1
|
Oscorbin IP, Filipenko ML. M-MuLV reverse transcriptase: Selected properties and improved mutants. Comput Struct Biotechnol J 2021; 19:6315-6327. [PMID: 34900141 PMCID: PMC8640165 DOI: 10.1016/j.csbj.2021.11.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/06/2022] Open
Abstract
Reverse transcriptases (RTs) are enzymes synthesizing DNA using RNA as the template and serving as the standard tools in modern biotechnology and molecular diagnostics. To date, the most commonly used reverse transcriptase is the enzyme from Moloney murine leukemia virus, M-MuLV RT. Since its discovery, M-MuLV RT has become indispensable for modern RNA studies; the range of M-MuLV RT applications is vast, from scientific tasks to clinical testing of human pathogens. This review will give a brief description of the structure, thermal stability, processivity, and fidelity, focusing on improving M-MuLV RT for practical usage.
Collapse
Affiliation(s)
- Igor P Oscorbin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Maxim L Filipenko
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Loyola L, Achuthan V, Gilroy K, Borland G, Kilbey A, Mackay N, Bell M, Hay J, Aiyer S, Fingerman D, Villanueva RA, Cameron E, Kozak CA, Engelman AN, Neil J, Roth MJ. Disrupting MLV integrase:BET protein interaction biases integration into quiescent chromatin and delays but does not eliminate tumor activation in a MYC/Runx2 mouse model. PLoS Pathog 2019; 15:e1008154. [PMID: 31815961 PMCID: PMC6974304 DOI: 10.1371/journal.ppat.1008154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/21/2020] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
Murine leukemia virus (MLV) integrase (IN) lacking the C-terminal tail peptide (TP) loses its interaction with the host bromodomain and extraterminal (BET) proteins and displays decreased integration at promoter/enhancers and transcriptional start sites/CpG islands. MLV lacking the IN TP via an altered open reading frame was used to infect tumorigenesis mouse model (MYC/Runx2) animals to observe integration patterns and phenotypic effects, but viral passage resulted in the restoration of the IN TP through small deletions. Mice subsequently infected with an MLV IN lacking the TP coding sequence (TP-) showed an improved median survival by 15 days compared to wild type (WT) MLV infection. Recombination with polytropic endogenous retrovirus (ERV), Pmv20, was identified in seven mice displaying both fast and slow tumorigenesis, highlighting the strong selection within the mouse to maintain the full-length IN protein. Mapping the genomic locations of MLV in tumors from an infected mouse with no observed recombination with ERVs, TP-16, showed fewer integrations at TSS and CpG islands, compared to integrations observed in WT tumors. However, this mouse succumbed to the tumor in relatively rapid fashion (34 days). Analysis of the top copy number integrants in the TP-16 tumor revealed their proximity to known MLV common insertion site genes while maintaining the MLV IN TP- genotype. Furthermore, integration mapping in K562 cells revealed an insertion preference of MLV IN TP- within chromatin profile states associated with weakly transcribed heterochromatin with fewer integrations at histone marks associated with BET proteins (H3K4me1/2/3, and H3K27Ac). While MLV IN TP- showed a decreased overall rate of tumorigenesis compared to WT virus in the MYC/Runx2 model, MLV integration still occurred at regions associated with oncogenic driver genes independently from the influence of BET proteins, either stochastically or through trans-complementation by functional endogenous Gag-Pol protein.
Collapse
Affiliation(s)
- Lorenz Loyola
- Rutgers-Robert Wood Johnson Medical School, Dept of Pharmacology, Piscataway, New Jersey, United States of America
| | - Vasudevan Achuthan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Medical School, Department of Medicine, Boston, Massachusetts, United States of America
| | - Kathryn Gilroy
- Beatson Institute for Cancer Research, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gillian Borland
- MRC Univ. of Glasgow Centre for Virus Research, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anna Kilbey
- MRC Univ. of Glasgow Centre for Virus Research, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Nancy Mackay
- MRC Univ. of Glasgow Centre for Virus Research, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Margaret Bell
- Univ. of Glasgow School of Veterinary Medicine, Department of Veterinary Pathology Bearsden, United Kingdom
| | - Jodie Hay
- MRC Univ. of Glasgow Centre for Virus Research, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sriram Aiyer
- Rutgers-Robert Wood Johnson Medical School, Dept of Pharmacology, Piscataway, New Jersey, United States of America
| | - Dylan Fingerman
- Rutgers-Robert Wood Johnson Medical School, Dept of Pharmacology, Piscataway, New Jersey, United States of America
| | - Rodrigo A. Villanueva
- Rutgers-Robert Wood Johnson Medical School, Dept of Pharmacology, Piscataway, New Jersey, United States of America
| | - Ewan Cameron
- Univ. of Glasgow School of Veterinary Medicine, Department of Veterinary Pathology Bearsden, United Kingdom
| | | | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Medical School, Department of Medicine, Boston, Massachusetts, United States of America
| | - James Neil
- MRC Univ. of Glasgow Centre for Virus Research, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Monica J. Roth
- Rutgers-Robert Wood Johnson Medical School, Dept of Pharmacology, Piscataway, New Jersey, United States of America
| |
Collapse
|
3
|
Tang X, Zhu Y, Baker SL, Bowler MW, Chen BJ, Chen C, Hogg JR, Goff SP, Song H. Structural basis of suppression of host translation termination by Moloney Murine Leukemia Virus. Nat Commun 2016; 7:12070. [PMID: 27329342 PMCID: PMC4917968 DOI: 10.1038/ncomms12070] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/25/2016] [Indexed: 01/24/2023] Open
Abstract
Retroviral reverse transcriptase (RT) of Moloney murine leukemia virus (MoMLV) is expressed in the form of a large Gag–Pol precursor protein by suppression of translational termination in which the maximal efficiency of stop codon read-through depends on the interaction between MoMLV RT and peptidyl release factor 1 (eRF1). Here, we report the crystal structure of MoMLV RT in complex with eRF1. The MoMLV RT interacts with the C-terminal domain of eRF1 via its RNase H domain to sterically occlude the binding of peptidyl release factor 3 (eRF3) to eRF1. Promotion of read-through by MoMLV RNase H prevents nonsense-mediated mRNA decay (NMD) of mRNAs. Comparison of our structure with that of HIV RT explains why HIV RT cannot interact with eRF1. Our results provide a mechanistic view of how MoMLV manipulates the host translation termination machinery for the synthesis of its own proteins. Retroviral reverse transcriptase from Moloney Murine Leukemia Virus (MoMLV) requires interaction with peptidyl release factor 1. Here, the authors report the crystal structure of this complex, and provide insights into how MoMLV uses the host translation machinery to synthesize its own proteins.
Collapse
Affiliation(s)
- Xuhua Tang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Yiping Zhu
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1310C, 701 West 168th Street, New York, New York 10032, USA.,Howard Hughes Medical Institute, Columbia University, HHSC 1310C, 701 West 168th Street, New York, NY 10032, USA
| | - Stacey L Baker
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Bethesda, Maryland 20892, USA
| | - Matthew W Bowler
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, Grenoble F-38042, France.,Unit of Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS 90181, Grenoble F-38042, France
| | - Benjamin Jieming Chen
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Chen Chen
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - J Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Bethesda, Maryland 20892, USA
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1310C, 701 West 168th Street, New York, New York 10032, USA.,Howard Hughes Medical Institute, Columbia University, HHSC 1310C, 701 West 168th Street, New York, NY 10032, USA
| | - Haiwei Song
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.,Life Sciences Institute, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, China.,Department of Biochemistry, National University of Singapore, 14 Science Drive, Singapore 117543, Singapore
| |
Collapse
|
4
|
Aiyer S, Rossi P, Malani N, Schneider WM, Chandar A, Bushman FD, Montelione GT, Roth MJ. Structural and sequencing analysis of local target DNA recognition by MLV integrase. Nucleic Acids Res 2015; 43:5647-63. [PMID: 25969444 PMCID: PMC4477651 DOI: 10.1093/nar/gkv410] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 04/16/2015] [Indexed: 01/01/2023] Open
Abstract
Target-site selection by retroviral integrase (IN) proteins profoundly affects viral pathogenesis. We describe the solution nuclear magnetic resonance structure of the Moloney murine leukemia virus IN (M-MLV) C-terminal domain (CTD) and a structural homology model of the catalytic core domain (CCD). In solution, the isolated MLV IN CTD adopts an SH3 domain fold flanked by a C-terminal unstructured tail. We generated a concordant MLV IN CCD structural model using SWISS-MODEL, MMM-tree and I-TASSER. Using the X-ray crystal structure of the prototype foamy virus IN target capture complex together with our MLV domain structures, residues within the CCD α2 helical region and the CTD β1-β2 loop were predicted to bind target DNA. The role of these residues was analyzed in vivo through point mutants and motif interchanges. Viable viruses with substitutions at the IN CCD α2 helical region and the CTD β1-β2 loop were tested for effects on integration target site selection. Next-generation sequencing and analysis of integration target sequences indicate that the CCD α2 helical region, in particular P187, interacts with the sequences distal to the scissile bonds whereas the CTD β1-β2 loop binds to residues proximal to it. These findings validate our structural model and disclose IN-DNA interactions relevant to target site selection.
Collapse
Affiliation(s)
- Sriram Aiyer
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Paolo Rossi
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium (NESG), Rutgers University, Piscataway, NJ 08854, USA
| | - Nirav Malani
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William M Schneider
- Department of Biochemistry, Robert Wood Johnson Medical School, UMDNJ, Piscataway, NJ 08854, USA
| | - Ashwin Chandar
- Department of Biochemistry, Robert Wood Johnson Medical School, UMDNJ, Piscataway, NJ 08854, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gaetano T Montelione
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium (NESG), Rutgers University, Piscataway, NJ 08854, USA Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Monica J Roth
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
5
|
Kvaratskhelia M, Sharma A, Larue RC, Serrao E, Engelman A. Molecular mechanisms of retroviral integration site selection. Nucleic Acids Res 2014; 42:10209-25. [PMID: 25147212 PMCID: PMC4176367 DOI: 10.1093/nar/gku769] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Retroviral replication proceeds through an obligate integrated DNA provirus, making retroviral vectors attractive vehicles for human gene-therapy. Though most of the host cell genome is available for integration, the process of integration site selection is not random. Retroviruses differ in their choice of chromatin-associated features and also prefer particular nucleotide sequences at the point of insertion. Lentiviruses including HIV-1 preferentially integrate within the bodies of active genes, whereas the prototypical gammaretrovirus Moloney murine leukemia virus (MoMLV) favors strong enhancers and active gene promoter regions. Integration is catalyzed by the viral integrase protein, and recent research has demonstrated that HIV-1 and MoMLV targeting preferences are in large part guided by integrase-interacting host factors (LEDGF/p75 for HIV-1 and BET proteins for MoMLV) that tether viral intasomes to chromatin. In each case, the selectivity of epigenetic marks on histones recognized by the protein tether helps to determine the integration distribution. In contrast, nucleotide preferences at integration sites seem to be governed by the ability for the integrase protein to locally bend the DNA duplex for pairwise insertion of the viral DNA ends. We discuss approaches to alter integration site selection that could potentially improve the safety of retroviral vectors in the clinic.
Collapse
Affiliation(s)
- Mamuka Kvaratskhelia
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Amit Sharma
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Ross C Larue
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Erik Serrao
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Alan Engelman
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
6
|
Aiyer S, Swapna GVT, Malani N, Aramini JM, Schneider WM, Plumb MR, Ghanem M, Larue RC, Sharma A, Studamire B, Kvaratskhelia M, Bushman FD, Montelione GT, Roth MJ. Altering murine leukemia virus integration through disruption of the integrase and BET protein family interaction. Nucleic Acids Res 2014; 42:5917-28. [PMID: 24623816 PMCID: PMC4027182 DOI: 10.1093/nar/gku175] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/12/2014] [Accepted: 02/12/2014] [Indexed: 12/17/2022] Open
Abstract
We report alterations to the murine leukemia virus (MLV) integrase (IN) protein that successfully result in decreasing its integration frequency at transcription start sites and CpG islands, thereby reducing the potential for insertional activation. The host bromo and extraterminal (BET) proteins Brd2, 3 and 4 interact with the MLV IN protein primarily through the BET protein ET domain. Using solution NMR, protein interaction studies, and next generation sequencing, we show that the C-terminal tail peptide region of MLV IN is important for the interaction with BET proteins and that disruption of this interaction through truncation mutations affects the global targeting profile of MLV vectors. The use of the unstructured tails of gammaretroviral INs to direct association with complexes at active promoters parallels that used by histones and RNA polymerase II. Viruses bearing MLV IN C-terminal truncations can provide new avenues to improve the safety profile of gammaretroviral vectors for human gene therapy.
Collapse
Affiliation(s)
- Sriram Aiyer
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - G V T Swapna
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, 679 Hoes Lane West Piscataway, NJ 08854, USA
| | - Nirav Malani
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | - James M Aramini
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, 679 Hoes Lane West Piscataway, NJ 08854, USA
| | - William M Schneider
- Department of Biochemistry, Robert Wood Johnson Medical School, UMDNJ, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Matthew R Plumb
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, 484 W. 12th Ave., 508 Riffe Building, Columbus, OH 43210, USA
| | - Mustafa Ghanem
- Department of Biology, Brooklyn College, 417 Ingersoll Extension and the Graduate Center of the City University of New York, Brooklyn, NY 11210, USA
| | - Ross C Larue
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, 484 W. 12th Ave., 508 Riffe Building, Columbus, OH 43210, USA
| | - Amit Sharma
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, 484 W. 12th Ave., 508 Riffe Building, Columbus, OH 43210, USA
| | - Barbara Studamire
- Department of Biology, Brooklyn College, 417 Ingersoll Extension and the Graduate Center of the City University of New York, Brooklyn, NY 11210, USA
| | - Mamuka Kvaratskhelia
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, 484 W. 12th Ave., 508 Riffe Building, Columbus, OH 43210, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Gaetano T Montelione
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, 679 Hoes Lane West Piscataway, NJ 08854, USA Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Monica J Roth
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, 675 Hoes Lane, Piscataway, NJ 08854, USA Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| |
Collapse
|
7
|
Abstract
RNase H (retroviral ribonuclease H) cleaves the phosphate backbone of the RNA template within an RNA/DNA hybrid to complete the synthesis of double-stranded viral DNA. In the present study we have determined the complete structure of the RNase H domain from XMRV (xenotropic murine leukaemia virus-related virus) RT (reverse transcriptase). The basic protrusion motif of the XMRV RNase H domain is folded as a short helix and an adjacent highly bent loop. Structural superposition and subsequent mutagenesis experiments suggest that the basic protrusion motif plays a role in direct binding to the major groove in RNA/DNA hybrid, as well as in establishing the co-ordination among modules in RT necessary for proper function.
Collapse
|
8
|
Nowak E, Potrzebowski W, Konarev PV, Rausch JW, Bona MK, Svergun DI, Bujnicki JM, Le Grice SFJ, Nowotny M. Structural analysis of monomeric retroviral reverse transcriptase in complex with an RNA/DNA hybrid. Nucleic Acids Res 2013; 41:3874-87. [PMID: 23382176 PMCID: PMC3616737 DOI: 10.1093/nar/gkt053] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/11/2013] [Accepted: 01/11/2013] [Indexed: 11/19/2022] Open
Abstract
A key step in proliferation of retroviruses is the conversion of their RNA genome to double-stranded DNA, a process catalysed by multifunctional reverse transcriptases (RTs). Dimeric and monomeric RTs have been described, the latter exemplified by the enzyme of Moloney murine leukaemia virus. However, structural information is lacking that describes the substrate binding mechanism for a monomeric RT. We report here the first crystal structure of a complex between an RNA/DNA hybrid substrate and polymerase-connection fragment of the single-subunit RT from xenotropic murine leukaemia virus-related virus, a close relative of Moloney murine leukaemia virus. A comparison with p66/p51 human immunodeficiency virus-1 RT shows that substrate binding around the polymerase active site is conserved but differs in the thumb and connection subdomains. Small-angle X-ray scattering was used to model full-length xenotropic murine leukaemia virus-related virus RT, demonstrating that its mobile RNase H domain becomes ordered in the presence of a substrate-a key difference between monomeric and dimeric RTs.
Collapse
Affiliation(s)
- Elżbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Wojciech Potrzebowski
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Petr V. Konarev
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Jason W. Rausch
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Marion K. Bona
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Dmitri I. Svergun
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Janusz M. Bujnicki
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Stuart F. J. Le Grice
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
9
|
Transcription factor YY1 interacts with retroviral integrases and facilitates integration of moloney murine leukemia virus cDNA into the host chromosomes. J Virol 2010; 84:8250-61. [PMID: 20519390 DOI: 10.1128/jvi.02681-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviral integrases associate during the early viral life cycle with preintegration complexes that catalyze the integration of reverse-transcribed viral cDNA into the host chromosomes. Several cellular and viral proteins have been reported to be incorporated in the preintegration complex. This study demonstrates that transcription factor Yin Yang 1 binds to Moloney murine leukemia virus, human immunodeficiency virus type 1, and avian sarcoma virus integrases. The results of coimmunoprecipitation and in vitro pulldown assays revealed that Yin Yang 1 interacted with the catalytic core and C-terminal domains of Moloney murine leukemia virus and human immunodeficiency virus type 1 integrases, while the transcriptional repression and DNA-binding domains of the Yin Yang 1 molecule interacted with Moloney murine leukemia virus integrase. Immunoprecipitation of the cytoplasmic fraction of virus-infected cells followed by Southern blotting and chromatin immunoprecipitation demonstrated that Yin Yang 1 associated with Moloney murine leukemia virus cDNA in virus-infected cells. Yin Yang 1 enhanced the in vitro integrase activity of Moloney murine leukemia virus, human immunodeficiency virus type 1, and avian sarcoma virus integrases. Furthermore, knockdown of Yin Yang 1 in host cells by small interfering RNA reduced Moloney murine leukemia virus cDNA integration in vivo, although viral cDNA synthesis was increased, suggesting that Yin Yang 1 facilitates integration events in vivo. Taking these results together, Yin Yang 1 appears to be involved in integration events during the early viral life cycle, possibly as an enhancer of integration.
Collapse
|
10
|
Abstract
Retroviral particles assemble a few thousand units of the Gag polyproteins. Proteolytic cleavage mediated by the retroviral protease forms the bioactive retroviral protein subunits before cell entry. We hypothesized that this process could be exploited for targeted, transient, and dose-controlled transduction of nonretroviral proteins into cultured cells. We demonstrate that gammaretroviral particles tolerate the incorporation of foreign protein at several positions of their Gag or Gag-Pol precursors. Receptor-mediated and thus potentially cell-specific uptake of engineered particles occurred within minutes after cell contact. Dose and kinetics of nonretroviral protein delivery were dependent upon the location within the polyprotein precursor. Proteins containing nuclear localization signals were incorporated into retroviral particles, and the proteins of interest were released from the precursor by the retroviral protease, recognizing engineered target sites. In contrast to integration-defective lentiviral vectors, protein transduction by retroviral polyprotein precursors was completely transient, as protein transducing retrovirus-like particles could be produced that did not transduce genes into target cells. Alternatively, bifunctional protein-delivering particle preparations were generated that maintained their ability to serve as vectors for retroviral transgenes. We show the potential of this approach for targeted genome engineering of induced pluripotent stem cells by delivering the site-specific DNA recombinase, Flp. Protein transduction of Flp after proteolytic release from the matrix position of Gag allowed excision of a lentivirally transduced cassette that concomitantly expresses the canonical reprogramming transcription factors (Oct4, Klf4, Sox2, c-Myc) and a fluorescent marker gene, thus generating induced pluripotent stem cells that are free of lentivirally transduced reprogramming genes.
Collapse
|
11
|
Kessl JJ, McKee CJ, Eidahl JO, Shkriabai N, Katz A, Kvaratskhelia M. HIV-1 Integrase-DNA Recognition Mechanisms. Viruses 2009; 1:713-36. [PMID: 21994566 PMCID: PMC3185514 DOI: 10.3390/v1030713] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 01/24/2023] Open
Abstract
Integration of a reverse transcribed DNA copy of the HIV viral genome into the host chromosome is essential for virus replication. This process is catalyzed by the virally encoded protein integrase. The catalytic activities, which involve DNA cutting and joining steps, have been recapitulated in vitro using recombinant integrase and synthetic DNA substrates. Biochemical and biophysical studies of these model reactions have been pivotal in advancing our understanding of mechanistic details for how IN interacts with viral and target DNAs, and are the focus of the present review.
Collapse
Affiliation(s)
- Jacques J Kessl
- Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (J.J.K.); (C.J.M.); (J.O.E.), (N.S.); (A.K.)
| | | | | | | | | | | |
Collapse
|
12
|
Belshan M, Schweitzer CJ, Donnellan MR, Lu R, Engelman A. In vivo biotinylation and capture of HIV-1 matrix and integrase proteins. J Virol Methods 2009; 159:178-84. [PMID: 19490971 PMCID: PMC2691866 DOI: 10.1016/j.jviromet.2009.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 03/09/2009] [Accepted: 03/16/2009] [Indexed: 11/29/2022]
Abstract
This report describes the adaptation of the biotin ligase BirA-biotin acceptor sequence (BAS) labeling system to biotinylate specific human immunodeficiency virus 1 (HIV-1) proteins in vivo. Two HIV-1 clones were constructed, with the BAS introduced into the matrix region of gag or the integrase region of pol. Specific biotinylation of target proteins in virions was observed when molecular clones were co-expressed with BirA. Both BAS-containing viruses propagated in SupT1 T-cells although replication of the integrase clone was delayed. Further studies demonstrated that the integrase insertion yielded an approximate 40% reduction in single-round infectivity as assessed on MAGI-5 indicator cells, as well as in the in vitro integration activity of preintegration complexes extracted from acutely infected C8166-45 T-cells. Biotinylation of the integrase BAS tag furthermore rendered this virus non-infectious. The matrix viral clone by contrast displayed wild-type behavior under all conditions tested. These results therefore establish a system whereby biotinylated matrix protein in the context of replication-competent virus could be used to label and capture viral protein complexes in vivo.
Collapse
Affiliation(s)
- Michael Belshan
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, United States.
| | | | | | | | | |
Collapse
|
13
|
Fukunaga Y, Svoboda RA, Cerny RL, Johnson KR, Wheelock MJ. Expression artifact with retroviral vectors based on pBMN. Anal Biochem 2009; 395:49-53. [PMID: 19602420 DOI: 10.1016/j.ab.2009.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 07/01/2009] [Accepted: 07/09/2009] [Indexed: 11/25/2022]
Abstract
While characterizing various splice forms of p120 catenin, we observed what appeared to be a novel posttranslational modification of p120, resulting in a higher molecular weight form that was dependent on the splicing pattern. Further investigation revealed the higher molecular weight form to be a fusion protein between sequences encoded by the retroviral vector and p120. We found that the publicly available sequence of the vector we used does not agree with the experimental sequence. We caution other investigators to be aware of this potential artifact.
Collapse
Affiliation(s)
- Yoshitaka Fukunaga
- Department of Oral Biology, University of Nebraska Medical Center, Omaha, 68198, USA
| | | | | | | | | |
Collapse
|
14
|
Champoux JJ, Schultz SJ. Ribonuclease H: properties, substrate specificity and roles in retroviral reverse transcription. FEBS J 2009; 276:1506-16. [PMID: 19228195 DOI: 10.1111/j.1742-4658.2009.06909.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Retroviral reverse transcriptases possess both a DNA polymerase and an RNase H activity. The linkage with the DNA polymerase activity endows the retroviral RNases H with unique properties not found in the cellular counterparts. In addition to the typical endonuclease activity on a DNA/RNA hybrid, cleavage by the retroviral enzymes is also directed by both DNA 3' recessed and RNA 5' recessed ends, and by certain nucleotide sequence preferences in the vicinity of the cleavage site. This spectrum of specificities enables retroviral RNases H to carry out a series of cleavage reactions during reverse transcription that degrade the viral RNA genome after minus-strand synthesis, precisely generate the primer for the initiation of plus strands, facilitate the initiation of plus-strand synthesis and remove both plus- and minus-strand primers after they have been extended.
Collapse
Affiliation(s)
- James J Champoux
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
15
|
Dolan J, Chen A, Weber IT, Harrison RW, Leis J. Defining the DNA substrate binding sites on HIV-1 integrase. J Mol Biol 2008; 385:568-79. [PMID: 19014951 DOI: 10.1016/j.jmb.2008.10.083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 10/24/2008] [Accepted: 10/28/2008] [Indexed: 10/21/2022]
Abstract
A tetramer model for human immunodeficiency virus type 1 (HIV-1) integrase (IN) with DNA representing long terminal repeat (LTR) termini was previously assembled to predict the IN residues that interact with the LTR termini; these predictions were experimentally verified for nine amino acid residues [Chen, A., Weber, I. T., Harrison, R. W. & Leis, J. (2006). Identification of amino acids in HIV-1 and avian sarcoma virus integrase subsites required for specific recognition of the long terminal repeat ends. J. Biol. Chem., 281, 4173-4182]. In a similar strategy, the unique amino acids found in avian sarcoma virus IN, rather than HIV-1 or Mason-Pfizer monkey virus IN, were substituted into the structurally related positions of HIV-1 IN. Substitutions of six additional residues (Q44, L68, E69, D229, S230, and D253) showed changes in the 3' processing specificity of the enzyme, verifying their predicted interaction with the LTR DNA. The newly identified residues extend interactions along a 16-bp length of the LTR termini and are consistent with known LTR DNA/HIV-1 IN cross-links. The tetramer model for HIV-1 IN with LTR termini was modified to include two IN binding domains for lens-epithelium-derived growth factor/p75. The target DNA was predicted to bind in a surface trench perpendicular to the plane of the LTR DNA binding sites of HIV-1 IN and extending alongside lens-epithelium-derived growth factor. This hypothesis is supported by the in vitro activity phenotype of HIV-1 IN mutant, with a K219S substitution showing loss in strand transfer activity while maintaining 3' processing on an HIV-1 substrate. Mutations at seven other residues reported in the literature have the same phenotype, and all eight residues align along the length of the putative target DNA binding trench.
Collapse
Affiliation(s)
- James Dolan
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
16
|
Effects of varying the spacing within the D,D-35-E motif in the catalytic region of retroviral integrase. Virology 2008; 379:223-33. [DOI: 10.1016/j.virol.2008.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 03/05/2008] [Accepted: 07/01/2008] [Indexed: 11/20/2022]
|
17
|
Coté ML, Roth MJ. Murine leukemia virus reverse transcriptase: structural comparison with HIV-1 reverse transcriptase. Virus Res 2008; 134:186-202. [PMID: 18294720 DOI: 10.1016/j.virusres.2008.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 12/31/2007] [Accepted: 01/02/2008] [Indexed: 10/22/2022]
Abstract
Recent X-ray crystal structure determinations of Moloney murine leukemia virus reverse transcriptase (MoMLV RT) have allowed for more accurate structure/function comparisons to HIV-1 RT than were formerly possible. Previous biochemical studies of MoMLV RT in conjunction with knowledge of sequence homologies to HIV-1 RT and overall fold similarities to RTs in general, provided a foundation upon which to build. In addition, numerous crystal structures of the MoMLV RT fingers/palm subdomain had also shed light on one of the critical functions of the enzyme, specifically polymerization. Now in the advent of new structural information, more intricate examination of MoMLV RT in its entirety can be realized, and thus the comparisons with HIV-1 RT may be more critically elucidated. Here, we will review the similarities and differences between MoMLV RT and HIV-1 RT via structural analysis, and propose working models for the MoMLV RT based upon that information.
Collapse
Affiliation(s)
- Marie L Coté
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, United States
| | | |
Collapse
|
18
|
Schultz SJ, Champoux JJ. RNase H activity: structure, specificity, and function in reverse transcription. Virus Res 2008; 134:86-103. [PMID: 18261820 DOI: 10.1016/j.virusres.2007.12.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 12/13/2007] [Accepted: 12/13/2007] [Indexed: 01/20/2023]
Abstract
This review compares the well-studied RNase H activities of human immunodeficiency virus, type 1 (HIV-1) and Moloney murine leukemia virus (MoMLV) reverse transcriptases. The RNase H domains of HIV-1 and MoMLV are structurally very similar, with functions assigned to conserved subregions like the RNase H primer grip and the connection subdomain, as well as to distinct features like the C-helix and loop in MoMLV RNase H. Like cellular RNases H, catalysis by the retroviral enzymes appears to involve a two-metal ion mechanism. Unlike cellular RNases H, the retroviral RNases H display three different modes of cleavage: internal, DNA 3' end-directed, and RNA 5' end-directed. All three modes of cleavage appear to have roles in reverse transcription. Nucleotide sequence is an important determinant of cleavage specificity with both enzymes exhibiting a preference for specific nucleotides at discrete positions flanking an internal cleavage site as well as during tRNA primer removal and plus-strand primer generation. RNA 5' end-directed and DNA 3' end-directed cleavages show similar sequence preferences at the positions closest to a cleavage site. A model for how RNase H selects cleavage sites is presented that incorporates both sequence preferences and the concept of a defined window for allowable cleavage from a recessed end. Finally, the RNase H activity of HIV-1 is considered as a target for anti-virals as well as a participant in drug resistance.
Collapse
Affiliation(s)
- Sharon J Schultz
- Department of Microbiology, School of Medicine, Box 357242, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
19
|
Zhao Z, McKee CJ, Kessl JJ, Santos WL, Daigle JE, Engelman A, Verdine G, Kvaratskhelia M. Subunit-specific protein footprinting reveals significant structural rearrangements and a role for N-terminal Lys-14 of HIV-1 Integrase during viral DNA binding. J Biol Chem 2007; 283:5632-41. [PMID: 18093980 DOI: 10.1074/jbc.m705241200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To identify functional contacts between HIV-1 integrase (IN) and its viral DNA substrate, we devised a new experimental strategy combining the following two methodologies. First, disulfide-mediated cross-linking was used to site-specifically link select core and C-terminal domain amino acids to respective positions in viral DNA. Next, surface topologies of free IN and IN-DNA complexes were compared using Lys- and Arg-selective small chemical modifiers and mass spectrometric analysis. This approach enabled us to dissect specific contacts made by different monomers within the multimeric complex. The foot-printing studies for the first time revealed the importance of a specific N-terminal domain residue, Lys-14, in viral DNA binding. In addition, a DNA-induced conformational change involving the connection between the core and C-terminal domains was observed. Site-directed mutagenesis experiments confirmed the importance of the identified contacts for recombinant IN activities and virus infection. These new findings provided major constraints, enabling us to identify the viral DNA binding channel in the active full-length IN multimer. The experimental approach described here has general application to mapping interactions within functional nucleoprotein complexes.
Collapse
Affiliation(s)
- Zhuojun Zhao
- Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Derse D, Crise B, Li Y, Princler G, Lum N, Stewart C, McGrath CF, Hughes SH, Munroe DJ, Wu X. Human T-cell leukemia virus type 1 integration target sites in the human genome: comparison with those of other retroviruses. J Virol 2007; 81:6731-41. [PMID: 17409138 PMCID: PMC1900082 DOI: 10.1128/jvi.02752-06] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Retroviral integration into the host genome is not entirely random, and integration site preferences vary among different retroviruses. Human immunodeficiency virus (HIV) prefers to integrate within active genes, whereas murine leukemia virus (MLV) prefers to integrate near transcription start sites and CpG islands. On the other hand, integration of avian sarcoma-leukosis virus (ASLV) shows little preference either for genes, transcription start sites, or CpG islands. While host cellular factors play important roles in target site selection, the viral integrase is probably the major viral determinant. It is reasonable to hypothesize that retroviruses with similar integrases have similar preferences for target site selection. Although integration profiles are well defined for members of the lentivirus, spumaretrovirus, alpharetrovirus, and gammaretrovirus genera, no members of the deltaretroviruses, for example, human T-cell leukemia virus type 1 (HTLV-1), have been evaluated. We have mapped 541 HTLV-1 integration sites in human HeLa cells and show that HTLV-1, like ASLV, does not specifically target transcription units and transcription start sites. Comparing the integration sites of HTLV-1 with those of ASLV, HIV, simian immunodeficiency virus, MLV, and foamy virus, we show that global and local integration site preferences correlate with the sequence/structure of virus-encoded integrases, supporting the idea that integrase is the major determinant of retroviral integration site selection. Our results suggest that the global integration profiles of other retroviruses could be predicted from phylogenetic comparisons of the integrase proteins. Our results show that retroviruses that engender different insertional mutagenesis risks can have similar integration profiles.
Collapse
Affiliation(s)
- David Derse
- HIV Drug Resistance Program, Laboratory of Molecular Technology, SAIC-Frederick, Inc., NCI-Frederick, 915 Toll House Avenue, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|