1
|
Pachura N, Włodarczyk M, Bażanów B, Pogorzelska A, Gębarowski T, Kupczyński R, Szumny A. Antiviral and Cytotoxic Activities of Ilex aquifolium Silver Queen in the Context of Chemical Profiling of Two Ilex Species. Molecules 2024; 29:3231. [PMID: 38999188 PMCID: PMC11243556 DOI: 10.3390/molecules29133231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
The leaves of Ilex paraguariensis (known as Yerba mate), used as a popular beverage, are a very well-recognized plant material with various biological activities, including analeptic (because of caffeine), anti-obesity (phenolics, saponins), antimicrobial, and antiviral (phenolics, saponins). Here, the chemical compositions of the leaves of two European Ilex species (× meserveae and aquifolium) with three varieties each were investigated. The terpenoid, saponin, and polyphenolic fractions were submitted for LC-MS or GC-MS analysis against a standard Mate leaf. In addition, the aroma profiles of all the species were analysed using HS-SPME-Arrow prior to GC-MS analysis. All fractions were subjected to antiviral and cytotoxic assays. We found 86 compounds in all accessions, with limonene, linalool, and p-cymene being predominant. There were minor similarities between the volatile compositions of the European and South American species. We found ursolic and oleanolic acid to be the main compounds in the terpenoid fraction. Mono-caffeoylquinic acids and di-caffeoylquinic acids were the main constituents of the polar fractions. About 180 compounds from the saponin group were tentatively identified, of which 9 and 3 were selected as distinctive markers for I. meserveae and I. aquifolium, respectively. Based on chemical screening, I. aquifolium Silver Queen was chosen as the source of terpenoid and saponin fractions and polyphenol extracts. The most substantial inhibition of cancer cell growth was observed with saponin in the case of the MCF7 (human breast cancer) cell line, while for LoVo and L929 cell lines (human colorectal cancer and reference mouse fibroblasts), it was slightly weaker. These results should be analysed further as a promising chemoprevention of colorectal and gastrointestinal cancers. Saponin and polyphenolic extracts exhibited similar activities against HSV-1 and HAdV-5, with 4-log reduction in virus titres. This study focuses our attention on a field of potential antiviral formulations derived from European holly.
Collapse
Affiliation(s)
- Natalia Pachura
- Department of Biocatalysis and Food Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland
| | - Maciej Włodarczyk
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| | - Barbara Bażanów
- Department of Pathology, Division of Microbiology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 31 C. K. Norwida Street, 50-573 Wroclaw, Poland
| | - Aleksandra Pogorzelska
- Department of Pathology, Division of Microbiology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 31 C. K. Norwida Street, 50-573 Wroclaw, Poland
| | - Tomasz Gębarowski
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Robert Kupczyński
- Department of Environment, Animal Hygiene and Welfare, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wroclaw, Poland
| | - Antoni Szumny
- Department of Biocatalysis and Food Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland
| |
Collapse
|
2
|
Chen YL, Chao PY, Hsieh CF, Hsieh PW, Horng JT. Novel Anti-Viral Properties of the Herbal Extract of Davallia mariesii against Influenza A Virus. Viruses 2024; 16:523. [PMID: 38675866 PMCID: PMC11054568 DOI: 10.3390/v16040523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Gu-Sui-Bu, the dried rhizome of Davallia mariesii, is a traditional Chinese herbal remedy with a significant history of treating osteoporosis and inflammatory conditions. However, its potential as an anti-influenza agent and its underlying mechanisms of action remain unexplored. To obtain a more potent extract from D. mariesii and gain insights into its mechanism of action against influenza A virus (IAV), we utilized a partitioning process involving organic solvents and water, resulting in the isolation of butanolic subfractions of the D. mariesii extract (DMBE). DMBE exhibited a broad anti-viral spectrum, effectively inhibiting IAV, with an EC50 of 24.32 ± 6.19 µg/mL and a selectivity index of 6.05. We subsequently conducted a series of in vitro assays to evaluate the antiviral effects of DMBE and to uncover its mechanisms of action. DMBE was found to inhibit IAV during the early stages of infection by hindering the attachment of the virus onto and its penetration into host cells. Importantly, DMBE was observed to hinder IAV-mediated cell-cell fusion. It also inhibited neuraminidase activity, plaque size, and the expression levels of phospho-AKT. In summary, this study provides evidence for the effectiveness of D. mariesii as a complementary and alternative herbal remedy against IAV. Specifically, our data highlight DMBE's capabilities in inhibiting viral entry and the release of virions.
Collapse
Affiliation(s)
- Yu-Li Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan;
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City 333, Taiwan;
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City 333, Taiwan
| | - Pei-Yu Chao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan;
| | - Chung-Fan Hsieh
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan;
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan City 333, Taiwan
| | - Pei-Wen Hsieh
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City 333, Taiwan;
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
| | - Jim-Tong Horng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan;
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City 333, Taiwan;
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan;
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan;
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan City 333, Taiwan
| |
Collapse
|
3
|
Zhou X, Cheng W, Chen X, Wang K. UPLC-quadrupole time-of-flight-tandem mass spectrometry combined with chemometrics and network pharmacology to differentiate Coreopsis tinctoria Nutt. Biomed Chromatogr 2024; 38:e5797. [PMID: 38084786 DOI: 10.1002/bmc.5797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 02/24/2024]
Abstract
Coreopsis tinctoria Nutt. (C. tinctoria) is a traditional medicinal plant, primarily found in plateau areas with altitudes exceeding 3000 m. The efficacy of C. tinctoria appears to be intricately tied to its quality. However, there is a scarcity of studies focused on evaluating the quality of C. tinctoria from diverse geographical locations. In this study, we used ultra-performance liquid chromatography-quadrupole time-of-flight-tandem mass spectrometry to analyze and identify the prevalent chemical components in 12 batches of C. tinctoria sourced from Xinjiang, Qinghai, Tibet, and Yunnan provinces in China. By using cluster analysis and discriminant analysis of partial least squares, we assessed the similarity and identified varying components in the 12 batches of C. tinctoria. Subsequently, their quality was further evaluated. Utilizing network pharmacology, we identified potential active components for the treatment of diabetes mellitus. The findings revealed the presence of 16 flavonoids, 3 phenylpropanes, 2 sugars, 2 amino acids, and 7 hydrocarbons in the analyzed samples. Through variable importance screening, 17 constituents were identified as quality difference markers. Marein and flavanomarein emerged as pivotal markers, crucial for distinguishing variations in C. tinctoria. In addition, network pharmacology predicted 187 targets for 9 common active components, including marein and flavanomarein. Simultaneously, 1747 targets related to diabetes mellitus were identified. The drug-component-disease target network comprised 91 nodes and 179 edges, encompassing 1 drug node, 9 component nodes, and 81 target nodes. In summary, marein and flavanomarein stand out as key biomarkers for assessing the quality of C. tinctoria, offering a scientific foundation for the quality evaluation of C. tinctoria Nutt.
Collapse
Affiliation(s)
- Xinyu Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Cheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinmei Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kaixuan Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Li Z, Ji W, Chen S, Duan G, Jin Y. Hand, Foot, and Mouth Disease Challenges and Its Antiviral Therapeutics. Vaccines (Basel) 2023; 11:vaccines11030571. [PMID: 36992155 DOI: 10.3390/vaccines11030571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Hand, Foot, and Mouth Disease (HFMD) is an infectious disease caused by enteroviruses (EVs) and is extremely contagious and prevalent among infants and children under 5 years old [...]
Collapse
Affiliation(s)
- Zijie Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|