-permissive chicken cell line LMH as models, the present study explored the metabolic requirements of ILTV by global transcriptome analysis and metabolome assays of ILTV infected cell lines in combination with a set of functional validations. The extensive metabolic exploration demonstrated that ILTV infection tended to promote a metabolic shift from glycolysis to fatty acid (FA) and nucleotide biosynthesis and utilizes glutamine independently of glutaminolysis, without significant general effect on the TCA cycle. In addition, different metabolic pathways were found to be required for distinct stages of ILTV replication. Glucose and glutamine were required for the transcription of viral immediate early gene ICP4 and subsequent steps of viral replication. However, FA synthesis was essential for assembly but not required for other upstream steps of ILTV replication. Moreover, the metabolic requirements of ILTV infection revealed in chicken cell lines were further validated in chicken primary cells isolated from chicken embryo kidneys and chicken embryo livers. The present study, to the best of our knowledge, provides the first global metabolic profile of animal herpesviruses and illustrates the main characteristics of the metabolic program of ILTV. Virus-host metabolic interaction is a promising target for antiviral therapeutics. Explorations of viral-induced shifts of host metabolism could reveal substrates that are uniquely required at high levels for viral replication and have been conducted for many virus species in the last decade. Herpesviruses are commonly treated with nucleotide analogs in the clinic. However, recent metabolomics studies suggest that different herpesvirus species can execute distinct metabolic programs in host cells despite their high conservation of biological characteristics. To understand why herpesviruses have evolved to alter different metabolic processes in host cells and refine the antiviral treatments by targeting more species-specific metabolic requirements, metabolomic explorations of more herpesvirus species are needed. However, comprehensive exploration of virus-host metabolic interaction has only been limited to a few human herpesviruses. Gallid alphaherpesvirus 1 (ILTV), an economically important alphaherpesvirus to the poultry industry worldwide, is thought to be an ancient example of alphaherpesviruses. Here we reveal the global metabolic requirements of ILTV and highlight the common and unique metabolic characteristics of ILTV by comparing with the known global metabolic profiles of several human herpesviruses. Our study may increase current understanding of herpesvirus-host metabolic interplay and inspire further studies in this direction.
Collapse
Affiliation(s)
- Yangyang Qiao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, the People’s Republic of China
| | - Zhitao Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, the People’s Republic of China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, the People’s Republic of China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, the People’s Republic of China
| | - Yuhao Shao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, the People’s Republic of China
| | - Yong Ma
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, the People’s Republic of China
| | - Yumeng Liang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, the People’s Republic of China
| | - Zhijie Chen
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, the People’s Republic of China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, the People’s Republic of China
| | - Hanguang Wu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, the People’s Republic of China
| | - Lu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, the People’s Republic of China
| | - Yanhui Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, the People’s Republic of China
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, the People’s Republic of China
- * E-mail: (SL); (HL)
| | - Hai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, the People’s Republic of China
- * E-mail: (SL); (HL)
| |
Collapse
|
8
|
Immune Response to Herpes Simplex Virus Infection and Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8020302. [PMID: 32545507 PMCID: PMC7350219 DOI: 10.3390/vaccines8020302] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Herpes simplex virus (HSV) infections are among the most common viral infections and usually last for a lifetime. The virus can potentially be controlled with vaccines since humans are the only known host. However, despite the development and trial of many vaccines, this has not yet been possible. This is normally attributed to the high latency potential of the virus. Numerous immune cells, particularly the natural killer cells and interferon gamma and pathways that are used by the body to fight HSV infections have been identified. On the other hand, the virus has developed different mechanisms, including using different microRNAs to inhibit apoptosis and autophagy to avoid clearance and aid latency induction. Both traditional and new methods of vaccine development, including the use of live attenuated vaccines, replication incompetent vaccines, subunit vaccines and recombinant DNA vaccines are now being employed to develop an effective vaccine against the virus. We conclude that this review has contributed to a better understanding of the interplay between the immune system and the virus, which is necessary for the development of an effective vaccine against HSV.
Collapse
|
9
|
Novel Insights into the Roles of Bcl-2 Homolog Nr-13 (vNr-13) Encoded by Herpesvirus of Turkeys in the Virus Replication Cycle, Mitochondrial Networks, and Apoptosis Inhibition. J Virol 2020; 94:JVI.02049-19. [PMID: 32161176 PMCID: PMC7199394 DOI: 10.1128/jvi.02049-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
The Bcl-2 (B cell lymphoma 2)-related protein Nr-13 plays a major role in the regulation of cell death in developing avian B cells. With over 65% sequence similarity to the chicken Nr-13, herpesvirus of turkeys (HVT) vNr-13, encoded by the HVT079 and HVT096 genes, is the first known alphaherpesvirus-encoded Bcl-2 homolog. HVT-infected cells were reported to be relatively more resistant to serum starvation, suggested that vNr-13 could be involved in protecting the cells. Here, we describe CRISPR/Cas9-based editing of exon 1 of the HVT079 and HVT096 genes from the HVT genome to generate the mutant HVT-ΔvNr-13 to gain insights into its functional roles. Overall, wild-type HVT and HVT-ΔvNr-13 showed similar growth kinetics; however, at early time points, HVT-ΔvNr-13 showed 1.3- to 1.7-fold-lower growth of cell-associated virus and 3- to 6.2-fold-lower growth of cell-free virus. In transfected cells, HVT vNr-13 showed a mainly diffuse cytoplasmic distribution with faint nuclear staining. Further, vNr-13 localized to the mitochondria and endoplasmic reticulum (ER) and disrupted mitochondrial network morphology in the transfected cells. In the wild-type HVT-infected cells, vNr-13 expression appeared to be directly involved in the disruption of the mitochondrial network, as the mitochondrial network morphology was substantially restored in the HVT-ΔvNr-13-infected cells. IncuCyte S3 real-time apoptosis monitoring demonstrated that vNr-13 is unequivocally involved in the apoptosis inhibition, and it is associated with an increase of PFU, especially under serum-free conditions in the later stages of the viral replication cycle. Furthermore, HVT blocks apoptosis in infected cells but activates apoptosis in noninfected bystander cells.IMPORTANCE B cell lymphoma 2 (Bcl-2) family proteins play important roles in regulating apoptosis during homeostasis, tissue development, and infectious diseases. Several viruses encode homologs of cellular Bcl-2-proteins (vBcl-2) to inhibit apoptosis, which enable them to replicate and persist in the infected cells and to evade/modulate the immune response of the host. Herpesvirus of turkeys (HVT) is a nonpathogenic alphaherpesvirus of turkeys and chickens that is widely used as a live vaccine against Marek's disease and as recombinant vaccine viral vectors for protecting against multiple avian diseases. Identical copies of the HVT genes HVT079 and HVT096 encode the Bcl-2 homolog vNr-13. While previous studies have identified the potential ability of vNr-13 in inhibiting apoptosis induced by serum deprivation, there have been no detailed investigations on the functions of vNr-13. Using CRISPR/Cas9-based ablation of the vNr-13 gene, we demonstrated the roles of HVT vNr-13 in early stages of the viral replication cycle, mitochondrial morphology disruption, and apoptosis inhibition in later stages of viral replication.
Collapse
|
10
|
Avian Flavivirus Infection of Monocytes/Macrophages by Extensive Subversion of Host Antiviral Innate Immune Responses. J Virol 2019; 93:JVI.00978-19. [PMID: 31462573 DOI: 10.1128/jvi.00978-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022] Open
Abstract
Avian Tembusu virus (TMUV) is a newly emerging avian pathogenic flavivirus in China and Southeast Asia with features of rapid spread, an expanding host range, and cross-species transmission. The mechanisms of its infection and pathogenesis remain largely unclear. Here, we investigated the tropism of this arbovirus in peripheral blood mononuclear cells of specific-pathogen-free (SPF) ducks and SPF chickens and identified monocytes/macrophages as the key targets of TMUV infection. In vivo studies in SPF ducks and SPF chickens with monocyte/macrophage clearance demonstrated that the infection of monocytes/macrophages was crucial for viral replication, transmission, and pathogenesis. Further genome-wide transcriptome analyses of TMUV-infected chicken macrophages revealed that host antiviral innate immune barriers were the major targets of TMUV in macrophages. Despite the activation of major pattern recognition receptor signaling, the inductions of alpha interferon (IFN-α) and IFN-β were blocked by TMUV infection on transcription and translation levels, respectively. Meanwhile, TMUV inhibited host redox responses by repressing the transcription of genes encoding NADPH oxidase subunits and promoting Nrf2-mediated antioxidant responses. The recovery of either of the above-mentioned innate immune barriers was sufficient to suppress TMUV infection. Collectively, we identify an essential step of TMUV infection and reveal extensive subversion of host antiviral innate immune responses.IMPORTANCE Mosquito-borne flaviviruses include a group of pathogenic viruses that cause serious diseases in humans and animals, including dengue, West Nile, and Japanese encephalitis viruses. These flaviviruses are zoonotic and use animals, including birds, as amplifying and reservoir hosts. Avian Tembusu virus (TMUV) is an emerging mosquito-borne flavivirus that is pathogenic for many avian species and can infect cells derived from mammals and humans in vitro Although not currently pathogenic for primates, the infection of duck industry workers and the potential risk of TMUV infection in immunocompromised individuals have been highlighted. Thus, the prevention of TMUV in flocks is important for both avian and mammalian health. Our study reveals the escape of TMUV from the first line of the host defense system in the arthropod-borne transmission route of arboviruses, possibly helping to extend our understanding of flavivirus infection in birds and refine the design of anti-TMUV therapeutics.
Collapse
|
11
|
Wang Z, Sun B, Gao Q, Ma Y, Liang Y, Chen Z, Wu H, Cui L, Shao Y, Wei P, Li H, Liu S. Host Src controls gallid alpha herpesvirus 1 intercellular spread in a cellular fatty acid metabolism-dependent manner. Virology 2019; 537:1-13. [PMID: 31425969 PMCID: PMC7172859 DOI: 10.1016/j.virol.2019.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/10/2019] [Accepted: 08/12/2019] [Indexed: 11/15/2022]
Abstract
Viral spread is considered a promising target for antiviral therapeutics, but the associated mechanisms remain unclear for gallid alpha herpesvirus 1 (ILTV). We previously identified proto-oncogene tyrosine-protein kinase Src (Src) as a crucial host determinant of ILTV infection. The present study revealed accelerated spread of ILTV upon Src inhibition. This phenomenon was independent of either viral replication or the proliferation of infected cells and could not be compromised by neutralizing antibody. Neither extracellular vesicles nor the direct cytosol-to-cytosol connections between adjacent cells contributed to the enhanced spread of ILTV upon Src inhibition. Further genome-wide transcriptional profile analyses in combination with functional validation identified fatty acid metabolism as an essential molecular event during modulation of the intercellular spread and subsequent cytopathic effect of ILTV by Src. Overall, these data suggest that Src controls the cell-to-cell spread of ILTV in a cellular fatty acid metabolism-dependent manner, which determines the virus's cytopathic effect.
Collapse
Affiliation(s)
- Zhitao Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Bangyao Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China; Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| | - Qi Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Yong Ma
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Yumeng Liang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Zhijie Chen
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hanguang Wu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Lu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Yuhao Shao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Ping Wei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Hai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China.
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China.
| |
Collapse
|