1
|
Herrmann D, Meng S, Yang H, Mansky LM, Saad JS. The Assembly of HTLV-1-How Does It Differ from HIV-1? Viruses 2024; 16:1528. [PMID: 39459862 PMCID: PMC11512237 DOI: 10.3390/v16101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Retroviral assembly is a highly coordinated step in the replication cycle. The process is initiated when the newly synthesized Gag and Gag-Pol polyproteins are directed to the inner leaflet of the plasma membrane (PM), where they facilitate the budding and release of immature viral particles. Extensive research over the years has provided crucial insights into the molecular determinants of this assembly step. It is established that Gag targeting and binding to the PM is mediated by interactions of the matrix (MA) domain and acidic phospholipids such as phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). This binding event, along with binding to viral RNA, initiates oligomerization of Gag on the PM, a process mediated by the capsid (CA) domain. Much of the previous studies have focused on human immunodeficiency virus type 1 (HIV-1). Although the general steps of retroviral replication are consistent across different retroviruses, comparative studies revealed notable differences in the structure and function of viral components. In this review, we present recent findings on the assembly mechanisms of Human T-cell leukemia virus type 1 and highlight key differences from HIV-1, focusing particularly on the molecular determinants of Gag-PM interactions and CA assembly.
Collapse
Affiliation(s)
- Dominik Herrmann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Shuyu Meng
- Institute for Molecular Virology, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA; (S.M.); (H.Y.); (L.M.M.)
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
| | - Huixin Yang
- Institute for Molecular Virology, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA; (S.M.); (H.Y.); (L.M.M.)
| | - Louis M. Mansky
- Institute for Molecular Virology, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA; (S.M.); (H.Y.); (L.M.M.)
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
- Department of Diagnostic and Biological Sciences, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
| | - Jamil S. Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
2
|
Herrmann D, Hanson HM, Zhou LW, Addabbo R, Willkomm NA, Angert I, Mueller JD, Mansky LM, Saad JS. Molecular Determinants of Human T-cell Leukemia Virus Type 1 Gag Targeting to the Plasma Membrane for Assembly. J Mol Biol 2022; 434:167609. [PMID: 35490898 PMCID: PMC10557380 DOI: 10.1016/j.jmb.2022.167609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 01/10/2023]
Abstract
Assembly of human T-cell leukemia virus type 1 (HTLV-1) particles is initiated by the trafficking of virally encoded Gag polyproteins to the inner leaflet of the plasma membrane (PM). Gag-PM interactions are mediated by the matrix (MA) domain, which contains a myristoyl group (myr) and a basic patch formed by lysine and arginine residues. For many retroviruses, Gag-PM interactions are mediated by phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]; however, previous studies suggested that HTLV-1 Gag-PM interactions and therefore virus assembly are less dependent on PI(4,5)P2. We have recently shown that PI(4,5)P2 binds directly to HTLV-1 unmyristoylated MA [myr(-)MA] and that myr(-)MA binding to membranes is significantly enhanced by inclusion of phosphatidylserine (PS) and PI(4,5)P2. Herein, we employed structural, biophysical, biochemical, mutagenesis, and cell-based assays to identify residues involved in MA-membrane interactions. Our data revealed that the lysine-rich motif (Lys47, Lys48, and Lys51) constitutes the primary PI(4,5)P2-binding site. Furthermore, we show that arginine residues 3, 7, 14 and 17 located in the unstructured N-terminus are essential for MA binding to membranes containing PS and/or PI(4,5)P2. Substitution of lysine and arginine residues severely attenuated virus-like particle production, but only the lysine residues could be clearly correlated with reduced PM binding. These results support a mechanism by which HTLV-1 Gag targeting to the PM is mediated by a trio engagement of the myr group, Arg-rich and Lys-rich motifs. These findings advance our understanding of a key step in retroviral particle assembly.
Collapse
Affiliation(s)
- Dominik Herrmann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Heather M Hanson
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, United States
| | - Lynne W Zhou
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Rayna Addabbo
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, United States; School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Nora A Willkomm
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, United States
| | - Isaac Angert
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, United States; School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Joachim D Mueller
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, United States; School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, United States.
| | - Jamil S Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
3
|
Atomic view of the HIV-1 matrix lattice; implications on virus assembly and envelope incorporation. Proc Natl Acad Sci U S A 2022; 119:e2200794119. [PMID: 35658080 PMCID: PMC9191676 DOI: 10.1073/pnas.2200794119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
SignificanceThe assembly of immature HIV-1 particles is initiated by targeting of the Gag polyproteins to the plasma membrane (PM). Gag binding to the PM is mediated by the N-terminally myristoylated matrix (myrMA) domain. Formation of a Gag lattice on the PM is obligatory for the assembly of immature HIV-1 and envelope (Env) incorporation. The structure of the myrMA lattice presented here provided insights on the molecular factors that stabilize the lattice and hence favor Env incorporation. Our data support a mechanism for Gag binding to the PM during the assembly of immature particles and upon maturation. These findings advance our understanding of a critical step in HIV-1 assembly.
Collapse
|
4
|
Herrmann D, Zhou LW, Hanson HM, Willkomm NA, Mansky LM, Saad JS. Structural Insights into the Mechanism of Human T-cell Leukemia Virus Type 1 Gag Targeting to the Plasma Membrane for Assembly. J Mol Biol 2021; 433:167161. [PMID: 34298060 PMCID: PMC8453114 DOI: 10.1016/j.jmb.2021.167161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 01/10/2023]
Abstract
Retroviral Gag targeting to the plasma membrane (PM) for assembly is mediated by the N-terminal matrix (MA) domain. For many retroviruses, Gag-PM interaction is dependent on phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). However, it has been shown that for human T-cell leukemia virus type 1 (HTLV-1), Gag binding to membranes is less dependent on PI(4,5)P2 than HIV-1, suggesting that other factors may modulate Gag assembly. To elucidate the mechanism by which HTLV-1 Gag binds to the PM, we employed NMR techniques to determine the structure of unmyristoylated MA (myr(-)MA) and to characterize its interactions with lipids and liposomes. The MA structure consists of four α-helices and unstructured N- and C-termini. We show that myr(-)MA binds to PI(4,5)P2 via the polar head and that binding to inositol phosphates (IPs) is significantly enhanced by increasing the number of phosphate groups on the inositol ring, indicating that the MA-IP binding is governed by charge-charge interactions. The IP binding site was mapped to a well-defined basic patch formed by lysine and arginine residues. Using an NMR-based liposome binding assay, we show that PI(4,5)P2and phosphatidylserine enhance myr(-)MA binding in a synergistic fashion. Confocal microscopy data revealed formation of puncta on the PM of Gag expressing cells. However, G2A-Gag mutant, lacking myristoylation, is diffuse and cytoplasmic. These results suggest that although myr(-)MA binds to membranes, myristoylation appears to be key for formation of HTLV-1 Gag puncta on the PM. Altogether, these findings advance our understanding of a key mechanism in retroviral assembly.
Collapse
Affiliation(s)
- Dominik Herrmann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lynne W Zhou
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Heather M Hanson
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Nora A Willkomm
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Jamil S Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
5
|
Eastep GN, Ghanam RH, Green TJ, Saad JS. Structural characterization of HIV-1 matrix mutants implicated in envelope incorporation. J Biol Chem 2021; 296:100321. [PMID: 33485964 PMCID: PMC7952133 DOI: 10.1016/j.jbc.2021.100321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/05/2021] [Accepted: 01/20/2021] [Indexed: 11/28/2022] Open
Abstract
During the late phase of HIV-1 infection, viral Gag polyproteins are targeted to the plasma membrane (PM) for assembly. Gag localization at the PM is a prerequisite for the incorporation of the envelope protein (Env) into budding particles. Gag assembly and Env incorporation are mediated by the N-terminal myristoylated matrix (MA) domain of Gag. Nonconservative mutations in the trimer interface of MA (A45E, T70R, and L75G) were found to impair Env incorporation and infectivity, leading to the hypothesis that MA trimerization is an obligatory step for Env incorporation. Conversely, Env incorporation can be rescued by a compensatory mutation in the MA trimer interface (Q63R). The impact of these MA mutations on the structure and trimerization properties of MA is not known. In this study, we employed NMR spectroscopy, X-ray crystallography, and sedimentation techniques to characterize the structure and trimerization properties of HIV-1 MA A45E, Q63R, T70R, and L75G mutant proteins. NMR data revealed that these point mutations did not alter the overall structure and folding of MA but caused minor structural perturbations in the trimer interface. Analytical ultracentrifugation data indicated that mutations had a minimal effect on the MA monomer–trimer equilibrium. The high-resolution X-ray structure of the unmyristoylated MA Q63R protein revealed hydrogen bonding between the side chains of adjacent Arg-63 and Ser-67 on neighboring MA molecules, providing the first structural evidence for an additional intermolecular interaction in the trimer interface. These findings advance our knowledge of the interplay of MA trimerization and Env incorporation into HIV-1 particles.
Collapse
Affiliation(s)
- Gunnar N Eastep
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ruba H Ghanam
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Todd J Green
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jamil S Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
6
|
Rendezvous at Plasma Membrane: Cellular Lipids and tRNA Set up Sites of HIV-1 Particle Assembly and Incorporation of Host Transmembrane Proteins. Viruses 2020; 12:v12080842. [PMID: 32752131 PMCID: PMC7472227 DOI: 10.3390/v12080842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022] Open
Abstract
The HIV-1 structural polyprotein Gag drives the virus particle assembly specifically at the plasma membrane (PM). During this process, the nascent virion incorporates specific subsets of cellular lipids and host membrane proteins, in addition to viral glycoproteins and viral genomic RNA. Gag binding to the PM is regulated by cellular factors, including PM-specific phospholipid PI(4,5)P2 and tRNAs, both of which bind the highly basic region in the matrix domain of Gag. In this article, we review our current understanding of the roles played by cellular lipids and tRNAs in specific localization of HIV-1 Gag to the PM. Furthermore, we examine the effects of PM-bound Gag on the organization of the PM bilayer and discuss how the reorganization of the PM at the virus assembly site potentially contributes to the enrichment of host transmembrane proteins in the HIV-1 particle. Since some of these host transmembrane proteins alter release, attachment, or infectivity of the nascent virions, the mechanism of Gag targeting to the PM and the nature of virus assembly sites have major implications in virus spread.
Collapse
|
7
|
Murphy RE, Saad JS. The Interplay between HIV-1 Gag Binding to the Plasma Membrane and Env Incorporation. Viruses 2020; 12:E548. [PMID: 32429351 PMCID: PMC7291237 DOI: 10.3390/v12050548] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Advancement in drug therapies and patient care have drastically improved the mortality rates of HIV-1 infected individuals. Many of these therapies were developed or improved upon by using structure-based techniques, which underscore the importance of understanding essential mechanisms in the replication cycle of HIV-1 at the structural level. One such process which remains poorly understood is the incorporation of the envelope glycoprotein (Env) into budding virus particles. Assembly of HIV particles is initiated by targeting of the Gag polyproteins to the inner leaflet of the plasma membrane (PM), a process mediated by the N-terminally myristoylated matrix (MA) domain and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). There is strong evidence that formation of the Gag lattice on the PM is a prerequisite for the incorporation of Env into budding particles. It is also suggested that Env incorporation is mediated by an interaction between its cytoplasmic tail (gp41CT) and the MA domain of Gag. In this review, we highlight the latest developments and current efforts to understand the interplay between gp41CT, MA, and the membrane during assembly. Elucidation of the molecular determinants of Gag-Env-membrane interactions may help in the development of new antiviral therapeutic agents that inhibit particle assembly, Env incorporation and ultimately virus production.
Collapse
Affiliation(s)
| | - Jamil S. Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
8
|
Junková P, Pleskot R, Prchal J, Sýs J, Ruml T. Differences and commonalities in plasma membrane recruitment of the two morphogenetically distinct retroviruses HIV-1 and MMTV. J Biol Chem 2020; 295:8819-8833. [PMID: 32385109 DOI: 10.1074/jbc.ra119.011991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/05/2020] [Indexed: 11/06/2022] Open
Abstract
Retroviral Gag polyproteins are targeted to the inner leaflet of the plasma membrane through their N-terminal matrix (MA) domain. Because retroviruses of different morphogenetic types assemble their immature particles in distinct regions of the host cell, the mechanism of MA-mediated plasma membrane targeting differs among distinct retroviral morphogenetic types. Here, we focused on possible mechanistic differences of the MA-mediated plasma membrane targeting of the B-type mouse mammary tumor virus (MMTV) and C-type HIV-1, which assemble in the cytoplasm and at the plasma membrane, respectively. Molecular dynamics simulations, together with surface mapping, indicated that, similarly to HIV-1, MMTV uses a myristic switch to anchor the MA to the membrane and electrostatically interacts with phosphatidylinositol 4,5-bisphosphate to stabilize MA orientation. We observed that the affinity of MMTV MA to the membrane is lower than that of HIV-1 MA, possibly related to their different topologies and the number of basic residues in the highly basic MA region. The latter probably reflects the requirement of C-type retroviruses for tighter membrane binding, essential for assembly, unlike for D/B-type retroviruses, which assemble in the cytoplasm. A comparison of the membrane topology of the HIV-1 MA, using the surface-mapping method and molecular dynamics simulations, revealed that the residues at the HIV-1 MA C terminus help stabilize protein-protein interactions within the HIV-1 MA lattice at the plasma membrane. In summary, HIV-1 and MMTV share common features such as membrane binding of the MA via hydrophobic interactions and exhibit several differences, including lower membrane affinity of MMTV MA.
Collapse
Affiliation(s)
- Petra Junková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic; Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Roman Pleskot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jan Prchal
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Jakub Sýs
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic.
| |
Collapse
|
9
|
Prokšová PG, Lipov J, Zelenka J, Hunter E, Langerová H, Rumlová M, Ruml T. Mason-Pfizer Monkey Virus Envelope Glycoprotein Cycling and Its Vesicular Co-Transport with Immature Particles. Viruses 2018; 10:E575. [PMID: 30347798 PMCID: PMC6212865 DOI: 10.3390/v10100575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/10/2018] [Accepted: 10/18/2018] [Indexed: 12/25/2022] Open
Abstract
The envelope glycoprotein (Env) plays a crucial role in the retroviral life cycle by mediating primary interactions with the host cell. As described previously and expanded on in this paper, Env mediates the trafficking of immature Mason-Pfizer monkey virus (M-PMV) particles to the plasma membrane (PM). Using a panel of labeled RabGTPases as endosomal markers, we identified Env mostly in Rab7a- and Rab9a-positive endosomes. Based on an analysis of the transport of recombinant fluorescently labeled M-PMV Gag and Env proteins, we propose a putative mechanism of the intracellular trafficking of M-PMV Env and immature particles. According to this model, a portion of Env is targeted from the trans-Golgi network (TGN) to Rab7a-positive endosomes. It is then transported to Rab9a-positive endosomes and back to the TGN. It is at the Rab9a vesicles where the immature particles may anchor to the membranes of the Env-containing vesicles, preventing Env recycling to the TGN. These Gag-associated vesicles are then transported to the plasma membrane.
Collapse
Affiliation(s)
- Petra Grznárová Prokšová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 166 28 Prague, Czech Republic.
- Imaging methods core facility at BIOCEV, Faculty of Science, Charles University, 252 50 Prague, Czech Republic.
| | - Jan Lipov
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 166 28 Prague, Czech Republic.
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 166 28 Prague, Czech Republic.
| | - Eric Hunter
- Emory Vaccine Center at the Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | - Hana Langerová
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic.
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 166 28 Prague, Czech Republic.
| |
Collapse
|
10
|
Vlach J, Eastep GN, Ghanam RH, Watanabe SM, Carter CA, Saad JS. Structural basis for targeting avian sarcoma virus Gag polyprotein to the plasma membrane for virus assembly. J Biol Chem 2018; 293:18828-18840. [PMID: 30309983 DOI: 10.1074/jbc.ra118.003944] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/17/2018] [Indexed: 01/30/2023] Open
Abstract
For most retroviruses, including HIV-1, binding of the Gag polyprotein to the plasma membrane (PM) is mediated by interactions between Gag's N-terminal myristoylated matrix (MA) domain and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) in the PM. The Gag protein of avian sarcoma virus (ASV) lacks the N-myristoylation signal but contains structural domains having functions similar to those of HIV-1 Gag. The molecular mechanism by which ASV Gag binds to the PM is incompletely understood. Here, we employed NMR techniques to elucidate the molecular determinants of the membrane-binding domain of ASV MA (MA87) to lipids and liposomes. We report that MA87 binds to the polar head of phosphoinositides such as PI(4,5)P2 We found that MA87 binding to inositol phosphates (IPs) is significantly enhanced by increasing the number of phosphate groups, indicating that the MA87-IP binding is governed by charge-charge interactions. Using a sensitive NMR-based liposome-binding assay, we show that binding of MA87 to liposomes is enhanced by incorporation of PI(4,5)P2 and phosphatidylserine. We also show that membrane binding is mediated by a basic surface formed by Lys-6, Lys-13, Lys-23, and Lys-24. Substitution of these residues to glutamate abolished binding of MA87 to both IPs and liposomes. In an accompanying paper, we further report that mutation of these lysine residues diminishes Gag assembly on the PM and inhibits ASV particle release. These findings provide a molecular basis for ASV Gag binding to the inner leaflet of the PM and advance our understanding of the basic mechanisms of retroviral assembly.
Collapse
Affiliation(s)
- Jiri Vlach
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294 and
| | - Gunnar N Eastep
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294 and
| | - Ruba H Ghanam
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294 and
| | - Susan M Watanabe
- the Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
| | - Carol A Carter
- the Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
| | - Jamil S Saad
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294 and
| |
Collapse
|
11
|
Mutations in the Basic Region of the Mason-Pfizer Monkey Virus Nucleocapsid Protein Affect Reverse Transcription, Genomic RNA Packaging, and the Virus Assembly Site. J Virol 2018; 92:JVI.00106-18. [PMID: 29491167 DOI: 10.1128/jvi.00106-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/20/2018] [Indexed: 12/19/2022] Open
Abstract
In addition to specific RNA-binding zinc finger domains, the retroviral Gag polyprotein contains clusters of basic amino acid residues that are thought to support Gag-viral genomic RNA (gRNA) interactions. One of these clusters is the basic K16NK18EK20 region, located upstream of the first zinc finger of the Mason-Pfizer monkey virus (M-PMV) nucleocapsid (NC) protein. To investigate the role of this basic region in the M-PMV life cycle, we used a combination of in vivo and in vitro methods to study a series of mutants in which the overall charge of this region was more positive (RNRER), more negative (AEAEA), or neutral (AAAAA). The mutations markedly affected gRNA incorporation and the onset of reverse transcription. The introduction of a more negative charge (AEAEA) significantly reduced the incorporation of M-PMV gRNA into nascent particles. Moreover, the assembly of immature particles of the AEAEA Gag mutant was relocated from the perinuclear region to the plasma membrane. In contrast, an enhancement of the basicity of this region of M-PMV NC (RNRER) caused a substantially more efficient incorporation of gRNA, subsequently resulting in an increase in M-PMV RNRER infectivity. Nevertheless, despite the larger amount of gRNA packaged by the RNRER mutant, the onset of reverse transcription was delayed in comparison to that of the wild type. Our data clearly show the requirement for certain positively charged amino acid residues upstream of the first zinc finger for proper gRNA incorporation, assembly of immature particles, and proceeding of reverse transcription.IMPORTANCE We identified a short sequence within the Gag polyprotein that, together with the zinc finger domains and the previously identified RKK motif, contributes to the packaging of genomic RNA (gRNA) of Mason-Pfizer monkey virus (M-PMV). Importantly, in addition to gRNA incorporation, this basic region (KNKEK) at the N terminus of the nucleocapsid protein is crucial for the onset of reverse transcription. Mutations that change the positive charge of the region to a negative one significantly reduced specific gRNA packaging. The assembly of immature particles of this mutant was reoriented from the perinuclear region to the plasma membrane. On the contrary, an enhancement of the basic character of this region increased both the efficiency of gRNA packaging and the infectivity of the virus. However, the onset of reverse transcription was delayed even in this mutant. In summary, the basic region in M-PMV Gag plays a key role in the packaging of genomic RNA and, consequently, in assembly and reverse transcription.
Collapse
|
12
|
Membrane Interactions of the Mason-Pfizer Monkey Virus Matrix Protein and Its Budding Deficient Mutants. J Mol Biol 2016; 428:4708-4722. [PMID: 27725181 DOI: 10.1016/j.jmb.2016.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 12/18/2022]
Abstract
Matrix proteins (MAs) play a key role in the transport of retroviral proteins inside infected cells and in the interaction with cellular membranes. In most retroviruses, retroviral MAs are N-terminally myristoylated. This modification serves as a membrane targeting signal and also as an anchor for membrane interaction. The aim of this work was to characterize the interactions anchoring retroviral MA at the plasma membrane of infected cell. To address this issue, we compared the structures and membrane affinity of the Mason-Pfizer monkey virus (M-PMV) wild-type MA with its two budding deficient double mutants, that is, T41I/T78I and Y28F/Y67F. The structures of the mutants were determined using solution NMR spectroscopy, and their interactions with water-soluble phospholipids were studied. Water-soluble phospholipids are widely used models for studying membrane interactions by solution NMR spectroscopy. However, this approach might lead to artificial results due to unnatural hydrophobic interactions. Therefore, we used a new approach based on the measurement of the loss of the 1H NMR signal intensity of the protein sample induced by the addition of the liposomes containing phospholipids with naturally long fatty acids. HIV-1 MA was used as a positive control because its ability to interact with liposomes has already been described. We found that in contrast to HIV-1, the M-PMV MA interacted with the liposomes differently and much weaker. In our invivo experiments, the M-PMV MA did not co-localize with lipid rafts. Therefore, we concluded that M-PMV might adopt a different membrane binding mechanism than HIV-1.
Collapse
|
13
|
Junková P, Prchal J, Spiwok V, Pleskot R, Kadlec J, Krásný L, Hynek R, Hrabal R, Ruml T. Molecular aspects of the interaction between Mason-Pfizer monkey virus matrix protein and artificial phospholipid membrane. Proteins 2016; 84:1717-1727. [PMID: 27578150 DOI: 10.1002/prot.25156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 08/04/2016] [Accepted: 08/25/2016] [Indexed: 11/09/2022]
Abstract
The Mason-Pfizer monkey virus is a type D retrovirus, which assembles its immature particles in the cytoplasm prior to their transport to the host cell membrane. The association with the membrane is mediated by the N-terminally myristoylated matrix protein. To reveal the role of particular residues which are involved in the capsid-membrane interaction, covalent labelling of arginine, lysine and tyrosine residues of the Mason-Pfizer monkey virus matrix protein bound to artificial liposomes containing 95% of phosphatidylcholine and 5% phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2 ) was performed. The experimental results were interpreted by multiscale molecular dynamics simulations. The application of these two complementary approaches helped us to reveal that matrix protein specifically recognizes the PI(4,5)P2 molecule by the residues K20, K25, K27, K74, and Y28, while the residues K92 and K93 stabilizes the matrix protein orientation on the membrane by the interaction with another PI(4,5)P2 molecule. Residues K33, K39, K54, Y66, Y67, and K87 appear to be involved in the matrix protein oligomerization. All arginine residues remained accessible during the interaction with liposomes which indicates that they neither contribute to the interaction with membrane nor are involved in protein oligomerization. Proteins 2016; 84:1717-1727. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- P Junková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic.
| | - J Prchal
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - V Spiwok
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - R Pleskot
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - J Kadlec
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - L Krásný
- Laboratory of molecular structure characterisation, Institute of Microbiology of the ASCR, Academy of Sciences of the Czech Republic, Prague, Czech Republic.,Department of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - R Hynek
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - R Hrabal
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - T Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
14
|
Distinct Particle Morphologies Revealed through Comparative Parallel Analyses of Retrovirus-Like Particles. J Virol 2016; 90:8074-84. [PMID: 27356903 DOI: 10.1128/jvi.00666-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/21/2016] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED The Gag protein is the main retroviral structural protein, and its expression alone is usually sufficient for production of virus-like particles (VLPs). In this study, we sought to investigate-in parallel comparative analyses-Gag cellular distribution, VLP size, and basic morphological features using Gag expression constructs (Gag or Gag-YFP, where YFP is yellow fluorescent protein) created from all representative retroviral genera: Alpharetrovirus, Betaretrovirus, Deltaretrovirus, Epsilonretrovirus, Gammaretrovirus, Lentivirus, and Spumavirus. We analyzed Gag cellular distribution by confocal microscopy, VLP budding by thin-section transmission electron microscopy (TEM), and general morphological features of the VLPs by cryogenic transmission electron microscopy (cryo-TEM). Punctate Gag was observed near the plasma membrane for all Gag constructs tested except for the representative Beta- and Epsilonretrovirus Gag proteins. This is the first report of Epsilonretrovirus Gag localizing to the nucleus of HeLa cells. While VLPs were not produced by the representative Beta- and Epsilonretrovirus Gag proteins, the other Gag proteins produced VLPs as confirmed by TEM, and morphological differences were observed by cryo-TEM. In particular, we observed Deltaretrovirus-like particles with flat regions of electron density that did not follow viral membrane curvature, Lentivirus-like particles with a narrow range and consistent electron density, suggesting a tightly packed Gag lattice, and Spumavirus-like particles with large envelope protein spikes and no visible electron density associated with a Gag lattice. Taken together, these parallel comparative analyses demonstrate for the first time the distinct morphological features that exist among retrovirus-like particles. Investigation of these differences will provide greater insights into the retroviral assembly pathway. IMPORTANCE Comparative analysis among retroviruses has been critically important in enhancing our understanding of retroviral replication and pathogenesis, including that of important human pathogens such as human T-cell leukemia virus type 1 (HTLV-1) and HIV-1. In this study, parallel comparative analyses have been used to study Gag expression and virus-like particle morphology among representative retroviruses in the known retroviral genera. Distinct differences were observed, which enhances current knowledge of the retroviral assembly pathway.
Collapse
|
15
|
Liu Y, Betts MJ, Lei J, Wei G, Bao Q, Kehl T, Russell RB, Löchelt M. Mutagenesis of N-terminal residues of feline foamy virus Gag reveals entirely distinct functions during capsid formation, particle assembly, Gag processing and budding. Retrovirology 2016; 13:57. [PMID: 27549192 PMCID: PMC4994201 DOI: 10.1186/s12977-016-0291-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/04/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Foamy viruses (FVs) of the Spumaretrovirinae subfamily are distinct retroviruses, with many features of their molecular biology and replication strategy clearly different from those of the Orthoretroviruses, such as human immunodeficiency, murine leukemia, and human T cell lymphotropic viruses. The FV Gag N-terminal region is responsible for capsid formation and particle budding via interaction with Env. However, the critical residues or motifs in this region and their functional interaction are currently ill-defined, especially in non-primate FVs. RESULTS Mutagenesis of N-terminal Gag residues of feline FV (FFV) reveals key residues essential for either capsid assembly and/or viral budding via interaction with the FFV Env leader protein (Elp). In an in vitro Gag-Elp interaction screen, Gag mutations abolishing particle assembly also interfered with Elp binding, indicating that Gag assembly is a prerequisite for this highly specific interaction. Gradient sedimentation analyses of cytosolic proteins indicate that wild-type Gag is mostly assembled into virus capsids. Moreover, proteolytic processing of Gag correlates with capsid assembly and is mostly, if not completely, independent from particle budding. In addition, Gag processing correlates with the presence of packaging-competent FFV genomic RNA suggesting that Pol encapsidation via genomic RNA is a prerequisite for Gag processing. Though an appended heterogeneous myristoylation signal rescues Gag particle budding of mutants unable to form capsids or defective in interacting with Elp, it fails to generate infectious particles that co-package Pol, as evidenced by a lack of Gag processing. CONCLUSIONS Changes in proteolytic Gag processing, intracellular capsid assembly, particle budding and infectivity of defined N-terminal Gag mutants highlight their essential, distinct and only partially overlapping roles during viral assembly and budding. Discussion of these findings will be based on a recent model developed for Gag-Elp interactions in prototype FV.
Collapse
Affiliation(s)
- Yang Liu
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Matthew J Betts
- CellNetworks, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Janet Lei
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Department of Oncology, University of Oxford, Oxford, UK
| | - Guochao Wei
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Qiuying Bao
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Biology Department, East China Normal University, Shanghai, China
| | - Timo Kehl
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Robert B Russell
- CellNetworks, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Biochemie Zentrum Heidelberg (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Martin Löchelt
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| |
Collapse
|
16
|
Nucleic Acid Binding by Mason-Pfizer Monkey Virus CA Promotes Virus Assembly and Genome Packaging. J Virol 2016; 90:4593-4603. [PMID: 26912613 DOI: 10.1128/jvi.03197-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/15/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The Gag polyprotein of retroviruses drives immature virus assembly by forming hexameric protein lattices. The assembly is primarily mediated by protein-protein interactions between capsid (CA) domains and by interactions between nucleocapsid (NC) domains and RNA. Specific interactions between NC and the viral RNA are required for genome packaging. Previously reported cryoelectron microscopy analysis of immature Mason-Pfizer monkey virus (M-PMV) particles suggested that a basic region (residues RKK) in CA may serve as an additional binding site for nucleic acids. Here, we have introduced mutations into the RKK region in both bacterial and proviral M-PMV vectors and have assessed their impact on M-PMV assembly, structure, RNA binding, budding/release, nuclear trafficking, and infectivity using in vitro and in vivo systems. Our data indicate that the RKK region binds and structures nucleic acid that serves to promote virus particle assembly in the cytoplasm. Moreover, the RKK region appears to be important for recruitment of viral genomic RNA into Gag particles, and this function could be linked to changes in nuclear trafficking. Together these observations suggest that in M-PMV, direct interactions between CA and nucleic acid play important functions in the late stages of the viral life cycle. IMPORTANCE Assembly of retrovirus particles is driven by the Gag polyprotein, which can self-assemble to form virus particles and interact with RNA to recruit the viral genome into the particles. Generally, the capsid domains of Gag contribute to essential protein-protein interactions during assembly, while the nucleocapsid domain interacts with RNA. The interactions between the nucleocapsid domain and RNA are important both for identifying the genome and for self-assembly of Gag molecules. Here, we show that a region of basic residues in the capsid protein of the betaretrovirus Mason-Pfizer monkey virus (M-PMV) contributes to interaction of Gag with nucleic acid. This interaction appears to provide a critical scaffolding function that promotes assembly of virus particles in the cytoplasm. It is also crucial for packaging the viral genome and thus for infectivity. These data indicate that, surprisingly, interactions between the capsid domain and RNA play an important role in the assembly of M-PMV.
Collapse
|
17
|
The Ebola Virus matrix protein, VP40, requires phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) for extensive oligomerization at the plasma membrane and viral egress. Sci Rep 2016; 6:19125. [PMID: 26753796 PMCID: PMC4709572 DOI: 10.1038/srep19125] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/07/2015] [Indexed: 12/25/2022] Open
Abstract
VP40 is one of eight proteins encoded by the Ebola Virus (EBOV) and serves as the primary matrix protein, forming virus like particles (VLPs) from mammalian cells without the need for other EBOV proteins. While VP40 is required for viral assembly and budding from host cells during infection, the mechanisms that target VP40 to the plasma membrane are not well understood. Phosphatidylserine is required for VP40 plasma membrane binding, VP40 hexamer formation, and VLP egress, However, PS also becomes exposed on the outer membrane leaflet at sites of VP40 budding, raising the question of how VP40 maintains an interaction with the plasma membrane inner leaflet when PS is flipped to the opposite side. To address this question, cellular and in vitro assays were employed to determine if phosphoinositides are important for efficient VP40 localization to the plasma membrane. Cellular studies demonstrated that PI(4,5)P2 was an important component of VP40 assembly at the plasma membrane and subsequent virus like particle formation. Additionally, PI(4,5)P2 was required for formation of extensive oligomers of VP40, suggesting PS and PI(4,5)P2 have different roles in VP40 assembly where PS regulates formation of hexamers from VP40 dimers and PI(4,5)P2 stabilizes and/or induces extensive VP40 oligomerization at the plasma membrane.
Collapse
|
18
|
Doležal M, Zábranský A, Dostál J, Vaněk O, Brynda J, Lepšík M, Hadravová R, Pichová I. Myristoylation drives dimerization of matrix protein from mouse mammary tumor virus. Retrovirology 2016; 13:2. [PMID: 26728401 PMCID: PMC4700671 DOI: 10.1186/s12977-015-0235-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/22/2015] [Indexed: 11/25/2022] Open
Abstract
Background Myristoylation of the matrix (MA) domain mediates the transport and binding of Gag polyproteins to the plasma membrane (PM) and is required for the assembly of most retroviruses. In betaretroviruses, which assemble immature particles in the cytoplasm, myristoylation is dispensable for assembly but is crucial for particle transport to the PM. Oligomerization of HIV-1 MA stimulates the transition of the myristoyl group from a sequestered to an exposed conformation, which is more accessible for membrane binding. However, for other retroviruses, the effect of MA oligomerization on myristoyl group exposure has not been thoroughly investigated. Results Here, we demonstrate that MA from the betaretrovirus mouse mammary tumor virus (MMTV) forms dimers in solution and that this process is stimulated by its myristoylation. The crystal structure of N-myristoylated MMTV MA, determined at 1.57 Å resolution, revealed that the myristoyl groups are buried in a hydrophobic pocket at the dimer interface and contribute to dimer formation. Interestingly, the myristoyl groups in the dimer are mutually swapped to achieve energetically stable binding, as documented by molecular dynamics modeling. Mutations within the myristoyl binding site resulted in reduced MA dimerization and extracellular particle release. Conclusions Based on our experimental, structural, and computational data, we propose a model for dimerization of MMTV MA in which myristoyl groups stimulate the interaction between MA molecules. Moreover, dimer-forming MA molecules adopt a sequestered conformation with their myristoyl groups entirely buried within the interaction interface. Although this differs from the current model proposed for lentiviruses, in which oligomerization of MA triggers exposure of myristoyl group, it appears convenient for intracellular assembly, which involves no apparent membrane interaction and allows the myristoyl group to be sequestered during oligomerization. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0235-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michal Doležal
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10, Prague, Czech Republic.
| | - Aleš Zábranský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10, Prague, Czech Republic.
| | - Jiří Dostál
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10, Prague, Czech Republic.
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 40, Prague, Czech Republic.
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10, Prague, Czech Republic.
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10, Prague, Czech Republic.
| | - Romana Hadravová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10, Prague, Czech Republic.
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10, Prague, Czech Republic.
| |
Collapse
|
19
|
TRIM19/PML Restricts HIV Infection in a Cell Type-Dependent Manner. Viruses 2015; 8:v8010002. [PMID: 26703718 PMCID: PMC4728562 DOI: 10.3390/v8010002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/02/2015] [Accepted: 12/14/2015] [Indexed: 01/03/2023] Open
Abstract
The promyelocytic leukemia protein (PML) is the main structural component of the nuclear matrix structures termed nuclear domain 10 (ND10) or PML nuclear bodies (PML-NBs). PML and ND10 structures have been shown to mediate an intrinsic immune response against a variety of different viruses. Their role during retroviral replication, however, is still controversially discussed. In this study, we analyzed the role of PML and the ND10 components Daxx and Sp100 during retroviral replication in different cell types. Using cell lines exhibiting a shRNA-mediated knockdown, we found that PML, but not Daxx or Sp100, inhibits HIV and other retroviruses in a cell type-dependent manner. The PML-mediated block to retroviral infection was active in primary human fibroblasts and murine embryonic fibroblasts but absent from T cells and myeloid cell lines. Quantitative PCR analysis of HIV cDNA in infected cells revealed that PML restricts infection at the level of reverse transcription. Our findings shed light on the controversial role of PML during retroviral infection and show that PML contributes to the intrinsic restriction of retroviral infections in a cell type-dependent manner.
Collapse
|
20
|
Brown LA, Cox C, Baptiste J, Summers H, Button R, Bahlow K, Spurrier V, Kyser J, Luttge BG, Kuo L, Freed EO, Summers MF. NMR structure of the myristylated feline immunodeficiency virus matrix protein. Viruses 2015; 7:2210-29. [PMID: 25941825 PMCID: PMC4452903 DOI: 10.3390/v7052210] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 03/30/2015] [Accepted: 04/21/2015] [Indexed: 11/25/2022] Open
Abstract
Membrane targeting by the Gag proteins of the human immunodeficiency viruses (HIV types-1 and -2) is mediated by Gag's N-terminally myristylated matrix (MA) domain and is dependent on cellular phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. To determine if other lentiviruses employ a similar membrane targeting mechanism, we initiated studies of the feline immunodeficiency virus (FIV), a widespread feline pathogen with potential utility for development of human therapeutics. Bacterial co-translational myristylation was facilitated by mutation of two amino acids near the amino-terminus of the protein (Q5A/G6S; myrMAQ5A/G6S). These substitutions did not affect virus assembly or release from transfected cells. NMR studies revealed that the myristyl group is buried within a hydrophobic pocket in a manner that is structurally similar to that observed for the myristylated HIV-1 protein. Comparisons with a recent crystal structure of the unmyristylated FIV protein [myr(-)MA] indicate that only small changes in helix orientation are required to accommodate the sequestered myr group. Depletion of PI(4,5)P2 from the plasma membrane of FIV-infected CRFK cells inhibited production of FIV particles, indicating that, like HIV, FIV hijacks the PI(4,5)P2 cellular signaling system to direct intracellular Gag trafficking during virus assembly.
Collapse
Affiliation(s)
- Lola A Brown
- Howard Hughes Medical Institute, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Cassiah Cox
- Howard Hughes Medical Institute, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Janae Baptiste
- Howard Hughes Medical Institute, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Holly Summers
- Howard Hughes Medical Institute, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Ryan Button
- Howard Hughes Medical Institute, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Kennedy Bahlow
- Howard Hughes Medical Institute, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Vaughn Spurrier
- Howard Hughes Medical Institute, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Jenna Kyser
- Howard Hughes Medical Institute, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Benjamin G Luttge
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA.
| | - Lillian Kuo
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA.
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA.
| | - Michael F Summers
- Howard Hughes Medical Institute, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
21
|
Vlach J, Saad JS. Structural and molecular determinants of HIV-1 Gag binding to the plasma membrane. Front Microbiol 2015; 6:232. [PMID: 25852680 PMCID: PMC4367181 DOI: 10.3389/fmicb.2015.00232] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/10/2015] [Indexed: 01/10/2023] Open
Abstract
Targeting of the Gag polyprotein to the plasma membrane (PM) for assembly is a critical event in the late phase of immunodeficiency virus type-1 (HIV-1) infection. Gag binding to the PM is mediated by interactions between the myristoylated matrix (MA) domain and PM lipids. Despite the extensive biochemical and in vitro studies of Gag and MA binding to membranes over the last two decades, the discovery of the role of phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] in Gag binding to the PM has sparked a string of studies aimed at elucidating the molecular mechanism of retroviral Gag–PM binding. Electrostatic interactions between a highly conserved basic region of MA and acidic phospholipids have long been thought to be the main driving force for Gag–membrane interactions. However, recent studies suggest that the mechanism is rather complex since other factors such as the hydrophobicity of the membrane interior represented by the acyl chains and cholesterol also play important roles. Here we summarize the current understanding of HIV-1 Gag–membrane interactions at the molecular and structural levels and briefly discuss the underlying forces governing interactions of other retroviral MA proteins with the PM.
Collapse
Affiliation(s)
- Jiri Vlach
- Department of Microbiology, University of Alabama at Birmingham , Birmingham, AL, USA
| | - Jamil S Saad
- Department of Microbiology, University of Alabama at Birmingham , Birmingham, AL, USA
| |
Collapse
|
22
|
Inlora J, Collins DR, Trubin ME, Chung JYJ, Ono A. Membrane binding and subcellular localization of retroviral Gag proteins are differentially regulated by MA interactions with phosphatidylinositol-(4,5)-bisphosphate and RNA. mBio 2014; 5:e02202. [PMID: 25491356 PMCID: PMC4324246 DOI: 10.1128/mbio.02202-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/07/2014] [Indexed: 01/29/2023] Open
Abstract
UNLABELLED The matrix (MA) domain of HIV-1 mediates proper Gag localization and membrane binding via interaction with a plasma-membrane (PM)-specific acidic phospholipid, phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. HIV-1 MA also interacts with RNA, which prevents Gag from binding to membranes containing phosphatidylserine, a prevalent cellular acidic phospholipid. These results suggest that the MA-bound RNA promotes PM-specific localization of HIV-1 Gag by blocking nonspecific interactions with cellular membranes that do not contain PI(4,5)P2. To examine whether PI(4,5)P2 dependence and RNA-mediated inhibition collectively determine MA phenotypes across a broad range of retroviruses and elucidate the significance of their interrelationships, we compared a panel of Gag-leucine zipper constructs (GagLZ) containing MA of different retroviruses. We found that in vitro membrane binding of GagLZ via HIV-1 MA and Rous sarcoma virus (RSV) MA is both PI(4,5)P2 dependent and susceptible to RNA-mediated inhibition. The PM-specific localization and virus-like particle (VLP) release of these GagLZ proteins are severely impaired by overexpression of a PI(4,5)P2-depleting enzyme, polyphosphoinositide 5-phosphatase IV (5ptaseIV). In contrast, membrane binding of GagLZ constructs that contain human T-lymphotropic virus type 1 (HTLV-1) MA, murine leukemia virus (MLV) MA, and human endogenous retrovirus K (HERV-K) MA is PI(4,5)P2 independent and not blocked by RNA. The PM localization and VLP release of these GagLZ chimeras were much less sensitive to 5ptaseIV expression. Notably, single amino acid substitutions that confer a large basic patch rendered HTLV-1 MA susceptible to the RNA-mediated block, suggesting that RNA readily blocks MA containing a large basic patch, such as HIV-1 and RSV MA. Further analyses of these MA mutants suggest a possibility that HIV-1 and RSV MA acquired PI(4,5)P2 dependence to alleviate the membrane binding block imposed by RNA. IMPORTANCE MA basic residues in the HIV-1 structural protein Gag interact with phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] and RNA. RNA inhibits HIV-1 MA binding to non-PI(4,5)P2 acidic lipids. This inhibition may promote PM specificity of Gag membrane binding, an early essential step in virus assembly. However, whether and how relationships between these interactions have developed among retroviruses are poorly understood. In this study, by comparing diverse retroviral MA domains, we elucidated a strong correlation among PI(4,5)P2 dependence, susceptibility to RNA-mediated inhibition, and cellular behaviors of Gag. Mutagenesis analyses suggest that a large basic patch on MA is sufficient to confer susceptibility to RNA-mediated inhibition but not for PI(4,5)P2-dependent membrane binding. Our findings highlight RNA's role as a general blocker of large basic patches and suggest a possibility that some retroviruses, including HIV-1, have evolved to bind PI(4,5)P2, while others have adopted smaller basic patches on their MA domains, to overcome the RNA-mediated restriction of membrane binding.
Collapse
Affiliation(s)
- Jingga Inlora
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - David R Collins
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Marc E Trubin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ji Yeon J Chung
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
23
|
Olety B, Ono A. Roles played by acidic lipids in HIV-1 Gag membrane binding. Virus Res 2014; 193:108-15. [PMID: 24998886 PMCID: PMC4252750 DOI: 10.1016/j.virusres.2014.06.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 06/18/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022]
Abstract
The MA domain mediates plasma membrane (PM) targeting of HIV-1 Gag, leading to particle assembly at the PM. The interaction between MA and acidic phospholipids, in addition to N-terminal myristoyl moiety, promotes Gag binding to lipid membranes. Among acidic phospholipids, PI(4,5)P2, a PM-specific phosphoinositide, is essential for proper HIV-1 Gag localization to the PM and efficient virus particle production. Recent studies further revealed that MA-bound RNA negatively regulates HIV-1 Gag membrane binding and that PI(4,5)P2 is necessary to overcome this RNA-imposed block. In this review, we will summarize the current understanding of Gag-membrane interactions and discuss potential roles played by acidic phospholipids.
Collapse
Affiliation(s)
- Balaji Olety
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
24
|
Obr M, Hadravová R, DoleŽal M, KříŽová I, Papoušková V, Zídek L, Hrabal R, Ruml T, Rumlová M. Stabilization of the β-hairpin in Mason-Pfizer monkey virus capsid protein- a critical step for infectivity. Retrovirology 2014; 11:94. [PMID: 25365920 PMCID: PMC4219007 DOI: 10.1186/s12977-014-0094-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/17/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Formation of a mature core is a crucial event for infectivity of retroviruses such as Mason-Pfizer monkey virus (M-PMV). The process is triggered by proteolytic cleavage of the polyprotein precursor Gag, which releases matrix, capsid (CA), and nucleocapsid proteins. Once released, CA assembles to form a mature core - a hexameric lattice protein shell that protects retroviral genomic RNA. Subtle conformational changes within CA induce the transition from the immature lattice to the mature lattice. Upon release from the precursor, the initially unstructured N-terminus of CA is refolded to form a β-hairpin stabilized by a salt bridge between the N-terminal proline and conserved aspartate. Although the crucial role of the β-hairpin in the mature core assembly has been confirmed, its precise structural function remains poorly understood. RESULTS Based on a previous NMR analysis of the N-terminal part of M-PMV CA, which suggested the role of additional interactions besides the proline-aspartate salt bridge in stabilization of the β-hairpin, we introduced a series of mutations into the CA sequence. The effect of the mutations on virus assembly and infectivity was analyzed. In addition, the structural consequences of selected mutations were determined by NMR spectroscopy. We identified a network of interactions critical for proper formation of the M-PMV core. This network involves residue R14, located in the N-terminal β-hairpin; residue W52 in the loop connecting helices 2 and 3; and residues Q113, Q115, and Y116 in helix 5. CONCLUSION Combining functional and structural analyses, we identified a network of supportive interactions that stabilize the β-hairpin in mature M-PMV CA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Michaela Rumlová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v,v,i,, IOCB & Gilead Research Center, Flemingovo nám, 2, Prague, 166 10, Czech Republic.
| |
Collapse
|
25
|
Role of Mason-Pfizer monkey virus CA-NC spacer peptide-like domain in assembly of immature particles. J Virol 2014; 88:14148-60. [PMID: 25275119 DOI: 10.1128/jvi.02286-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED The hexameric lattice of an immature retroviral particle consists of Gag polyprotein, which is the precursor of all viral structural proteins. Lentiviral and alpharetroviral Gag proteins contain a peptide sequence called the spacer peptide (SP), which is localized between the capsid (CA) and nucleocapsid (NC) domains. SP plays a critical role in intermolecular interactions during the assembly of immature particles of several retroviruses. Published models of supramolecular structures of immature particles suggest that in lentiviruses and alpharetroviruses, SP adopts a rod-like six-helix bundle organization. In contrast, Mason-Pfizer monkey virus (M-PMV), a betaretrovirus that assembles in the cytoplasm, does not contain a distinct SP sequence, and the CA-NC connecting region is not organized into a clear rod-like structure. Nevertheless, the CA-NC junction comprises a sequence critical for assembly of immature M-PMV particles. In the present work, we characterized this region, called the SP-like domain, in detail. We provide biochemical data confirming the critical role of the M-PMV SP-like domain in immature particle assembly, release, processing, and infectivity. Circular dichroism spectroscopy revealed that, in contrast to the SP regions of other retroviruses, a short SP-like domain-derived peptide (SPLP) does not form a purely helical structure in aqueous or helix-promoting solution. Using 8-Å cryo-electron microscopy density maps of immature M-PMV particles, we prepared computational models of the SP-like domain and indicate the structural features required for M-PMV immature particle assembly. IMPORTANCE Retroviruses such as HIV-1 are of great medical importance. Using Mason-Pfizer monkey virus (M-PMV) as a model retrovirus, we provide biochemical and structural data confirming the general relevance of a short segment of the structural polyprotein Gag for retrovirus assembly and infectivity. Although this segment is critical for assembly of immature particles of lentiviruses, alpharetroviruses, and betaretroviruses, the organization of this domain is strikingly different. A previously published electron microscopic structure of an immature M-PMV particle allowed us to model this important region into the electron density map. The data presented here help explain the different packing of the Gag segments of various retroviruses, such as HIV, Rous sarcoma virus (RSV), and M-PMV. Such knowledge contributes to understanding the importance of this region and its structural flexibility among retroviral species. The region might play a key role in Gag-Gag interactions, leading to different morphological pathways of immature particle assembly.
Collapse
|
26
|
Maldonado JO, Martin JL, Mueller JD, Zhang W, Mansky LM. New insights into retroviral Gag-Gag and Gag-membrane interactions. Front Microbiol 2014; 5:302. [PMID: 25009535 PMCID: PMC4068372 DOI: 10.3389/fmicb.2014.00302] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/02/2014] [Indexed: 11/19/2022] Open
Abstract
A critical aspect of viral replication is the assembly of virus particles, which are subsequently released as progeny virus. While a great deal of attention has been focused on better understanding this phase of the viral life cycle, many aspects of the molecular details remain poorly understood. This is certainly true for retroviruses, including that of the human immunodeficiency virus type 1 (HIV-1; a lentivirus) as well as for human T-cell leukemia virus type 1 (HTLV-1; a deltaretrovirus). This review discusses the retroviral Gag protein and its interactions with itself, the plasma membrane and the role of lipids in targeting Gag to virus assembly sites. Recent progress using sophisticated biophysical approaches to investigate – in a comparative manner – retroviral Gag–Gag and Gag–membrane interactions are discussed. Differences among retroviruses in Gag–Gag and Gag–membrane interactions imply dissimilar molecular aspects of the viral assembly pathway, including the interactions of Gag with lipids at the membrane.
Collapse
Affiliation(s)
- José O Maldonado
- 1Institute for Molecular Virology, University of Minnesota Minneapolis, MN, USA ; 2Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota , Minneapolis, MN, USA
| | - Jessica L Martin
- 1Institute for Molecular Virology, University of Minnesota Minneapolis, MN, USA ; 3Pharmacology Graduate Program, University of Minnesota Minneapolis, MN, USA
| | - Joachim D Mueller
- 1Institute for Molecular Virology, University of Minnesota Minneapolis, MN, USA ; 4School of Physics and Astronomy, University of Minnesota Minneapolis, MN, USA
| | - Wei Zhang
- 1Institute for Molecular Virology, University of Minnesota Minneapolis, MN, USA ; 2Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota , Minneapolis, MN, USA ; 5Characterization Facility, University of Minnesota Minneapolis, MN, USA
| | - Louis M Mansky
- 1Institute for Molecular Virology, University of Minnesota Minneapolis, MN, USA ; 2Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota , Minneapolis, MN, USA ; 3Pharmacology Graduate Program, University of Minnesota Minneapolis, MN, USA ; 6Department of Microbiology, University of Minnesota Minneapolis, MN, USA
| |
Collapse
|
27
|
Alfadhli A, Barklis E. The roles of lipids and nucleic acids in HIV-1 assembly. Front Microbiol 2014; 5:253. [PMID: 24917853 PMCID: PMC4042026 DOI: 10.3389/fmicb.2014.00253] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/08/2014] [Indexed: 11/23/2022] Open
Abstract
During HIV-1 assembly, precursor Gag (PrGag) proteins are delivered to plasma membrane (PM) assembly sites, where they are triggered to oligomerize and bud from cells as immature virus particles. The delivery and triggering processes are coordinated by the PrGag matrix (MA) and nucleocapsid (NC) domains. Targeting of PrGag proteins to membranes enriched in cholesterol and phosphatidylinositol-4,5-bisphosphate (PI[4,5]P2) is mediated by the MA domain, which also has been shown to bind both RNA and DNA. Evidence suggests that the nucleic-acid-binding function of MA serves to inhibit PrGag binding to inappropriate intracellular membranes, prior to delivery to the PM. At the PM, MA domains putatively trade RNA ligands for PI(4,5)P2 ligands, fostering high-affinity membrane binding. Triggering of oligomerization, budding, and virus particle release results when NC domains on adjacent PrGag proteins bind to viral RNA, leading to capsid (CA) domain oligomerization. This process leads to the assembly of immature virus shells in which hexamers of membrane-bound MA trimers appear to organize above interlinked CA hexamers. Here, we review the functions of retroviral MA proteins, with an emphasis on the nucleic-acid-binding capability of the HIV-1 MA protein, and its effects on membrane binding.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University Portland, OR, USA
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University Portland, OR, USA
| |
Collapse
|
28
|
ROCK1 and LIM kinase modulate retrovirus particle release and cell-cell transmission events. J Virol 2014; 88:6906-21. [PMID: 24696479 DOI: 10.1128/jvi.00023-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The assembly and release of retroviruses from the host cells require dynamic interactions between viral structural proteins and a variety of cellular factors. It has been long speculated that the actin cytoskeleton is involved in retrovirus production, and actin and actin-related proteins are enriched in HIV-1 virions. However, the specific role of actin in retrovirus assembly and release remains unknown. Here we identified LIM kinase 1 (LIMK1) as a cellular factor regulating HIV-1 and Mason-Pfizer monkey virus (M-PMV) particle release. Depletion of LIMK1 reduced not only particle output but also virus cell-cell transmission and was rescued by LIMK1 replenishment. Depletion of the upstream LIMK1 regulator ROCK1 inhibited particle release, as did a competitive peptide inhibitor of LIMK1 activity that prevented cofilin phosphorylation. Disruption of either ROCK1 or LIMK1 led to enhanced particle accumulation on the plasma membrane as revealed by total internal reflection fluorescence microscopy (TIRFM). Electron microscopy demonstrated a block to particle release, with clusters of fully mature particles on the surface of the cells. Our studies support a model in which ROCK1- and LIMK1-regulated phosphorylation of cofilin and subsequent local disruption of dynamic actin turnover play a role in retrovirus release from host cells and in cell-cell transmission events. IMPORTANCE Viruses often interact with the cellular cytoskeletal machinery in order to deliver their components to the site of assembly and budding. This study indicates that a key regulator of actin dynamics at the plasma membrane, LIM kinase, is important for the release of viral particles for HIV as well as for particle release by a distantly related retrovirus, Mason-Pfizer monkey virus. Moreover, disruption of LIM kinase greatly diminished the spread of HIV from cell to cell. These findings suggest that LIM kinase and its dynamic modulation of the actin cytoskeleton in the cell may be an important host factor for the production, release, and transmission of retroviruses.
Collapse
|
29
|
Prchal J, Kroupa T, Ruml T, Hrabal R. Interaction of Mason-Pfizer monkey virus matrix protein with plasma membrane. Front Microbiol 2014; 4:423. [PMID: 24478762 PMCID: PMC3896817 DOI: 10.3389/fmicb.2013.00423] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/31/2013] [Indexed: 01/28/2023] Open
Abstract
Budding is the final step of the late phase of retroviral life cycle. It begins with the interaction of Gag precursor with plasma membrane (PM) through its N-terminal domain, the matrix protein (MA). However, single genera of Retroviridae family differ in the way how they interact with PM. While in case of Lentiviruses (e.g., human immunodeficiency virus) the structural polyprotein precursor Gag interacts with cellular membrane prior to the assembly, Betaretroviruses [Mason-Pfizer monkey virus (M-PMV)] first assemble their virus-like particles (VLPs) in the pericentriolar region of the infected cell and therefore, already assembled particles interact with the membrane. Although both these types of retroviruses use similar mechanism of the interaction of Gag with the membrane, the difference in the site of assembly leads to some differences in the mechanism of the interaction. Here we describe the interaction of M-PMV MA with PM with emphasis on the structural aspects of the interaction with single phospholipids.
Collapse
Affiliation(s)
- Jan Prchal
- Laboratory of NMR Spectroscopy, Institute of Chemical Technology, Prague Czech Republic
| | - Tomáš Kroupa
- Laboratory of NMR Spectroscopy, Institute of Chemical Technology, Prague Czech Republic ; Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague Czech Republic
| | - Richard Hrabal
- Laboratory of NMR Spectroscopy, Institute of Chemical Technology, Prague Czech Republic
| |
Collapse
|
30
|
[Membrane Binding of Retroviral Gag Proteins]. Uirusu 2014; 64:155-64. [PMID: 26437838 DOI: 10.2222/jsv.64.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Location of virus assembly in infected cells has major influences on efficiencies of virus assembly and release and on post-assembly processes including cell-to-cell transmission. Therefore, for better understanding of virus spread and for developing new antiviral strategies, it is important to elucidate mechanisms by which the subcellular site of virus particle assembly is determined. Retrovirus particle assembly is driven by viral structural protein Gag. In the case of HIV-1, Gag binds to the plasma membrane (PM) via the N-terminal MA domain and forms nascent particles at this location. Recent studies reveled that PM-specific phospholipid PI(4,5)P2 plays an important role in directing Gag to the PM through its interaction with MA. In this review, I will summarize our current understanding of relationships between retroviral MA domains and phospholipids in cellular membranes and discuss possible mechanisms by which lipids and other factors regulate membrane binding and subcellular localization of retroviral Gag proteins.
Collapse
|
31
|
A Mason-Pfizer Monkey virus Gag-GFP fusion vector allows visualization of capsid transport in live cells and demonstrates a role for microtubules. PLoS One 2013; 8:e83863. [PMID: 24386297 PMCID: PMC3873405 DOI: 10.1371/journal.pone.0083863] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 11/10/2013] [Indexed: 11/19/2022] Open
Abstract
Immature capsids of the Betaretrovirus, Mason-Pfizer Monkey virus (M-PMV), are assembled in the pericentriolar region of the cell, and are then transported to the plasma membrane for budding. Although several studies, utilizing mutagenesis, biochemistry, and immunofluorescence, have defined the role of some viral and host cells factors involved in these processes, they have the disadvantage of population analysis, rather than analyzing individual capsid movement in real time. In this study, we created an M-PMV vector in which the enhanced green fluorescent protein, eGFP, was fused to the carboxyl-terminus of the M-PMV Gag polyprotein, to create a Gag-GFP fusion that could be visualized in live cells. In order to express this fusion protein in the context of an M-PMV proviral backbone, it was necessary to codon-optimize gag, optimize the Kozak sequence preceding the initiating methionine, and mutate an internal methionine codon to one for alanine (M100A) to prevent internal initiation of translation. Co-expression of this pSARM-Gag-GFP-M100A vector with a WT M-PMV provirus resulted in efficient assembly and release of capsids. Results from fixed-cell immunofluorescence and pulse-chase analyses of wild type and mutant Gag-GFP constructs demonstrated comparable intracellular localization and release of capsids to untagged counterparts. Real-time, live-cell visualization and analysis of the GFP-tagged capsids provided strong evidence for a role for microtubules in the intracellular transport of M-PMV capsids. Thus, this M-PMV Gag-GFP vector is a useful tool for identifying novel virus-cell interactions involved in intracellular M-PMV capsid transport in a dynamic, real-time system.
Collapse
|
32
|
Pereira LE, Clark J, Grznarova P, Wen X, LaCasse R, Ruml T, Spearman P, Hunter E. Direct evidence for intracellular anterograde co-transport of M-PMV Gag and Env on microtubules. Virology 2013; 449:109-19. [PMID: 24418544 DOI: 10.1016/j.virol.2013.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/14/2013] [Accepted: 11/04/2013] [Indexed: 12/25/2022]
Abstract
The intracellular transport of Mason-Pfizer monkey virus (M-PMV) assembled capsids from the pericentriolar region to the plasma membrane (PM) requires trafficking of envelope glycoprotein (Env) to the assembly site via the recycling endosome. However, it is unclear if Env-containing vesicles play a direct role in trafficking capsids to the PM. Using live cell microscopy, we demonstrate, for the first time, anterograde co-transport of Gag and Env. Nocodazole disruption of microtubules had differential effects on Gag and Env trafficking, with pulse-chase assays showing a delayed release of Env-deficient virions. Particle tracking demonstrated an initial loss of linear movement of GFP-tagged capsids and mCherry-tagged Env, followed by renewed movement of Gag but not Env at 4h post-treatment. Thus, while delayed capsid trafficking can occur in the absence of microtubules, efficient anterograde transport of capsids appears to be mediated by microtubule-associated Env-containing vesicles.
Collapse
Affiliation(s)
- Lara E Pereira
- Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329, USA.
| | - Jasmine Clark
- Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329, USA.
| | - Petra Grznarova
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Technicka 3, 166 28 Prague, Czech Republic.
| | - Xiaoyun Wen
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Drive, Atlanta, GA 30322, USA.
| | - Rachel LaCasse
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA.
| | - Tomas Ruml
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Technicka 3, 166 28 Prague, Czech Republic.
| | - Paul Spearman
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Drive, Atlanta, GA 30322, USA.
| | - Eric Hunter
- Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329, USA.
| |
Collapse
|
33
|
One-step separation of myristoylated and nonmyristoylated retroviral matrix proteins. Protein Expr Purif 2013; 92:94-9. [PMID: 24056256 DOI: 10.1016/j.pep.2013.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/03/2013] [Accepted: 09/06/2013] [Indexed: 11/22/2022]
Abstract
N-terminal myristoylation of retroviral matrix proteins is essential for the targeting of the Gag polyproteins to the plasma membrane. To investigate the effect of the myristoylation on the structure and membrane binding ability of the matrix proteins, it is necessary to prepare their myristoylated forms. We present purification of myristoylated matrix proteins of the mouse mammary tumor virus and murine leukemia virus, two morphogenetically distinct retroviruses. The proteins were expressed in Escherichia coli coexpressing a yeast N-myristoyltransferase. This E. coli expression system yielded a mixture of myristoylated and nonmyristoylated matrix proteins. We established efficient one-step metal affinity purification that enabled to obtain pure myristoylated matrix proteins suitable for structural and functional studies.
Collapse
|
34
|
Basic residues in the matrix domain and multimerization target murine leukemia virus Gag to the virological synapse. J Virol 2013; 87:7113-26. [PMID: 23616653 DOI: 10.1128/jvi.03263-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine leukemia virus (MLV) can efficiently spread in tissue cultures by polarizing assembly to virological synapses. The viral envelope glycoprotein (Env) establishes cell-cell contacts and subsequently recruits Gag by a process that depends on its cytoplasmic tail. MLV Gag is recruited to virological synapses through the matrix domain (MA) (J. Jin, F. Li, and W. Mothes, J. Virol. 85:7672-7682, 2011). However, how MA targets Gag to sites of cell-cell contact remains unknown. Here we report that basic residues within MA are critical for directing MLV Gag to virological synapses. Alternative membrane targeting domains (MTDs) containing multiple basic residues can efficiently substitute MA to direct polarized assembly. Similarly, mutations in the polybasic cluster of MA that disrupt Gag polarization can be rescued by N-terminal addition of MTDs containing basic residues. MTDs containing basic residues alone fail to be targeted to the virological synapse. Systematic deletion experiments reveal that domains within Gag known to mediate Gag multimerization are also required. Thus, our data predict the existence of a specific "acidic" interface at virological synapses that mediates the recruitment of MLV Gag via the basic cluster of MA and Gag multimerization.
Collapse
|
35
|
Hütter S, Zurnic I, Lindemann D. Foamy virus budding and release. Viruses 2013; 5:1075-98. [PMID: 23575110 PMCID: PMC3705266 DOI: 10.3390/v5041075] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/25/2013] [Accepted: 03/29/2013] [Indexed: 12/21/2022] Open
Abstract
Like all other viruses, a successful egress of functional particles from infected cells is a prerequisite for foamy virus (FV) spread within the host. The budding process of FVs involves steps, which are shared by other retroviruses, such as interaction of the capsid protein with components of cellular vacuolar protein sorting (Vps) machinery via late domains identified in some FV capsid proteins. Additionally, there are features of the FV budding strategy quite unique to the spumaretroviruses. This includes secretion of non-infectious subviral particles and a strict dependence on capsid-glycoprotein interaction for release of infectious virions from the cells. Virus-like particle release is not possible since FV capsid proteins lack a membrane-targeting signal. It is noteworthy that in experimental systems, the important capsid-glycoprotein interaction could be bypassed by fusing heterologous membrane-targeting signals to the capsid protein, thus enabling glycoprotein-independent egress. Aside from that, other systems have been developed to enable envelopment of FV capsids by heterologous Env proteins. In this review article, we will summarize the current knowledge on FV budding, the viral components and their domains involved as well as alternative and artificial ways to promote budding of FV particle structures, a feature important for alteration of target tissue tropism of FV-based gene transfer systems.
Collapse
Affiliation(s)
- Sylvia Hütter
- Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany; E-Mails: (S.H); (I.Z.)
- DFG-Center for Regenerative Therapies Dresden (CRTD)—Cluster of Excellence, Technische Universität Dresden, Fetscherstr. 105, Dresden 01307, Germany
| | - Irena Zurnic
- Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany; E-Mails: (S.H); (I.Z.)
- DFG-Center for Regenerative Therapies Dresden (CRTD)—Cluster of Excellence, Technische Universität Dresden, Fetscherstr. 105, Dresden 01307, Germany
| | - Dirk Lindemann
- Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany; E-Mails: (S.H); (I.Z.)
- DFG-Center for Regenerative Therapies Dresden (CRTD)—Cluster of Excellence, Technische Universität Dresden, Fetscherstr. 105, Dresden 01307, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-351458-6210; Fax: +49-351-458-6310
| |
Collapse
|
36
|
Abstract
Background SAMHD1 is a triphosphohydrolase that restricts the replication of HIV-1 and SIV in myeloid cells. In macrophages and dendritic cells, SAMHD1 restricts virus replication by diminishing the deoxynucleotide triphosphate pool to a level below that which supports lentiviral reverse transcription. HIV-2 and related SIVs encode the accessory protein Vpx to induce the proteasomal degradation of SAMHD1 following virus entry. While SAMHD1 has been shown to restrict HIV-1 and SIV, the breadth of its restriction is not known and whether other viruses have a means to counteract the restriction has not been determined. Results We show that SAMHD1 restricts a wide array of divergent retroviruses, including the alpha, beta and gamma classes. Murine leukemia virus was restricted by SAMHD1 in macrophages yet removal of SAMHD1 did not alleviate the block to infection because of an additional block to viral nuclear import. Prototype foamy virus (PFV) and Human T cell leukemia virus type I (HTLV-1) were the only retroviruses tested that were not restricted by SAMHD1. PFV reverse transcribes predominantly prior to entry and thus is unaffected by the dNTP level in the target cell. It is possible that HTLV-1 has a mechanism to render the virus resistant to SAMHD1-mediated restriction. Conclusion The results suggest that SAMHD1 has broad anti-retroviral activity against which most viruses have not found an escape.
Collapse
|
37
|
Alterations in the MA and NC domains modulate phosphoinositide-dependent plasma membrane localization of the Rous sarcoma virus Gag protein. J Virol 2013; 87:3609-15. [PMID: 23325682 DOI: 10.1128/jvi.03059-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Retroviral Gag proteins direct virus particle assembly from the plasma membrane (PM). Phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)] plays a role in PM targeting of several retroviral Gag proteins. Here we report that depletion of intracellular PI(4,5)P(2) and phosphatidylinositol-(3,4,5)-triphosphate [PI(3,4,5)P(3)] levels impaired Rous sarcoma virus (RSV) Gag PM localization. Gag mutants deficient in nuclear trafficking were less sensitive to reduction of intracellular PI(4,5)P(2) and PI(3,4,5)P(3), suggesting a possible connection between Gag nuclear trafficking and phosphoinositide-dependent PM targeting.
Collapse
|
38
|
Prchal J, Srb P, Hunter E, Ruml T, Hrabal R. The structure of myristoylated Mason-Pfizer monkey virus matrix protein and the role of phosphatidylinositol-(4,5)-bisphosphate in its membrane binding. J Mol Biol 2012; 423:427-38. [PMID: 22863803 DOI: 10.1016/j.jmb.2012.07.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/24/2012] [Accepted: 07/27/2012] [Indexed: 10/28/2022]
Abstract
We determined the solution structure of myristoylated Mason-Pfizer monkey virus matrix protein by NMR spectroscopy. The myristoyl group is buried inside the protein and causes a slight reorientation of the helices. This reorientation leads to the creation of a binding site for phosphatidylinositols. The interaction between the matrix protein and phosphatidylinositols carrying C(8) fatty acid chains was monitored by observation of concentration-dependent chemical shift changes of the affected amino acid residues, a saturation transfer difference experiment and changes in (31)P chemical shifts. No differences in the binding mode or affinity were observed with differently phosphorylated phosphatidylinositols. The structure of the matrix protein-phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)] complex was then calculated with HADDOCK software based on the intermolecular nuclear Overhauser enhancement contacts between the ligand and the matrix protein obtained from a (13)C-filtered/(13)C-edited nuclear Overhauser enhancement spectroscopy experiment. PI(4,5)P(2) binding was not strong enough for triggering of the myristoyl-switch. The structural changes of the myristoylated matrix protein were also found to result in a drop in the oligomerization capacity of the protein.
Collapse
Affiliation(s)
- Jan Prchal
- Laboratory of NMR Spectroscopy, Institute of Chemical Technology, Prague, Technická 5, 16628 Prague, Czech Republic
| | | | | | | | | |
Collapse
|
39
|
Retroviral env glycoprotein trafficking and incorporation into virions. Mol Biol Int 2012; 2012:682850. [PMID: 22811910 PMCID: PMC3395148 DOI: 10.1155/2012/682850] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/08/2012] [Accepted: 05/31/2012] [Indexed: 11/17/2022] Open
Abstract
Together with the Gag protein, the Env glycoprotein is a major retroviral structural protein and is essential for forming infectious virus particles. Env is synthesized, processed, and transported to certain microdomains at the plasma membrane and takes advantage of the same host machinery for its trafficking as that used by cellular glycoproteins. Incorporation of Env into progeny virions is probably mediated by the interaction between Env and Gag, in some cases with the additional involvement of certain host factors. Although several general models have been proposed to explain the incorporation of retroviral Env glycoproteins into virions, the actual mechanism for this process is still unclear, partly because structural data on the Env protein cytoplasmic tail is lacking. This paper presents the current understanding of the synthesis, trafficking, and virion incorporation of retroviral Env proteins.
Collapse
|
40
|
Ghanam RH, Samal AB, Fernandez TF, Saad JS. Role of the HIV-1 Matrix Protein in Gag Intracellular Trafficking and Targeting to the Plasma Membrane for Virus Assembly. Front Microbiol 2012; 3:55. [PMID: 22363329 PMCID: PMC3281212 DOI: 10.3389/fmicb.2012.00055] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 02/01/2012] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) encodes a polypeptide called Gag that is able to form virus-like particles in vitro in the absence of any cellular or viral constituents. During the late phase of the HIV-1 infection, Gag polyproteins are transported to the plasma membrane (PM) for assembly. In the past two decades, in vivo, in vitro, and structural studies have shown that Gag trafficking and targeting to the PM are orchestrated events that are dependent on multiple factors including cellular proteins and specific membrane lipids. The matrix (MA) domain of Gag has been the focus of these studies as it appears to be engaged in multiple intracellular interactions that are suggested to be critical for virus assembly and replication. The interaction between Gag and the PM is perhaps the most understood. It is now established that the ultimate localization of Gag on punctate sites on the PM is mediated by specific interactions between the MA domain of Gag and phosphatidylinositol-4,5-bisphosphate [PI(4,5)P(2)], a minor lipid localized on the inner leaflet of the PM. Structure-based studies revealed that binding of PI(4,5)P(2) to MA induces minor conformational changes, leading to exposure of the myristyl (myr) group. Exposure of the myr group is also triggered by binding of calmodulin, enhanced by factors that promote protein self-association like the capsid domain of Gag, and is modulated by pH. Despite the steady progress in defining both the viral and cellular determinants of retroviral assembly and release, Gag's intracellular interactions and trafficking to its assembly sites in the infected cell are poorly understood. In this review, we summarize the current understanding of the structural and functional role of MA in HIV replication.
Collapse
Affiliation(s)
- Ruba H Ghanam
- Department of Microbiology, University of Alabama at Birmingham Birmingham, AL, USA
| | | | | | | |
Collapse
|
41
|
The G-patch domain of Mason-Pfizer monkey virus is a part of reverse transcriptase. J Virol 2011; 86:1988-98. [PMID: 22171253 DOI: 10.1128/jvi.06638-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mason-Pfizer monkey virus (M-PMV), like some other betaretroviruses, encodes a G-patch domain (GPD). This glycine-rich domain, which has been predicted to be an RNA binding module, is invariably localized at the 3' end of the pro gene upstream of the pro-pol ribosomal frameshift sequence of genomic RNAs of betaretroviruses. Following two ribosomal frameshift events and the translation of viral mRNA, the GPD is present in both Gag-Pro and Gag-Pro-Pol polyproteins. During the maturation of the Gag-Pro polyprotein, the GPD transiently remains a C-terminal part of the protease (PR), from which it is then detached by PR itself. The destiny of the Gag-Pro-Pol-encoded GPD remains to be determined. The function of the GPD in the retroviral life cycle is unknown. To elucidate the role of the GPD in the M-PMV replication cycle, alanine-scanning mutational analysis of its most highly conserved residues was performed. A series of individual mutations as well as the deletion of the entire GPD had no effect on M-PMV assembly, polyprotein processing, and RNA incorporation. However, a reduction of the reverse transcriptase (RT) activity, resulting in a drop in M-PMV infectivity, was determined for all GPD mutants. Immunoprecipitation experiments suggested that the GPD is a part of RT and participates in its function. These data indicate that the M-PMV GPD functions as a part of reverse transcriptase rather than protease.
Collapse
|
42
|
Squalamine as a broad-spectrum systemic antiviral agent with therapeutic potential. Proc Natl Acad Sci U S A 2011; 108:15978-83. [PMID: 21930925 DOI: 10.1073/pnas.1108558108] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Antiviral compounds that increase the resistance of host tissues represent an attractive class of therapeutic. Here, we show that squalamine, a compound previously isolated from the tissues of the dogfish shark (Squalus acanthias) and the sea lamprey (Petromyzon marinus), exhibits broad-spectrum antiviral activity against human pathogens, which were studied in vitro as well as in vivo. Both RNA- and DNA-enveloped viruses are shown to be susceptible. The proposed mechanism involves the capacity of squalamine, a cationic amphipathic sterol, to neutralize the negative electrostatic surface charge of intracellular membranes in a way that renders the cell less effective in supporting viral replication. Because squalamine can be readily synthesized and has a known safety profile in man, we believe its potential as a broad-spectrum human antiviral agent should be explored.
Collapse
|
43
|
Chukkapalli V, Ono A. Molecular determinants that regulate plasma membrane association of HIV-1 Gag. J Mol Biol 2011; 410:512-24. [PMID: 21762797 DOI: 10.1016/j.jmb.2011.04.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/04/2011] [Accepted: 04/06/2011] [Indexed: 11/17/2022]
Abstract
Human immunodeficiency virus type 1 assembly is a multistep process that occurs at the plasma membrane (PM). Targeting and binding of Gag to the PM are the first steps in this assembly process and are mediated by the matrix domain of Gag. This review highlights our current knowledge on viral and cellular determinants that affect specific interactions between Gag and the PM. We will discuss potential mechanisms by which the matrix domain might integrate three regulatory components, myristate, phosphatidylinositol-(4,5)-bisphosphate, and RNA, to ensure that human immunodeficiency virus type 1 assembly occurs at the PM.
Collapse
Affiliation(s)
- Vineela Chukkapalli
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
44
|
Rous sarcoma virus gag has no specific requirement for phosphatidylinositol-(4,5)-bisphosphate for plasma membrane association in vivo or for liposome interaction in vitro. J Virol 2011; 85:10851-60. [PMID: 21813603 DOI: 10.1128/jvi.00760-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The MA domain of the retroviral Gag protein mediates interactions with the plasma membrane, which is the site of productive virus release. HIV-1 MA has a phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P₂] binding pocket; depletion of this phospholipid from the plasma membrane compromises Gag membrane association and virus budding. We used multiple methods to examine the possible role of PI(4,5)P₂ in Gag-membrane interaction of the alpharetrovirus Rous sarcoma virus (RSV). In contrast to HIV-1, which was tested in parallel, neither membrane localization of RSV Gag-GFP nor release of virus-like particles was affected by phosphatase-mediated depletion of PI(4,5)P₂ in transfected avian cells. In liposome flotation experiments, RSV Gag required acidic lipids for binding but showed no specificity for PI(4,5)P₂. Mono-, di-, and triphosphorylated phosphatidylinositol phosphate (PIP) species as well as high concentrations of phosphatidylserine (PS) supported similar levels of flotation. A mutation that increases the overall charge of RSV MA also enhanced Gag membrane binding. Contrary to previous reports, we found that high concentrations of PS, in the absence of PIPs, also strongly promoted HIV-1 Gag flotation. Taken together, we interpret these results to mean that RSV Gag membrane association is driven by electrostatic interactions and not by any specific association with PI(4,5)P₂.
Collapse
|
45
|
Inlora J, Chukkapalli V, Derse D, Ono A. Gag localization and virus-like particle release mediated by the matrix domain of human T-lymphotropic virus type 1 Gag are less dependent on phosphatidylinositol-(4,5)-bisphosphate than those mediated by the matrix domain of HIV-1 Gag. J Virol 2011; 85:3802-10. [PMID: 21289126 PMCID: PMC3126146 DOI: 10.1128/jvi.02383-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 01/26/2011] [Indexed: 12/16/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Gag matrix (MA) domain facilitates Gag targeting and binding to the plasma membrane (PM) during virus assembly. Interaction with a PM phospholipid, phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)], plays a key role in these MA functions. Previous studies showed that overexpression of polyphosphoinositide 5-phosphatase IV (5ptaseIV), which depletes cellular PI(4,5)P(2), mislocalizes HIV-1 Gag to the cytosol and greatly reduces HIV-1 release efficiency. In this study, we sought to determine the role of the MA-PI(4,5)P(2) interaction in Gag localization and membrane binding of a deltaretrovirus, human T-lymphotropic virus type 1 (HTLV-1). We compared the chimeric HIV-1 Gag (HTMA), in which MA was replaced with HTLV-1 MA, with wild-type HIV-1 and HTLV-1 Gag for PI(4,5)P(2) dependence. Our results demonstrate that, unlike HIV-1 Gag, subcellular localization of and VLP release by HTLV-1 and HTMA Gag were minimally sensitive to 5ptaseIV overexpression. These results suggest that the interaction of HTLV-1 MA with PI(4,5)P(2) is not essential for HTLV-1 particle assembly. Furthermore, liposome-binding analyses showed that both HTLV-1 and HTMA Gag can bind membrane efficiently even in the absence of PI(4,5)P(2). Efficient HTLV-1 Gag binding to liposomes was largely driven by electrostatic interaction, unlike that of HIV-1 Gag, which required specific interaction with PI(4,5)P(2). Furthermore, membrane binding of HTLV-1 Gag in vitro was not suppressed by RNA, in contrast to HIV-1 Gag. Altogether, our data suggest that Gag targeting and membrane binding mediated by HTLV-1 MA does not require PI(4,5)P(2) and that distinct mechanisms regulate HIV-1 and HTLV-1 Gag membrane binding.
Collapse
Affiliation(s)
- Jingga Inlora
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Vineela Chukkapalli
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - David Derse
- National Cancer Institute at Frederick, HIV Drug Resistance Program, Frederick, Maryland
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
46
|
Hamard-Peron E, Muriaux D. Retroviral matrix and lipids, the intimate interaction. Retrovirology 2011; 8:15. [PMID: 21385335 PMCID: PMC3059298 DOI: 10.1186/1742-4690-8-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 03/07/2011] [Indexed: 11/30/2022] Open
Abstract
Retroviruses are enveloped viruses that assemble on the inner leaflet of cellular membranes. Improving biophysical techniques has recently unveiled many molecular aspects of the interaction between the retroviral structural protein Gag and the cellular membrane lipids. This interaction is driven by the N-terminal matrix domain of the protein, which probably undergoes important structural modifications during this process, and could induce membrane lipid distribution changes as well. This review aims at describing the molecular events occurring during MA-membrane interaction, and pointing out their consequences in terms of viral assembly. The striking conservation of the matrix membrane binding mode among retroviruses indicates that this particular step is most probably a relevant target for antiviral research.
Collapse
Affiliation(s)
- Elise Hamard-Peron
- Human Virology Department, Inserm U758, Ecole Normale Superieure de Lyon, 36 Allee d'Italie, IFR128, Universite de Lyon, Lyon, France
| | | |
Collapse
|
47
|
Abstract
A mandatory step in the formation of an infectious retroviral particle is the acquisition of its envelope glycoprotein (Env). This step invariably occurs by Env positioning itself in the host membrane at the location of viral budding and being incorporated along with the host membrane into the viral particle. In some ways, this step of the viral life cycle would appear to be imprecise. There is no specific sequence in Env or in the retroviral structural protein, Gag, that is inherently required for the production of an infectious Env-containing particle. Additionally, Env-defective proviruses can efficiently produce infectious particles with any of a number of foreign retroviral Env glycoproteins or even glycoproteins from unrelated viral families, a process termed pseudotyping. However, mounting evidence suggests that Env incorporation is neither passive nor random. Rather, several redundant mechanisms appear to contribute to the carefully controlled process of Env acquisition, many of which are apparently used by a wide variety of enveloped viruses. This review presents and discusses the evidence for these different mechanisms contributing to incorporation.
Collapse
Affiliation(s)
- Marc C Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, 65211, USA.
| |
Collapse
|
48
|
Assembly and replication of HIV-1 in T cells with low levels of phosphatidylinositol-(4,5)-bisphosphate. J Virol 2011; 85:3584-95. [PMID: 21270152 DOI: 10.1128/jvi.02266-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
HIV-1 Gag assembles into virus particles predominantly at the plasma membrane (PM). Previously, we observed that phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)] is essential for Gag binding to the plasma membrane and virus release in HeLa cells. In the current study, we found that PI(4,5)P(2) also facilitates Gag binding to the PM and efficient virus release in T cells. Notably, serial passage of HIV-1 in an A3.01 clone that expresses polyphosphoinositide 5-phosphatase IV (5ptaseIV), which depletes cellular PI(4,5)P(2), yielded an adapted mutant with a Leu-to-Arg change at matrix residue 74 (74LR). Virus replication in T cells expressing 5ptaseIV was accelerated by the 74LR mutation relative to replication of wild type HIV-1 (WT). This accelerated replication of the 74LR mutant was not due to improved virus release. In control T cells, the 74LR mutant releases virus less efficiently than does the WT, whereas in cells expressing 5ptaseIV, the WT and the 74LR mutant are similarly inefficient in virus release. Unexpectedly, we found that the 74LR mutation increased virus infectivity and compensated for the inefficient virus release. Altogether, these results indicate that PI(4,5)P(2) is essential for Gag-membrane binding, targeting of Gag to the PM, and efficient virus release in T cells, which in turn likely promotes efficient virus spread in T cell cultures. In T cells with low PI(4,5)P(2) levels, however, the reduced virus particle production can be compensated for by a mutation that enhances virus infectivity.
Collapse
|
49
|
Ono A. HIV-1 assembly at the plasma membrane. Vaccine 2010; 28 Suppl 2:B55-9. [PMID: 20510745 DOI: 10.1016/j.vaccine.2009.10.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 09/04/2009] [Accepted: 10/06/2009] [Indexed: 12/01/2022]
Abstract
HIV-1 particle assembly takes place at the plasma membrane, which likely enhances release of extracellular virions and spread to next target cells. Recent work by our lab and others started to reveal a molecular mechanism by which HIV ensures to make the plasma membrane as a primary site of virus assembly.
Collapse
Affiliation(s)
- Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, 5736 Medical Science Building II, 1150 W Medical Center Drive, Ann Arbor, MI 48109-0620, United States.
| |
Collapse
|
50
|
Abstract
Advances in cell biology and biophysics revealed that cellular membranes consist of multiple microdomains with specific sets of components such as lipid rafts and TEMs (tetraspanin-enriched microdomains). An increasing number of enveloped viruses have been shown to utilize these microdomains during their assembly. Among them, association of HIV-1 (HIV type 1) and other retroviruses with lipid rafts and TEMs within the PM (plasma membrane) is well documented. In this review, I describe our current knowledge on interrelationships between PM microdomain organization and the HIV-1 particle assembly process. Microdomain association during virus particle assembly may also modulate subsequent virus spread. Potential roles played by microdomains will be discussed with regard to two post-assembly events, i.e., inhibition of virus release by a raft-associated protein BST-2/tetherin and cell-to-cell HIV-1 transmission at virological synapses.
Collapse
|