1
|
Cui B, Yang G, Yan H, Wu S, Wang K, Wang H, Li Y. UBE3C restricts EV-A71 replication by ubiquitination-dependent degradation of 2C. J Virol 2024; 98:e0133524. [PMID: 39212385 PMCID: PMC11494953 DOI: 10.1128/jvi.01335-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Ubiquitin modification of viral proteins to degrade or regulate their function is one of the strategies of the host to resist viral infection. Here, we report that ubiquitin protein ligase E3C (UBE3C), an E3 ubiquitin ligase, displayed inhibitory effects on EV-A71 replication. UBE3C knockdown resulted in increased viral protein levels and virus titers, whereas overexpression of UBE3C reduced EV-A71 replication. To explore the mechanism by which UBE3C affected EV-A71 infection, we found that the C-terminal of UBE3C bound to 2C protein and facilitated K33/K48-linked ubiquitination degradation of 2C K268. Moreover, UBE3C lost its ability to degrade 2C K268R and had a diminished inhibitory impact against the replication of recombinant EV-A71-FY-2C K268R. In addition, UBE3C also promoted ubiquitination degradation of the 2C protein of CVB3 and CVA16 and inhibited viral replication. Thus, our findings reveal a novel mechanism that UBE3C acts as an enterovirus host restriction factor, including EV-A71, by targeting the 2C protein. IMPORTANCE The highly conserved 2C protein of EV-A71 is a multifunctional protein and plays a key role in the replication cycle. In this study, we demonstrated for the first time that UBE3C promoted the degradation of 2C K268 via K33/K48-linked ubiquitination, thereby inhibiting viral proliferation. Our findings advance the knowledge related to the roles of 2C in EV-A71 virulence and the ubiquitination pathway in the host restriction of EV-A71 infection.
Collapse
Affiliation(s)
- Boming Cui
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ge Yang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiyan Yan
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuo Wu
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kun Wang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huiqiang Wang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuhuan Li
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Meng Z, Wang Y, Kong X, Cen M, Duan Z. Chicken speckle-type POZ protein (SPOP) negatively regulates MyD88/NF-κB signaling pathway mediated proinflammatory cytokine production to promote the replication of Newcastle disease virus. Poult Sci 2024; 103:103461. [PMID: 38290339 PMCID: PMC10844869 DOI: 10.1016/j.psj.2024.103461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
The speckle-type POZ protein (SPOP) is demonstrated to be a specific adaptor of the cullin-RING-based E3 ubiquitin ligase complex that participates in multiple cellular processes. Up to now, SPOP involved in inflammatory response has attracted more attention, but the association of SPOP with animal virus infection is scarcely reported. In this study, chicken MyD88 (chMyD88), an innate immunity-associated protein, was screened to be an interacting partner of chSPOP using co-immunoprecipitation (Co-IP) combined with liquid chromatography-tandem mass spectrometry methods. This interaction was further confirmed by fluorescence co-localization, Co-IP, and pull-down assays. It was interesting that exogenous recombinant protein HA-chSPOP or endogenous chSPOP alone was mainly located in the nucleus but was translocated to the cytoplasm upon co-expression with chMyD88 or lipopolysaccharide stimulation. In addition, chSPOP reduced chMyD88 expression by ubiquitination in a dose-dependent manner, and the regulation of NF-κB activity by chSPOP was dependent solely on chMyD88. Importantly, chSPOP played a negative regulatory role in the MyD88/NF-κB signaling pathway and the production of proinflammatory cytokines. Moreover, we found that velogenic Newcastle disease virus (NDV) infection changed the subcellular localization of chSPOP and the expression patterns of chSPOP and chMyD88, and overexpression of chSPOP decreased the production of proinflammatory cytokines to enhance velogenic and lentogenic NDV replication, while siRNA-mediated chSPOP knockdown obtained the opposite results, thereby indicating that chSPOP negatively regulated MyD88/NF-κB signaling pathway mediated proinflammatory cytokine production to promote NDV replication. These findings highlight the important role of the SPOP/MyD88/NF-κB signaling pathway in NDV replication and may provide insightful information about NDV pathogenesis.
Collapse
Affiliation(s)
- Zhongming Meng
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yanbi Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xianya Kong
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Mona Cen
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zhiqiang Duan
- College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
3
|
Yu GQ, Chen MJ, Wang YJ, Liu YQ, Zuo MZ, Zhang ZH, Li GX, Liu BZ, Li M. Zebrafish spop promotes ubiquitination and degradation of mavs to suppress antiviral response via the lysosomal pathway. Int J Biol Macromol 2024; 256:128451. [PMID: 38029910 DOI: 10.1016/j.ijbiomac.2023.128451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) signaling pathways are required to be tightly controlled to initiate host innate immune responses. Fish mitochondrial antiviral signaling (mavs) is a key determinant in the RLR pathway, and its ubiquitination is associated with mavs activation. Here, we identified the zebrafish E3 ubiquitin ligase Speckle-type BTB-POZ protein (spop) negatively regulates mavs-mediated the type I interferon (IFN) responses. Consistently, overexpression of zebrafish spop repressed the activity of IFN promoter and reduced host ifn transcription, whereas knockdown spop by small interfering RNA (siRNA) transfection had the opposite effects. Accordingly, overexpression of spop dampened the cellular antiviral responses triggered by spring viremia of carp virus (SVCV). A functional domain assay revealed that the N-terminal substrate-binding MATH domain regions of spop were necessary for IFN suppression. Further assays indicated that spop interacts with mavs through the C-terminal transmembrane (TM) domain of mavs. Moreover, zebrafish spop selectively promotes K48-linked polyubiquitination and degradation of mavs through the lysosomal pathway to suppress IFN expression. Our findings unearth a post-translational mechanism by which mavs is regulated and reveal a role for spop in inhibiting antiviral innate responses.
Collapse
Affiliation(s)
- Guang-Qing Yu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Meng-Juan Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Yi-Jie Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Yu-Qing Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Ming-Zhong Zuo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Zi-Hao Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Guo-Xi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Bian-Zhi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China.
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China.
| |
Collapse
|