1
|
Jiao M, Danthi P, Yu Y. Cholesterol-Dependent Membrane Deformation by Metastable Viral Capsids Facilitates Entry. ACS Infect Dis 2024; 10:2728-2740. [PMID: 38873897 DOI: 10.1021/acsinfecdis.4c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Nonenveloped viruses employ unique entry mechanisms to breach and infect host cells. Understanding these mechanisms is crucial for developing antiviral strategies. Prevailing perspective suggests that nonenveloped viruses release membrane pore-forming peptides to breach host membranes. However, the precise involvement of the viral capsid in this entry remains elusive. Our study presents direct observations elucidating the dynamically distinctive steps through which metastable reovirus capsids disrupt host lipid membranes as they uncoat into partially hydrophobic intermediate particles. Using both live cells and model membrane systems, our key finding is that reovirus capsids actively deform and permeabilize lipid membranes in a cholesterol-dependent process. Unlike membrane pore-forming peptides, these metastable viral capsids induce more extensive membrane perturbations, including budding, bridging between adjacent membranes, and complete rupture. Notably, cholesterol enhances subviral particle adsorption, resulting in the formation of pores equivalent to the capsid size. This cholesterol dependence is attributed to the lipid condensing effect, particularly prominent at an intermediate cholesterol level. Furthermore, our results reveal a positive correlation between membrane disruption extent and efficiency of viral variants in establishing infection. This study unveils the crucial role of capsid-lipid interaction in nonenveloped virus entry, providing new insights into how cholesterol homeostasis influences virus infection dynamics.
Collapse
Affiliation(s)
- Mengchi Jiao
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Pranav Danthi
- Department of Biology, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
2
|
Abad AT, McNamara AJ, Danthi P. Proteasome activity is required for reovirus entry into cells. J Virol 2023; 97:e0134823. [PMID: 37830819 PMCID: PMC10617490 DOI: 10.1128/jvi.01348-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Due to their limited genetic capacity, viruses are reliant on multiple host systems to replicate successfully. Mammalian orthoreovirus (reovirus) is commonly used as a model system for understanding host-virus interactions. In this study, we identify that the proteasome system, which is critical for cellular protein turnover, affects reovirus entry. Inhibition of the proteasome using a chemical inhibitor blocks reovirus uncoating. Blocking these events reduces subsequent replication of the virus. This work identifies that additional host factors control reovirus entry.
Collapse
Affiliation(s)
- Andrew T. Abad
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | | | - Pranav Danthi
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
3
|
Shang P, Simpson JD, Taylor GM, Sutherland DM, Welsh OL, Aravamudhan P, Natividade RDS, Schwab K, Michel JJ, Poholek AC, Wu Y, Rajasundaram D, Koehler M, Alsteens D, Dermody TS. Paired immunoglobulin-like receptor B is an entry receptor for mammalian orthoreovirus. Nat Commun 2023; 14:2615. [PMID: 37147336 PMCID: PMC10163058 DOI: 10.1038/s41467-023-38327-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
Mammalian orthoreovirus (reovirus) infects most mammals and is associated with celiac disease in humans. In mice, reovirus infects the intestine and disseminates systemically to cause serotype-specific patterns of disease in the brain. To identify receptors conferring reovirus serotype-dependent neuropathogenesis, we conducted a genome-wide CRISPRa screen and identified paired immunoglobulin-like receptor B (PirB) as a receptor candidate. Ectopic expression of PirB allowed reovirus binding and infection. PirB extracelluar D3D4 region is required for reovirus attachment and infectivity. Reovirus binds to PirB with nM affinity as determined by single molecule force spectroscopy. Efficient reovirus endocytosis requires PirB signaling motifs. In inoculated mice, PirB is required for maximal replication in the brain and full neuropathogenicity of neurotropic serotype 3 (T3) reovirus. In primary cortical neurons, PirB expression contributes to T3 reovirus infectivity. Thus, PirB is an entry receptor for reovirus and contributes to T3 reovirus replication and pathogenesis in the murine brain.
Collapse
Affiliation(s)
- Pengcheng Shang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Joshua D Simpson
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Gwen M Taylor
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Danica M Sutherland
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Olivia L Welsh
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Pavithra Aravamudhan
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Rita Dos Santos Natividade
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Kristina Schwab
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joshua J Michel
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amanda C Poholek
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yijen Wu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Melanie Koehler
- Leibniz Institute for Food Systems Biology at the Technical University Munich, Freising, Germany
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Terence S Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Holay N, Kennedy BE, Murphy JP, Konda P, Giacomantonio M, Brauer-Chapin T, Paulo JA, Kumar V, Kim Y, Elaghil M, Sisson G, Clements D, Richardson C, Gygi SP, Gujar S. After virus exposure, early bystander naïve CD8 T cell activation relies on NAD + salvage metabolism. Front Immunol 2023; 13:1047661. [PMID: 36818473 PMCID: PMC9932030 DOI: 10.3389/fimmu.2022.1047661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/20/2022] [Indexed: 02/04/2023] Open
Abstract
CD8 T cells play a central role in antiviral immunity. Type I interferons are among the earliest responders after virus exposure and can cause extensive reprogramming and antigen-independent bystander activation of CD8 T cells. Although bystander activation of pre-existing memory CD8 T cells is known to play an important role in host defense and immunopathology, its impact on naïve CD8 T cells remains underappreciated. Here we report that exposure to reovirus, both in vitro or in vivo, promotes bystander activation of naïve CD8 T cells within 24 hours and that this distinct subtype of CD8 T cell displays an innate, antiviral, type I interferon sensitized signature. The induction of bystander naïve CD8 T cells is STAT1 dependent and regulated through nicotinamide phosphoribosyl transferase (NAMPT)-mediated enzymatic actions within NAD+ salvage metabolic biosynthesis. These findings identify a novel aspect of CD8 T cell activation following virus infection with implications for human health and physiology.
Collapse
Affiliation(s)
- Namit Holay
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Barry E. Kennedy
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- IMV Inc, Halifax, NS, Canada
| | - J. Patrick Murphy
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Biology, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | | | - Tatjana Brauer-Chapin
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Cell Biology, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Harvard University, Boston, MA, United States
| | | | - Youra Kim
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Mariam Elaghil
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- IMV Inc, Halifax, NS, Canada
| | - Gary Sisson
- Department of Biology, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - Derek Clements
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Christopher Richardson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Canadian Centre for Vaccinology, IWK Health Centre, Goldbloom Pavilion, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Cancer Immunotherapy: Innovation & Global Partnerships, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
5
|
U5 snRNP Core Proteins Are Key Components of the Defense Response against Viral Infection through Their Roles in Programmed Cell Death and Interferon Induction. Viruses 2022; 14:v14122710. [PMID: 36560714 PMCID: PMC9785106 DOI: 10.3390/v14122710] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
The spliceosome is a massive ribonucleoprotein structure composed of five small nuclear ribonucleoprotein (snRNP) complexes that catalyze the removal of introns from pre-mature RNA during constitutive and alternative splicing. EFTUD2, PRPF8, and SNRNP200 are core components of the U5 snRNP, which is crucial for spliceosome function as it coordinates and performs the last steps of the splicing reaction. Several studies have demonstrated U5 snRNP proteins as targeted during viral infection, with a limited understanding of their involvement in virus-host interactions. In the present study, we deciphered the respective impact of EFTUD2, PRPF8, and SNRNP200 on viral replication using mammalian reovirus as a model. Using a combination of RNA silencing, real-time cell analysis, cell death and viral replication assays, we discovered distinct and partially overlapping novel roles for EFTUD2, PRPF8, and SNRNP200 in cell survival, apoptosis, necroptosis, and the induction of the interferon response pathway. For instance, we demonstrated that EFTUD2 and SNRNP200 are required for both apoptosis and necroptosis, whereas EFTUD2 and PRPF8 are required for optimal interferon response against viral infection. Moreover, we demonstrated that EFTUD2 restricts viral replication, both in a single cycle and multiple cycles of viral replication. Altogether, these results establish U5 snRNP core components as key elements of the cellular antiviral response.
Collapse
|
6
|
Després GD, Ngo K, Lemay G. The μ2 and λ1 Proteins of Mammalian Reovirus Modulate Early Events Leading to Induction of the Interferon Signaling Network. Viruses 2022; 14:v14122638. [PMID: 36560642 PMCID: PMC9780918 DOI: 10.3390/v14122638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
It has been previously shown that amino acid polymorphisms in reovirus proteins μ2 and λ1 are associated with differing levels of interferon induction. In the present study, viruses carrying these polymorphisms in either or both proteins, were further studied. The two viral determinants exert a synergistic effect on the control of β-interferon induction at the protein and mRNA level, with a concomitant increase in RIG-I. In contrast, levels of phospho-Stat1 and interferon-stimulated genes are increased in singly substituted viruses but with no further increase when both substitutions were present. This suggests that the viral determinants are acting during initial events of viral recognition. Accordingly, difference between viruses was reduced when infection was performed with partially uncoated virions (ISVPs) and transfection of RNA recovered from early-infected cells recapitulates the differences between viruses harboring the different polymorphisms. Altogether, the data are consistent with a redundant or complementary role of μ2 and λ1, affecting either early disassembly or the nature of the viral RNA in the incoming viral particle. Proteins involved in viral RNA synthesis are thus involved in this likely critical aspect of the ability of different reovirus variants to infect various cell types, and to discriminate between parental and transformed/cancer cells.
Collapse
|