1
|
Molecular Determinants of Human Rhinovirus Infection, Assembly, and Conformational Stability at Capsid Protein Interfaces. J Virol 2022; 96:e0084022. [PMID: 36374110 PMCID: PMC9749468 DOI: 10.1128/jvi.00840-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Human rhinovirus (HRV), one of the most frequent human pathogens, is the major causative agent of common colds. HRVs also cause or exacerbate severe respiratory diseases, such as asthma or chronic obstructive pulmonary disease. Despite the biomedical and socioeconomic importance of this virus, no anti-HRV vaccines or drugs are available yet. Protein-protein interfaces in virus capsids have increasingly been recognized as promising virus-specific targets for the development of antiviral drugs. However, the specific structural elements and residues responsible for the biological functions of these extended capsid regions are largely unknown. In this study, we performed a thorough mutational analysis to determine which particular residues along the capsid interpentamer interfaces are relevant to HRV infection as well as the stage(s) in the viral cycle in which they are involved. The effect on the virion infectivity of the individual mutation to alanine of 32 interfacial residues that, together, removed most of the interpentamer interactions was analyzed. Then, a representative sample that included many of those 32 single mutants were tested for capsid and virion assembly as well as virion conformational stability. The results indicate that most of the interfacial residues, and the interactions they establish, are biologically relevant, largely because of their important roles in virion assembly and/or stability. The HRV interpentamer interface is revealed as an atypical protein-protein interface, in which infectivity-determining residues are distributed at a high density along the entire interface. Implications for a better understanding of the relationship between the molecular structure and function of HRV and the development of novel capsid interface-binding anti-HRV agents are discussed. IMPORTANCE The rising concern about the serious medical and socioeconomic consequences of respiratory infections by HRV has elicited a renewed interest in the development of anti-HRV drugs. The conversion into effective drugs of compounds identified via screening, as well as antiviral drug design, rely on the acquisition of fundamental knowledge about the targeted viral elements and their roles during specific steps of the infectious cycle. The results of this study provide a detailed view on structure-function relationships in a viral capsid protein-protein interface, a promising specific target for antiviral intervention. The high density and scattering of the interfacial residues found to be involved in HRV assembly and/or stability support the possibility that any compound designed to bind any particular site at the interface will inhibit infection by interfering with virion morphogenesis or stabilization of the functional virion conformation.
Collapse
|
2
|
Caridi F, Cañas-Arranz R, Vázquez-Calvo Á, de León P, Calderón KI, Domingo E, Sobrino F, Martín-Acebes MA. Adaptive value of foot-and-mouth disease virus capsid substitutions with opposite effects on particle acid stability. Sci Rep 2021; 11:23494. [PMID: 34873184 PMCID: PMC8648728 DOI: 10.1038/s41598-021-02757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/15/2021] [Indexed: 11/09/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is a picornavirus that exhibits an extremely acid sensitive capsid. This acid lability is directly related to its mechanism of uncoating triggered by acidification inside cellular endosomes. Using a collection of FMDV mutants we have systematically analyzed the relationship between acid stability and the requirement for acidic endosomes using ammonium chloride (NH4Cl), an inhibitor of endosome acidification. A FMDV mutant carrying two substitutions with opposite effects on acid-stability (VP3 A116V that reduces acid stability, and VP1 N17D that increases acid stability) displayed a rapid shift towards acid lability that resulted in increased resistance to NH4Cl as well as to concanamicyn A, a different lysosomotropic agent. This resistance could be explained by a higher ability of the mutant populations to produce NH4Cl-resistant variants, as supported by their tendency to accumulate mutations related to NH4Cl-resistance that was higher than that of the WT populations. Competition experiments also indicated that the combination of both amino acid substitutions promoted an increase of viral fitness that likely contributed to NH4Cl resistance. This study provides novel evidences supporting that the combination of mutations in a viral capsid can result in compensatory effects that lead to fitness gain, and facilitate space to an inhibitor of acid-dependent uncoating. Thus, although drug-resistant variants usually exhibit a reduction in viral fitness, our results indicate that compensatory mutations that restore this reduction in fitness can promote emergence of resistance mutants.
Collapse
Affiliation(s)
- Flavia Caridi
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
| | | | | | - Patricia de León
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
| | | | - Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
| | - Francisco Sobrino
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain.
| | - Miguel A Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), 28040, Madrid, Spain
| |
Collapse
|
3
|
López-Argüello S, Rincón V, Rodríguez-Huete A, Martínez-Salas E, Belsham GJ, Valbuena A, Mateu MG. Thermostability of the Foot-and-Mouth Disease Virus Capsid Is Modulated by Lethal and Viability-Restoring Compensatory Amino Acid Substitutions. J Virol 2019; 93:e02293-18. [PMID: 30867300 PMCID: PMC6498042 DOI: 10.1128/jvi.02293-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/01/2019] [Indexed: 11/20/2022] Open
Abstract
Infection by viruses depends on a balance between capsid stability and dynamics. This study investigated biologically and biotechnologically relevant aspects of the relationship in foot-and-mouth disease virus (FMDV) between capsid structure and thermostability and between thermostability and infectivity. In the FMDV capsid, a substantial number of amino acid side chains at the interfaces between pentameric subunits are charged at neutral pH. Here a mutational analysis revealed that the essential role for virus infection of most of the 8 tested charged groups is not related to substantial changes in capsid protein expression or processing or in capsid assembly or stability against a thermally induced dissociation into pentamers. However, the positively charged side chains of R2018 and H3141, located at the interpentamer interfaces close to the capsid 2-fold symmetry axes, were found to be critical both for virus infectivity and for keeping the capsid in a state of weak thermostability. A charge-restoring substitution (N2019H) that was repeatedly fixed during amplification of viral genomes carrying deleterious mutations reverted both the lethal and capsid-stabilizing effects of the substitution H3141A, leading to a double mutant virus with close to normal infectivity and thermolability. H3141A and other thermostabilizing substitutions had no detectable effect on capsid resistance to acid-induced dissociation into pentamers. The results suggest that FMDV infectivity requires limited local stability around the 2-fold axes at the interpentamer interfaces of the capsid. The implications for the mechanism of genome uncoating in FMDV and the development of thermostabilized vaccines against foot-and-mouth disease are discussed.IMPORTANCE This study provides novel insights into the little-known structural determinants of the balance between thermal stability and instability in the capsid of foot-and-mouth disease virus and into the relationship between capsid stability and virus infectivity. The results provide new guidelines for the development of thermostabilized empty capsid-based recombinant vaccines against foot-and-mouth disease, one of the economically most important animal diseases worldwide.
Collapse
Affiliation(s)
- Silvia López-Argüello
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Verónica Rincón
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Alicia Rodríguez-Huete
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Graham J Belsham
- National Veterinary Institute, Technical University of Denmark, Kalvehave, Denmark
| | - Alejandro Valbuena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Mauricio G Mateu
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Bai XW, Bao HF, Li PH, Ma XQ, Sun P, Bai QF, Zhang M, Yuan H, Chen DD, Li K, Chen YL, Cao YM, Fu YF, Zhang J, Li D, Lu ZJ, Liu ZX, Luo JX. Engineering Responses to Amino Acid Substitutions in the VP0- and VP3-Coding Regions of PanAsia-1 Strains of Foot-and-Mouth Disease Virus Serotype O. J Virol 2019; 93:e02278-18. [PMID: 30700601 PMCID: PMC6430551 DOI: 10.1128/jvi.02278-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/15/2019] [Indexed: 12/05/2022] Open
Abstract
The presence of sequence divergence through adaptive mutations in the major capsid protein VP1, and also in VP0 (VP4 and VP2) and VP3, of foot-and-mouth disease virus (FMDV) is relevant to a broad range of viral characteristics. To explore the potential role of isolate-specific residues in the VP0 and VP3 coding regions of PanAsia-1 strains in genetic and phenotypic properties of FMDV, a series of recombinant full-length genomic clones were constructed using Cathay topotype infectious cDNA as the original backbone. The deleterious and compensatory effects of individual amino acid substitutions at positions 4008 and 3060 and in several different domains of VP2 illustrated that the chain-based spatial interaction patterns of VP1, VP2, and VP3 (VP1-3), as well as between the internal VP4 and the three external capsid proteins of FMDV, might contribute to the assembly of eventually viable viruses. The Y2079H site-directed mutants dramatically induced a decrease in plaque size on BHK-21 cells and viral pathogenicity in suckling mice. Remarkably, the 2079H-encoding viruses displayed a moderate increase in acid sensitivity correlated with NH4Cl resistance compared to the Y2079-encoding viruses. Interestingly, none of all the 16 rescued viruses were able to infect heparan sulfate-expressing CHO-K1 cells. However, viral infection in BHK-21 cells was facilitated by utilizing non-integrin-dependent, heparin-sensitive receptor(s) and replacements of four uncharged amino acids at position 3174 in VP3 of FMDV had no apparent influence on heparin affinity. These results provide particular insights into the correlation of evolutionary biology with genetic diversity in adapting populations of FMDV.IMPORTANCE The sequence variation within the capsid proteins occurs frequently in the infection of susceptible tissue cultures, reflecting the high levels of genetic diversity of FMDV. A systematic study for the functional significance of isolate-specific residues in VP0 and VP3 of FMDV PanAsia-1 strains suggested that the interaction of amino acid side chains between the N terminus of VP4 and several potential domains of VP1-3 had cascading effects on the viability and developmental characteristics of progeny viruses. Y2079H in VP0 of the indicated FMDVs could affect plaque size and pathogenicity, as well as acid sensitivity correlated with NH4Cl resistance, whereas there was no inevitable correlation in viral plaque and acid-sensitive phenotypes. The high affinity of non-integrin-dependent FMDVs for heparin might be explained by the differences in structures of heparan sulfate proteoglycans on the surfaces of different cell lines. These results may contribute to our understanding of the distinct phenotypic properties of FMDV in vitro and in vivo.
Collapse
Affiliation(s)
- Xing-Wen Bai
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Hui-Fang Bao
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Ping-Hua Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xue-Qing Ma
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Pu Sun
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Qi-Feng Bai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Meng Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Hong Yuan
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Dong-Dong Chen
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Kun Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Ying-Li Chen
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yi-Mei Cao
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yuan-Fang Fu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jing Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Dong Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zeng-Jun Lu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zai-Xin Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jian-Xun Luo
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
5
|
Yuan H, Li P, Ma X, Lu Z, Sun P, Bai X, Zhang J, Bao H, Cao Y, Li D, Fu Y, Chen Y, Bai Q, Zhang J, Liu Z. The pH stability of foot-and-mouth disease virus. Virol J 2017; 14:233. [PMID: 29183342 PMCID: PMC5706165 DOI: 10.1186/s12985-017-0897-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 11/15/2017] [Indexed: 01/13/2023] Open
Abstract
ᅟ This review summarized the molecular determinants of the acid stability of FMDV in order to explore the uncoating mechanism of FMDV and improve the acid stability of vaccines. Background The foot-and-mouth disease virus (FMDV) capsid is highly acid labile and tends to dissociate into pentameric subunits at acidic condition to release viral RNA for initiating virus replication. However, the acid stability of virus capsid is greatly required for the maintenance of intact virion during the process of virus culture and vaccine production. The conflict between the acid lability in vivo and acid stability in vitro of FMDV capsid promotes the selection of a series of amino acid substitutions which can confer resistance to acid-induced FMDV inactivation. In order to explore the uncoating activity of FMDV and enhance the acid stability of vaccines, we summarized the available works about the pH stability of FMDV. Main body of the abstract In this review, we analyzed the intrinsic reasons for the acid instability of FMDV from the structural and functional aspects. We also listed all substitutions obtained by different research methods and showed them in the partial capsid of FMDV. We found that a quadrangle region in the viral capsid was the place where a great many pH-sensitive residues were distributed. As the uncoating event of FMDV is dependent on the pH-sensitive amino acid residues in the capsid, this most pH-sensitive position indicates a potential candidate location for RNA delivery triggered by the acid-induced coat disassociation. Short conclusion This review provided an overview of the pH stability of FMDV. The study of pH stability of FMDV not only contributes to the exploration of molecule and mechanism information for FMDV uncoating, but also enlightens the development of FMDV vaccines, including the traditionally inactivated vaccines and the new VLP (virus-like particle) vaccines.
Collapse
Affiliation(s)
- Hong Yuan
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Pinghua Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China.
| | - Xueqing Ma
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Zengjun Lu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Pu Sun
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Xingwen Bai
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Jing Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Huifang Bao
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Yimei Cao
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Dong Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Yuanfang Fu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Yingli Chen
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China
| | - Qifeng Bai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730046, People's Republic of China
| | - Jie Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China.
| | - Zaixin Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou, Gansu, 730046, People's Republic of China.
| |
Collapse
|
6
|
Castagnone-Sereno P, Mulet K, Iachia C. Tracking changes in life-history traits related to unnecessary virulence in a plant-parasitic nematode. Ecol Evol 2015; 5:3677-86. [PMID: 26380696 PMCID: PMC4567871 DOI: 10.1002/ece3.1643] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 12/19/2022] Open
Abstract
Evaluating trade-offs in life-history traits of plant pathogens is essential to understand the evolution and epidemiology of diseases. In particular, virulence costs when the corresponding host resistance gene is lacking play a major role in the adaptive biology of pathogens and contribute to the maintenance of their genetic diversity. Here, we investigated whether life-history traits directly linked to the establishment of plant-nematode interactions, that is, ability to locate and move toward the roots of the host plant, and to invade roots and develop into mature females, are affected in Meloidogyne incognita lines virulent against the tomato Mi-1.2 resistance gene. Virulent and avirulent near-isogenic lines only differing in their capacity to reproduce or not on resistant tomatoes were compared in single inoculation or pairwise competition experiments. Data highlighted (1) a global lack of trade-off in traits associated with unnecessary virulence with respect to the nematode ability to successfully infest plant roots and (2) variability in these traits when the genetic background of the nematode is considered irrespective of its (a)virulence status. These data suggest that the variation detected here is independent from the adaptation of M. incognita to host resistance, but rather reflects some genetic polymorphism in this asexual organism.
Collapse
Affiliation(s)
- Philippe Castagnone-Sereno
- UMR1355 Institut Sophia Agrobiotech, INRA 06900, Sophia Antipolis, France ; UMR7254 Institut Sophia Agrobiotech, University of Nice Sophia Antipolis 06900, Sophia Antipolis, France ; UMR7254 Institut Sophia Agrobiotech, CNRS 06900, Sophia Antipolis, France
| | - Karine Mulet
- UMR1355 Institut Sophia Agrobiotech, INRA 06900, Sophia Antipolis, France ; UMR7254 Institut Sophia Agrobiotech, University of Nice Sophia Antipolis 06900, Sophia Antipolis, France ; UMR7254 Institut Sophia Agrobiotech, CNRS 06900, Sophia Antipolis, France
| | - Cathy Iachia
- UMR1355 Institut Sophia Agrobiotech, INRA 06900, Sophia Antipolis, France ; UMR7254 Institut Sophia Agrobiotech, University of Nice Sophia Antipolis 06900, Sophia Antipolis, France ; UMR7254 Institut Sophia Agrobiotech, CNRS 06900, Sophia Antipolis, France
| |
Collapse
|
7
|
Rincón V, Rodríguez-Huete A, Mateu MG. Different functional sensitivity to mutation at intersubunit interfaces involved in consecutive stages of foot-and-mouth disease virus assembly. J Gen Virol 2015; 96:2595-2606. [DOI: 10.1099/vir.0.000187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Verónica Rincón
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Alicia Rodríguez-Huete
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Mauricio G. Mateu
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
8
|
The pH Stability of Foot-and-Mouth Disease Virus Particles Is Modulated by Residues Located at the Pentameric Interface and in the N Terminus of VP1. J Virol 2015; 89:5633-42. [PMID: 25762735 DOI: 10.1128/jvi.03358-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The picornavirus foot-and-mouth disease virus (FMDV) is the etiological agent of a highly contagious disease that affects important livestock species. The FMDV capsid is highly acid labile, and viral particles lose infectivity due to their disassembly at pH values slightly below neutrality. This acid sensitivity is related to the mechanism of viral uncoating and genome penetration from endosomes. In this study, we have analyzed the molecular basis of FMDV acid-induced disassembly by isolating and characterizing a panel of novel FMDV mutants differing in acid sensitivity. Amino acid replacements altering virion stability were preferentially distributed in two different regions of the capsid: the N terminus of VP1 and the pentameric interface. Even more, the acid labile phenotype induced by a mutation located at the pentameric interface in VP3 could be compensated by introduction of an amino acid substitution in the N terminus of VP1. These results indicate that the acid sensitivity of FMDV can be considered a multifactorial trait and that virion stability is the fine-tuned product of the interaction between residues from different capsid proteins, in particular those located within the N terminus of VP1 or close to the pentameric interface. IMPORTANCE The viral capsid protects the viral genome from environmental factors and contributes to virus dissemination and infection. Thus, understanding of the molecular mechanisms that modulate capsid stability is of interest for the basic knowledge of the biology of viruses and as a tool to improve the stability of conventional vaccines based on inactivated virions or empty capsids. Using foot-and-mouth disease virus (FMDV), which displays a capsid with extreme acid sensitivity, we have performed a genetic study to identify the molecular determinants involved in capsid stability. A panel of FMDV mutants with differential sensitivity to acidic pH was generated and characterized, and the results showed that two different regions of FMDV capsid contribute to modulating viral particle stability. These results provide new insights into the molecular mechanisms of acid-mediated FMDV uncoating.
Collapse
|
9
|
Zhan J, McDonald BA. Experimental measures of pathogen competition and relative fitness. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:131-53. [PMID: 23767846 DOI: 10.1146/annurev-phyto-082712-102302] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Competition among pathogen strains for limited host resources can have a profound effect on pathogen evolution. A better understanding of the principles and consequences of competition can be useful in designing more sustainable disease management strategies. The competitive ability and relative fitness of a pathogen strain are determined by its intrinsic biological properties, the resistance and heterogeneity of the corresponding host population, the population density and genetic relatedness of the competing strains, and the physical environment. Competitive ability can be inferred indirectly from fitness components, such as basic reproduction rate or transmission rate. However, pathogen strains that exhibit higher fitness components when they infect a host alone may not exhibit a competitive advantage when they co-infect the same host. The most comprehensive measures of competitive ability and relative fitness come from calculating selection coefficients in a mixed infection in a field setting. Mark-release-recapture experiments can be used to estimate fitness costs associated with unnecessary virulence and fungicide resistance.
Collapse
Affiliation(s)
- Jiasui Zhan
- Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | | |
Collapse
|
10
|
Mateu MG. Assembly, stability and dynamics of virus capsids. Arch Biochem Biophys 2012; 531:65-79. [PMID: 23142681 DOI: 10.1016/j.abb.2012.10.015] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/18/2012] [Accepted: 10/28/2012] [Indexed: 12/13/2022]
Abstract
Most viruses use a hollow protein shell, the capsid, to enclose the viral genome. Virus capsids are large, symmetric oligomers made of many copies of one or a few types of protein subunits. Self-assembly of a viral capsid is a complex oligomerization process that proceeds along a pathway regulated by ordered interactions between the participating protein subunits, and that involves a series of (usually transient) assembly intermediates. Assembly of many virus capsids requires the assistance of scaffolding proteins or the viral nucleic acid, which interact with the capsid subunits to promote and direct the process. Once assembled, many capsids undergo a maturation reaction that involves covalent modification and/or conformational rearrangements, which may increase the stability of the particle. The final, mature capsid is a relatively robust protein complex able to protect the viral genome from physicochemical aggressions; however, it is also a metastable, dynamic structure poised to undergo controlled conformational transitions required to perform biologically critical functions during virus entry into cells, intracellular trafficking, and viral genome uncoating. This article provides an updated general overview on structural, biophysical and biochemical aspects of the assembly, stability and dynamics of virus capsids.
Collapse
Affiliation(s)
- Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
11
|
Montarry J, Hamelin FM, Glais I, Corbi R, Andrivon D. Fitness costs associated with unnecessary virulence factors and life history traits: evolutionary insights from the potato late blight pathogen Phytophthora infestans. BMC Evol Biol 2010; 10:283. [PMID: 20846405 PMCID: PMC2949872 DOI: 10.1186/1471-2148-10-283] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 09/16/2010] [Indexed: 11/10/2022] Open
Abstract
Background In gene-for-gene models of plant-pathogen interactions, the existence of fitness costs associated with unnecessary virulence factors still represents an issue, both in evolutionary biology and agricultural sciences. Measuring such costs experimentally has proven difficult, especially in pathogens not readily amenable to genetic transformation, since the creation of isogenic lines differing only by the presence or absence of avirulence genes cannot be achieved in many organisms. Here, we circumvented this difficulty by comparing fitness traits in groups of Phytophthora infestans isolates sharing the same multilocus fingerprint, but differing by their virulence/avirulence spectrum. Results Fitness was assessed from calculations derived from the basic reproduction number, combining several life history traits (latent period, spore density and lesion growth rate) evaluated on leaflets of the potato cultivar Bintje, which is free of resistance genes. A statistically significant fitness cost was found in isolates virulent to the R10 resistance gene. That cost was due to a lower spore production in virulent isolates; however, the latent period was shorter in virulent isolates. Similar trends, although not statistically significant, were observed for the other genes tested. Conclusion The data likely reflect the adaptive response of the pathogen to the cost associated with virulence. They suggest strong trade-offs between life history traits related to pathogenicity and adaptive biology of pathogens.
Collapse
Affiliation(s)
- Josselin Montarry
- INRA, Agrocampus-Ouest, UMR1099 BiO3P, Biology of Organisms and Populations applied to Plant Protection, F-35653 Le Rheu, France.
| | | | | | | | | |
Collapse
|