1
|
Chen X, Kong M, Ma C, Zhang M, Hu Z, Gu M, Wang X, Gao R, Hu S, Chen Y, Liu X, Peng D, Liu X, Hu J. The PA-X host shutoff site 100 V exerts a contrary effect on viral fitness of the highly pathogenic H7N9 influenza A virus in mice and chickens. Virulence 2025; 16:2445238. [PMID: 39731774 DOI: 10.1080/21505594.2024.2445238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024] Open
Abstract
Several viruses, including influenza A virus (IAV), encode viral factors to hijack cellular RNA biogenesis processes to direct the degradation of host mRNAs, termed "host shutoff." Host shutoff enables viruses to simultaneously reduce antiviral responses and provides preferential access for viral mRNAs to cellular translation machinery. IAV PA-X is one of these factors that selectively shuts off the global host genes. However, the specific role of PA-X host shutoff activity in viral fitness of IAV remains poorly understood. Herein, we successfully mapped PA-X 100 V as a novel site important for host shutoff of the H7N9 and H5N1 viruses. By analysing the polymorphism of this residue in various subtype viruses, we found that PA-X 100 was highly variable in H7N9 viruses. Structural analysis revealed that 100 V was generally close to the PA-X endonuclease active site, which may account for its host shutoff activity. By generating the corresponding mutant viruses derived from the parental H7N9 virus and the PA-X-deficient H7N9 virus, we determined that PA-X 100 V significantly enhanced viral fitness in mice while diminishing viral virulence in chickens. Mechanistically, PA-X 100 V significantly increased viral polymerase activity and viral replication in mammalian cells. Furthermore, PA-X 100 V highly blunted the global host response in 293T cells, particularly restraining genes involved in energy metabolism and inflammatory response. Collectively, our data provided information about the intricate role of the PA-X host shutoff site in regulating the viral fitness of the H7N9 influenza virus, which furthers our understanding of the complicated pathogenesis of the influenza A virus.
Collapse
Affiliation(s)
- Xia Chen
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Ming Kong
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Chunxi Ma
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Manyu Zhang
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Zenglei Hu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Min Gu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Ruyi Gao
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Yu Chen
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Daxin Peng
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Li X, Jia T, Wang K, Wang L, Zhou L, Li M, Zhu W, Shu Y, Chen Y. The PB2 I714S mutation influenced mammalian adaptation of the H3N2 canine influenza virus by interfering with nuclear import efficiency and RNP complex assembly. Emerg Microbes Infect 2024; 13:2387439. [PMID: 39139051 PMCID: PMC11328605 DOI: 10.1080/22221751.2024.2387439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/21/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
Avian influenza viruses (AIVs) are the origin of multiple mammal influenza viruses. The genetic determinants of AIVs adapted to humans have been widely elucidated, however, the molecular mechanism of cross-species transmission and adaptation of AIVs to canines are still poorly understood. In this study, two H3N2 influenza viruses isolated from a live poultry market (A/environment/Guangxi/13431/2018, GX13431) and a swab sample from a canine (A/canine/Guangdong/0601/2019, GD0601) were used to investigate the possible molecular basis that determined H3N2 AIV adapting to canine. We found that GD0601 exhibited more robust polymerase activity in cells and higher pathogenicity in mice compared with its evolution ancestor H3N2 AIV GX13431. A series of reassortments of the ribonucleoprotein (RNP) complex showed that the PB2 subunit was the crucial factor that conferred high polymerase activity of GD0601, and the substitution of I714S in the PB2 subunit of GD0601 attenuated the replication and pathogenicity in mammal cells and the mouse model. Mechanistically, the reverse mutation of I714S in the PB2 polymerase subunit which was identified in AIV GX13431 reduced the nuclear import efficiency of PB2 protein and interfered with the interactions of PB2-PA/NP that affected the assembly of the viral RNP complex. Our study reveals amino acid mutation at the position of 714 in the nuclear localization signal (NLS) area in PB2 plays an important role in overcoming the barrier from poultry to mammals of the H3N2 canine influenza virus and provides clues for further study of mammalian adaptation mechanism of AIVs.
Collapse
Affiliation(s)
- Xueyun Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People's Republic of China
- Department of Healthcare-associated Infection Management, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Tingting Jia
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Kele Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, People's Republic of China
| | - Liangliang Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Lijuan Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Mao Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Wenfei Zhu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People's Republic of China
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Yongkun Chen
- Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, People's Republic of China
| |
Collapse
|
3
|
Classe HM, Dant JC, Mogler M, Stachura KA, LaFleur RL, Xu Z, Tarpey I. Efficacy and Safety in Dogs Following Administration of an Alphavirus RNA Particle Canine Influenza H3N2 Vaccine. Vaccines (Basel) 2024; 12:1138. [PMID: 39460305 PMCID: PMC11511248 DOI: 10.3390/vaccines12101138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Canine influenza virus (CIV) H3N2 causes a highly contagious respiratory disease in dogs and has been the source of outbreaks across North America since 2015. An injectable RNA Particle (RP)-CIV H3N2 vaccine has been developed to protect dogs against this disease. To demonstrate efficacy, dogs were randomized into two treatment groups, then vaccinated subcutaneously twice, 21 days apart, with a placebo vaccine (n = 20) or an RP-CIV H3N2 vaccine (n = 20). Three weeks later, dogs were challenged intranasally with virulent CIV H3N2 and observed daily for 10 days for clinical signs of disease. Nasal swabs were also collected daily to evaluate the shedding of the challenge virus. Ten days post-challenge, the dogs were euthanized, and the lungs were examined for consolidation. RP-CIV H3N2 vaccination demonstrated a significant reduction in the duration of clinical signs, duration and amount of virus shed, lung consolidation, and the incidence of suppurative pneumonia. To evaluate safety, dogs from multiple geographic regions were vaccinated subcutaneously, 3-4 weeks apart, with an RP-CIV H3N2 vaccine and observed for adverse events for 14 days after each administration. The RP-CIV H3N2 vaccine was deemed safe, with lethargy being the most reported adverse event at a rate of 1.6%.
Collapse
Affiliation(s)
- Haley M. Classe
- Research and Development Department, Merck Animal Health, Elkhorn, NE 68022, USA
| | - Jennifer C. Dant
- Research and Development Department, Merck Animal Health, Elkhorn, NE 68022, USA
| | - Mark Mogler
- Research and Development Department, Merck Animal Health, Ames, IA 50010, USA
| | - Kenneth A. Stachura
- Research and Development Department, Merck Animal Health, Elkhorn, NE 68022, USA
| | - Rhonda L. LaFleur
- Research and Development Department, Merck Animal Health, Elkhorn, NE 68022, USA
| | - Zach Xu
- Research and Development Department, Merck Animal Health, Elkhorn, NE 68022, USA
| | - Ian Tarpey
- Research and Development Department, MSD Animal Health, 5831 AN Boxmeer, The Netherlands
| |
Collapse
|
4
|
Hu J, Hu Z, Wei Y, Zhang M, Wang S, Tong Q, Sun H, Pu J, Liu J, Sun Y. Mutations in PB2 and HA are crucial for the increased virulence and transmissibility of H1N1 swine influenza virus in mammalian models. Vet Microbiol 2022; 265:109314. [PMID: 34963076 DOI: 10.1016/j.vetmic.2021.109314] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 01/08/2023]
Abstract
Genetic analyses indicated that the pandemic H1N1/2009 influenza virus originated from a swine influenza virus (SIV). However, SIVs bearing the same constellation of genetic features as H1N1/2009 have not been isolated. Understanding the adaptation of SIVs with such genotypes in a new host may provide clues regarding the emergence of pandemic strains such as H1N1/2009. In this study, an artificial SIV with the H1N1/2009 genotype (rH1N1) was sequentially passaged in mice through two independent series, yielding multiple mouse-adapted mutants with high genetic diversity and increased virulence. These experiments were meant to mimic genetic bottlenecks during adaptation of wild viruses with rH1N1 genotypes in a new host. Molecular substitutions in the mouse-adapted variants mainly occurred in genes encoding surface proteins (hemagglutinin [HA] and neuraminidase [NA]) and polymerase proteins (polymerase basic 2 [PB2], polymerase basic 1 [PB1], polymerase acid [PA] proteins and nucleoprotein [NP]). The PB2D309N and HAL425M substitutions were detected at high frequencies in both passage lines and enhanced the replication and pathogenicity of rH1N1 in mice. Moreover, these substitutions also enabled direct transmission of rH1N1 in other mammals such as guinea pigs. PB2D309N showed enhanced polymerase activity and HAL425M showed increased stability compared with the wild-type proteins. Our findings indicate that if SIVs with H1N1/2009 genotypes emerge in pigs, they could undergo rapid adaptive changes during infection of a new host, especially in the PB2 and HA genes. These changes may facilitate the emergence of pandemic strains such as H1N1/2009.
Collapse
Affiliation(s)
- Junyi Hu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhe Hu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yandi Wei
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | - Senlin Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qi Tong
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Honglei Sun
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
5
|
Wang T, Wei F, Liu L, Sun Y, Song J, Wang M, Yang J, Li C, Liu J. Recombinant HA1-ΔfliC enhances adherence to respiratory epithelial cells and promotes the superiorly protective immune responses against H9N2 influenza virus in chickens. Vet Microbiol 2021; 262:109238. [PMID: 34560407 DOI: 10.1016/j.vetmic.2021.109238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/11/2021] [Indexed: 01/17/2023]
Abstract
H9N2 subtype avian influenza virus (AIV) is an ongoing threat causing substantial loss to the poultry industry and thus necessitating the development of safe and effective vaccines against AIV. Given that inactivated vaccines are less effective in activating the mucosal immune system, we aimed to generate a vaccine that can actively engage the mucosal immunity which is the front line of the immune system. We generated a group of flagellin-based hemagglutinin globular head (HA1) fusion proteins and characterized their immunogenicity and efficacy. We found that Salmonella typhimurium flagellin (fliC) lacking the hypervariable domain (called herein as HA1-ΔfliC) was recognized by TLR5 and induced a moderate innate immune response compared to N-terminus of fliC (HA1-fliC) and C-terminus of fliC (fliC-HA1). The HA1-ΔfliC protein had increased adherence to the nasal cavity and trachea than HA1-fliC and fliC-HA1 and significantly increased the HA-specific sIgA titers. Our in vivo results revealed that chickens treated with HA1-ΔfliC had a significantly reduced level of viral loads in the cloaca and throat compared with chickens treated with inactivated vaccine. Overall, these results revealed that HA1-ΔfliC can protect chickens against H9N2 AIV by eliciting the efficient mucosal immune responses.
Collapse
Affiliation(s)
- Tong Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100094, China
| | - Fanhua Wei
- College of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Litao Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100094, China
| | - Yan Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100094, China
| | - Jingwei Song
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100094, China
| | - Mingyang Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100094, China
| | - Jizhe Yang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100094, China
| | - Chengye Li
- College of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100094, China.
| |
Collapse
|
6
|
Nogales A, Villamayor L, Utrilla-Trigo S, Ortego J, Martinez-Sobrido L, DeDiego ML. Natural Selection of H5N1 Avian Influenza A Viruses with Increased PA-X and NS1 Shutoff Activity. Viruses 2021; 13:v13091760. [PMID: 34578340 PMCID: PMC8472985 DOI: 10.3390/v13091760] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 12/01/2022] Open
Abstract
Influenza A viruses (IAV) can infect a broad range of mammalian and avian species. However, the host innate immune system provides defenses that restrict IAV replication and infection. Likewise, IAV have evolved to develop efficient mechanisms to counteract host antiviral responses to efficiently replicate in their hosts. The IAV PA-X and NS1 non-structural proteins are key virulence factors that modulate innate immune responses and virus pathogenicity during infection. To study the determinants of IAV pathogenicity and their functional co-evolution, we evaluated amino acid differences in the PA-X and NS1 proteins of early (1996–1997) and more recent (since 2016) H5N1 IAV. H5N1 IAV have zoonotic and pandemic potential and represent an important challenge both in poultry farming and human health. The results indicate that amino acid changes occurred over time, affecting the ability of these two non-structural H5N1 IAV proteins to inhibit gene expression and affecting virus pathogenicity. These results highlight the importance to monitor the evolution of these two virulence factors of IAV, which could result in enhanced viral replication and virulence.
Collapse
Affiliation(s)
- Aitor Nogales
- Center for Animal Health Research, CISA-INIA-CSIC, Valdeolmos, 28130 Madrid, Spain; (S.U.-T.); (J.O.)
- Correspondence: (A.N.); (M.L.D.)
| | - Laura Villamayor
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Sergio Utrilla-Trigo
- Center for Animal Health Research, CISA-INIA-CSIC, Valdeolmos, 28130 Madrid, Spain; (S.U.-T.); (J.O.)
| | - Javier Ortego
- Center for Animal Health Research, CISA-INIA-CSIC, Valdeolmos, 28130 Madrid, Spain; (S.U.-T.); (J.O.)
| | - Luis Martinez-Sobrido
- Department of Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
| | - Marta L. DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain;
- Correspondence: (A.N.); (M.L.D.)
| |
Collapse
|
7
|
Amino Acid Residues Involved in Inhibition of Host Gene Expression by Influenza A/Brevig Mission/1/1918 PA-X. Microorganisms 2021; 9:microorganisms9051109. [PMID: 34065592 PMCID: PMC8160905 DOI: 10.3390/microorganisms9051109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
The influenza A virus (IAV) PA-X protein is a virulence factor that selectively degrades host mRNAs leading to protein shutoff. This function modulates host inflammation, antiviral responses, cell apoptosis, and pathogenesis. In this work we describe a novel approach based on the use of bacteria and plasmid encoding of the PA-X gene under the control of the bacteriophage T7 promoter to identify amino acid residues important for A/Brevig Mission/1/1918 H1N1 PA-X’s shutoff activity. Using this system, we have identified PA-X mutants encoding single or double amino acid changes, which diminish its host shutoff activity, as well as its ability to counteract interferon responses upon viral infection. This novel bacteria-based approach could be used for the identification of viral proteins that inhibit host gene expression as well as the amino acid residues responsible for inhibition of host gene expression.
Collapse
|
8
|
Identification of amino acid residues required for inhibition of host gene expression by influenza A/Viet Nam/1203/2004 H5N1 PA-X. J Virol 2021; 96:e0040821. [PMID: 33853954 DOI: 10.1128/jvi.00408-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PA-X is a non-structural protein of influenza A virus (IAV), which is encoded by the polymerase acidic (PA) N-terminal region that contains a C-terminal +1 frameshifted sequence. IAV PA-X protein modulates virus-induced host innate immune responses and viral pathogenicity via suppression of host gene expression or cellular shutoff, through cellular mRNA cleavage. Highly pathogenic avian influenza viruses (HPAIV) of the H5N1 subtype naturally infect different avian species, they have an enormous economic impact in the poultry farming, and they also have zoonotic and pandemic potential, representing a risk to human public health. In the present study, we describe a novel bacteria-based approach to identify amino acid residues in the PA-X protein of the HPAIV A/Viet Nam/1203/2004 H5N1 that are important for its ability to inhibit host protein expression or cellular shutoff activity. Identified PA-X mutants displayed a reduced shutoff activity as compared to that of the wild-type (WT) A/Viet Nam/1203/2004 H5N1 PA-X protein. Notably, this new bacteria-based screening allowed us to identify amino acid residues widely distributed over the entire N-terminal region of PA-X. Furthermore, we found that some of the residues affecting A/Viet Nam/1203/2004 H5N1 PA-X host shutoff activity also affect PA polymerase activity in a minigenome assay. This information could be used for the rational design of new and more effective compounds with antiviral activity against IAV. Moreover, our results demonstrate the feasibility of using this bacteria-based approach to identify amino acid residues important for the activity of viral proteins to inhibit host gene expression. IMPORTANCE Highly pathogenic avian influenza viruses (HPAIV) continue to pose a huge threat to global animal and human health. Despite of the limited genome size of Influenza A virus (IAV), the virus encodes eight main viral structural proteins and multiple accessory non-structural proteins, depending on the IAV type, subtype or strain. One of the IAV accessory proteins, PA-X, is encoded by the polymerase acidic (PA) protein and is involved in pathogenicity through the modulation of IAV-induced host inflammatory and innate immune responses. However, the molecular mechanism(s) of IAV PA-X regulation of the host immune response is not well understood. In this work, we used, for the first time, a bacteria-based approach for the identification of amino acids important for the ability of IAV PA-X to induce host shutoff activity and describe novel residues relevant for its ability to inhibit host gene expression, and their contribution in PA polymerase activity.
Collapse
|
9
|
The influenza A virus host shutoff factor PA-X is rapidly turned over in a strain-specific manner. J Virol 2021; 95:JVI.02312-20. [PMID: 33504608 PMCID: PMC8103685 DOI: 10.1128/jvi.02312-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The influenza A endoribonuclease PA-X regulates virulence and transmission of the virus by reducing host gene expression and thus regulating immune responses to influenza A virus. Despite this key function in viral biology, the levels of PA-X protein remain markedly low during infection, and previous results suggest that these low levels are not solely the result of regulation of the level of translation and RNA stability. How PA-X is regulated post-translationally remains unknown. We now report that the PA-X protein is rapidly turned over. PA-X from multiple viral strains are short-lived, although the half-life of PA-X ranges from ∼30 minutes to ∼3.5 hours depending on the strain. Moreover, sequences in the variable PA-X C-terminal domain are primarily responsible for regulating PA-X half-life, although the N-terminal domain also accounts for some differences among strains. Interestingly, we find that the PA-X from the 2009 pandemic H1N1 strain has a longer half-life compared to the other variants we tested. This PA-X isoform has been reported to have a higher host shutoff activity, suggesting a role for protein turnover in regulating PA-X activity. Collectively, this study reveals a novel regulatory mechanism of PA-X protein levels that may impact host shutoff activity during influenza A virus infection.IMPORTANCE The PA-X protein from influenza A virus reduces host immune responses to infection through suppressing host gene expression, including genes encoding the antiviral response. Thus, it plays a central role in influenza A virus biology. Despite its key function, PA-X was only discovered in 2012 and much remains to be learned including how PA-X activity is regulated to promote optimal levels of viral infection. In this study, we reveal that PA-X protein levels are very low likely because of rapid turnover. We show that instability is a conserved property among PA-X variants from different strains of influenza A virus, but that the half-lives of PA-X variants differ. Moreover, the longer half-life of PA-X from the 2009 pandemic H1N1 strain correlates with its reported higher activity. Therefore, PA-X stability may be a way to regulate its activity and may contribute to the differential virulence of influenza A virus strains.
Collapse
|