1
|
Zheng Y, Li G, Luo Q, Sha H, Zhang H, Wang R, Kong W, Liao J, Zhao M. Research progress on the N protein of porcine reproductive and respiratory syndrome virus. Front Microbiol 2024; 15:1391697. [PMID: 38741730 PMCID: PMC11089252 DOI: 10.3389/fmicb.2024.1391697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV exhibits genetic diversity and complexity in terms of immune responses, posing challenges for eradication. The nucleocapsid (N) protein of PRRSV, an alkaline phosphoprotein, is important for various biological functions. This review summarizes the structural characteristics, genetic evolution, impact on PRRSV replication and virulence, interactions between viral and host proteins, modulation of host immunity, detection techniques targeting the N protein, and progress in vaccine development. The discussion provides a theoretical foundation for understanding the pathogenic mechanisms underlying PRRSV virulence, developing diagnostic techniques, and designing effective vaccines.
Collapse
Affiliation(s)
- Yajie Zheng
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Gan Li
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qin Luo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Huiyang Sha
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hang Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Ruining Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Weili Kong
- Gladstone Institutes of Virology and Immunology, University of California, San Francisco, San Francisco, CA, United States
| | - Jiedan Liao
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
2
|
Gong X, Liang Y, Wang J, Pang Y, Wang F, Chen X, Zhang Q, Song C, Wang Y, Zhang C, Fang X, Chen X. Highly pathogenic PRRSV upregulates IL-13 production through nonstructural protein 9-mediated inhibition of N6-methyladenosine demethylase FTO. J Biol Chem 2024; 300:107199. [PMID: 38508309 PMCID: PMC11017062 DOI: 10.1016/j.jbc.2024.107199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), a highly infectious virus, causes severe losses in the swine industry by regulating the inflammatory response, inducing tissue damage, suppressing the innate immune response, and promoting persistent infection in hosts. Interleukin-13 (IL-13) is a cytokine that plays a critical role in regulating immune responses and inflammation, particularly in immune-related disorders, certain types of cancer, and numerous bacterial and viral infections; however, the underlying mechanisms of IL-13 regulation during PRRSV infection are not well understood. In this study, we demonstrated that PRRSV infection elevates IL-13 levels in porcine alveolar macrophages. PRRSV enhances m6A-methylated RNA levels while reducing the expression of fat mass and obesity associated protein (FTO, an m6A demethylase), thereby augmenting IL-13 production. PRRSV nonstructural protein 9 (nsp9) was a key factor for this modulation. Furthermore, we found that the residues Asp567, Tyr586, Leu593, and Asp595 were essential for nsp9 to induce IL-13 production via attenuation of FTO expression. These insights delineate PRRSV nsp9's role in FTO-mediated IL-13 release, advancing our understanding of PRRSV's impact on host immune and inflammatory responses.
Collapse
Affiliation(s)
- Xingyu Gong
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yuan Liang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Jingjing Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yipeng Pang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Fang Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xiaohan Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Qiaoya Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Chengchuang Song
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China; Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
| | - Yanhong Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China; Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China; Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China; Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Normal University, Xuzhou, Jiangsu Province, China.
| | - Xi Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China; Laboratory of Phylogenomics and Comparative Genomics, Jiangsu Normal University, Xuzhou, Jiangsu Province, China.
| |
Collapse
|
3
|
Gong X, Ma T, Wang J, Cao X, Zhang Q, Wang Y, Song C, Lai M, Zhang C, Fang X, Chen X. Nucleocapsid protein residues 35, 36, and 113 are critical sites in up-regulating the Interleukin-8 production via C/EBPα pathway by highly pathogenic porcine reproductive and respiratory syndrome virus. Microb Pathog 2023; 184:106345. [PMID: 37714310 DOI: 10.1016/j.micpath.2023.106345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly infectious and pathogenic agent that causes considerable economic damage in the swine industry. It regulates the inflammatory response, triggers inflammation-induced tissue damage, suppresses the innate immune response, and leads to persistent infection. Interleukin-8 (IL-8), a pro-inflammatory chemokine, plays a crucial role in inflammatory response during numerous bacteria and virus infections. However, the underlying mechanisms of IL-8 regulation during PRRSV infection are not well understood. In this study, we demonstrate that PRRSV-infected PAMs and Marc-145 cells release higher levels of IL-8. We screened the nucleocapsid protein, non-structural protein (nsp) 9, and nsp11 of PRRSV to enhance IL-8 promoter activity via the C/EBPα pathway. Furthermore, we identified that the amino acids Q35A, S36A, R113A, and I115A of the nucleocapsid protein play a crucial role in the induction of IL-8. Through reverse genetics, we generated two mutant viruses (rQ35-2A and rR113A), which showed lower induction of IL-8 in PAMs during infection. This finding uncovers a previously unrecognized role of the PRRSV nucleocapsid protein in modulating IL-8 production and provides insight into an additional mechanism by which PRRSV modulates immune responses and inflammation.
Collapse
Affiliation(s)
- Xingyu Gong
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Tianyi Ma
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Jingjing Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Xinran Cao
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Qiaoya Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266000, China
| | - Yanhong Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Chengchuang Song
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Min Lai
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China.
| | - Xi Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China.
| |
Collapse
|
4
|
Diao F, Bai J, Jiang C, Sun Y, Gao Y, Nauwynck H, Jiang P, Liu X. The Papain-Like Protease of Porcine Reproductive and Respiratory Syndrome Virus Impedes STING Translocation from the Endoplasmic Reticulum to the Golgi Apparatus by Deubiquitinating STIM1. J Virol 2023; 97:e0018823. [PMID: 37039642 PMCID: PMC10134850 DOI: 10.1128/jvi.00188-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/14/2023] [Indexed: 04/12/2023] Open
Abstract
Stimulator of interferon (IFN) genes (STING) was recently pinpointed as an antiviral innate immune factor during the infection of RNA viruses. Porcine reproductive and respiratory syndrome virus (PRRSV), the swine arterivirus, is an enveloped RNA virus which has evolved many strategies to evade innate immunity. To date, the interactive network between PRRSV and STING remains to be fully established. Herein, we report that STING suppresses PRRSV replication through type I interferon signaling. However, PRRSV impedes STING trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus, leading to the decreased phosphorylation of TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3). Furthermore, PRRSV nonstructural protein 2 (Nsp2) colocalizes with STING, blocks STING translocation, and disrupts the STING-TBK1-IRF3 complex. Mechanistically, PRRSV Nsp2 retains STING at the ER by increasing the level of Ca2+ sensor stromal interaction molecule 1 (STIM1) protein. Functional analysis reveals that PRRSV Nsp2 deubiquitinates STIM1 by virtue of its papain-like protease 2 (PLP2) deubiquitinating (DUB) activity. Finally, we demonstrate that loss of STIM1 is associated with an elevated IFN response and restricts PRRSV replication. This work delineates the relationship between PRRSV infection and STING signaling and the importance of papain-like proteases (PLPs) in interfering in this axis. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV), a member of the family Arteriviridae, is responsible for reproductive disorders in pregnant sows and respiratory problems in piglets, resulting in huge losses in the swine industry worldwide. Of note, PRRSV infection causes immunosuppression, of which the mechanism is not completely understood. Here, we demonstrate for the first time that STING, a protein typically associated with the antiviral response in DNA viruses, plays a critical role in controlling PRRSV infection. However, PRRSV utilizes its encoded protein Nsp2 to inhibit STING activity by blocking its translocation from the ER to the Golgi apparatus. In particular, Nsp2 retains STING at the ER by interacting with and further deubiquitinating STIM1. For this process, the activity of the viral PLP2 DUB enzyme is indispensable. The study describes a novel mechanism by which PLP2 plays a critical role in suppressing the innate immune response against arteriviruses and potentially other viruses that encode similar proteases.
Collapse
Affiliation(s)
- Feifei Diao
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Juan Bai
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Chenlong Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yangyang Sun
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yanni Gao
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ping Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xing Liu
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
5
|
Diao F, Jiang C, Sun Y, Gao Y, Bai J, Nauwynck H, Wang X, Yang Y, Jiang P, Liu X. Porcine reproductive and respiratory syndrome virus infection triggers autophagy via ER stress-induced calcium signaling to facilitate virus replication. PLoS Pathog 2023; 19:e1011295. [PMID: 36972295 PMCID: PMC10079224 DOI: 10.1371/journal.ppat.1011295] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 04/06/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Calcium (Ca2+), a ubiquitous second messenger, plays a crucial role in many cellular functions. Viruses often hijack Ca2+ signaling to facilitate viral processes such as entry, replication, assembly, and egress. Here, we report that infection by the swine arterivirus, porcine reproductive and respiratory syndrome virus (PRRSV), induces dysregulated Ca2+ homeostasis, subsequently activating calmodulin-dependent protein kinase-II (CaMKII) mediated autophagy, and thus fueling viral replication. Mechanically, PRRSV infection induces endoplasmic reticulum (ER) stress and forms a closed ER–plasma membrane (PM) contacts, resulting the opening of store operated calcium entry (SOCE) channel and causing the ER to take up extracellular Ca2+, which is then released into the cytoplasm by inositol trisphosphate receptor (IP3R) channel. Importantly, pharmacological inhibition of ER stress or CaMKII mediated autophagy blocks PRRSV replication. Notably, we show that PRRSV protein Nsp2 plays a dominant role in the PRRSV induced ER stress and autophagy, interacting with stromal interaction molecule 1 (STIM1) and the 78 kDa glucose-regulated protein 78 (GRP78). The interplay between PRRSV and cellular calcium signaling provides a novel potential approach to develop antivirals and therapeutics for the disease outbreaks.
Collapse
Affiliation(s)
- Feifei Diao
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Chenlong Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Yangyang Sun
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Yanni Gao
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Juan Bai
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Xianwei Wang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Yuanqi Yang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Ping Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- * E-mail: (PJ); (XL)
| | - Xing Liu
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- * E-mail: (PJ); (XL)
| |
Collapse
|
6
|
Porcine Reproductive and Respiratory Syndrome Virus Modulates the Switch of Macrophage Polarization from M1 to M2 by Upregulating MoDC-Released sCD83. Viruses 2023; 15:v15030773. [PMID: 36992481 PMCID: PMC10054646 DOI: 10.3390/v15030773] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), the most economically important infectious disease of pigs, elicits poor innate and adaptive immune responses. Soluble CD83 (sCD83), a secretion from various immune cell populations, especially MoDCs, is involved in negatively regulating the immune response. We speculate sCD83 may be a critical factor in the process of PRRSV-coordinated macrophage polarization. In this study, we found that PAMs co-cultured with PRRSV-infected MoDCs inhibited the M1 macrophage while enhancing the M2 macrophage. This was accompanied by a decrease in the pro-inflammatory cytokine TNF-α and iNOS and an increase in the anti-inflammatory cytokine IL-10 and Arg1. Meanwhile, sCD83 incubation causes the same specific effects lead to a switch in macrophage from M1 to M2. Neutralization of sCD83 removes the inhibitory effects of PRRSV on PAMs. Using reverse genetics, we generated recombinant PRRSVs with mutations in N protein, nsp1α, and nsp10 (knockout sCD83-concerned key amino acid site). Four mutant viruses lost the suppression of M1 macrophage markers, in contrast to the restriction of the upregulation of M2 macrophage markers. These findings suggest that PRRSV modulates the switch of macrophage polarization from M1 to M2 by upregulating the MoDC-induced secretion of CD83, providing new insights into the mechanism by which PRRSV regulates host immunity.
Collapse
|
7
|
Wahyuningtyas R, Wu ML, Chung WB, Chaung HC, Chang KT. Toll-like Receptor-Mediated Immunomodulation of Th1-Type Response Stimulated by Recombinant Antigen of Type 2 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV-2). Viruses 2023; 15:v15030775. [PMID: 36992483 PMCID: PMC10057405 DOI: 10.3390/v15030775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
PRRSV infects CD163-positive macrophages and skews their polarization toward an M2 phenotype, followed by T-cell inactivation. In our previous study, we found that recombinant protein A1 antigen derived from PRRSV-2 was a potential vaccine or adjuvant for immunization against PRRSV-2 infection due to its ability to repolarize macrophages into M1 subtype, thereby reducing CD163 expression for viral entry and promoting immunomodulation for Th1-type responses, except for stimulating Toll-like receptor (TLR) activation. The aim of our current study was to evaluate the effects of another two recombinant antigens, A3 (ORF6L5) and A4 (NLNsp10L11), for their ability to trigger innate immune responses including TLR activation. We isolated pulmonary alveolar macrophages (PAMs) from 8- to 12-week-old specific pathogen free (SPF) piglets and stimulated them with PRRSV (0.01 MOI and 0.05 MOI) or antigens. We also investigated the T-cell differentiation by immunological synapse activation of PAMs and CD4+ T-cells in the cocultured system. To confirm the infection of PRRSV in PAMs, we checked the expression of TLR3, 7, 8, and 9. Our results showed that the expression of TLR3, 7, and 9 were significantly upregulated in PAMs by A3 antigen induction, similar to the extent of PRRSV infection. Gene profile results showed that A3 repolarizes macrophages into the M1 subtype potently, in parallel with A1, as indicated by significant upregulation of proinflammatory genes (TNF-α, IL-6, IL-1β and IL-12). Upon immunological synapse activation, A3 potentially differentiated CD4 T cells into Th1 cells, determined by the expression of IL-12 and IFN-γ secretion. On the contrary, antigen A4 promoted regulatory T cell (T-reg) differentiation by significant upregulation of IL-10 expression. Finally, we concluded that the PRRSV-2 recombinant protein A3 provided better protection against PRRSV infection, suggested by its capability to reeducate immunosuppressive M2 macrophages into proinflammatory M1 cells. As M1 macrophages are prone to be functional antigen-presenting cells (APCs), they can call for TLR activation and Th1-type immune response within the immunological synapse.
Collapse
Affiliation(s)
- Rika Wahyuningtyas
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Mei-Li Wu
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Wen-Bin Chung
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Hso-Chi Chaung
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Flow Cytometry Center, Precision Instruments Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Correspondence: (H.-C.C.); (K.-T.C.)
| | - Ko-Tung Chang
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Flow Cytometry Center, Precision Instruments Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Correspondence: (H.-C.C.); (K.-T.C.)
| |
Collapse
|
8
|
Signaling Lymphocytic Activation Molecule Family Member 1 Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication. Animals (Basel) 2022; 12:ani12243542. [PMID: 36552462 PMCID: PMC9774311 DOI: 10.3390/ani12243542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) causes a highly contagious disease in domestic swine. Signaling lymphocytic activation molecule family member 1 (SLAMF1) is a costimulatory factor that is involved in innate immunity, inflammation, and infection. Here, we demonstrate that overexpression of the SLAMF1 gene inhibited PRRSV replication significantly and reduced the levels of key signaling pathways, including MyD88, RIG-I, TLR2, TRIF, and inflammatory factors IL-6, IL-1β, IL-8, TNF-β, TNF-α, and IFN-α in vitro. However, the knockdown of the SLAMF1 gene could enhance replication of the PRRSV and the levels of key signaling pathways and inflammatory factors. Overall, our results identify a new, to our knowledge, antagonist of the PRRSV, as well as a novel antagonistic mechanism evolved by inhibiting innate immunity and inflammation, providing a new reference and direction for PRRSV disease resistance breeding.
Collapse
|
9
|
A New Long Noncoding RNA, MAHAT, Inhibits Replication of Porcine Reproductive and Respiratory Syndrome Virus by Recruiting DDX6 To Bind to ZNF34 and Promote an Innate Immune Response. J Virol 2022; 96:e0115422. [PMID: 36073922 PMCID: PMC9517731 DOI: 10.1128/jvi.01154-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have increasingly been recognized as being integral to cellular processes, including the antiviral immune response. Porcine reproductive and respiratory syndrome virus (PRRSV) is costly to the global swine industry. To identify PRRSV-related lncRNAs, we performed RNA deep sequencing and compared the profiles of lncRNAs in PRRSV-infected and uninfected Marc-145 cells. We identified a novel lncRNA called MAHAT (maintaining cell morphology-associated and highly conserved antiviral transcript; LTCON_00080558) that inhibits PRRSV replication. MAHAT binds and negatively regulates ZNF34 expression by recruiting and binding DDX6, an RNA helicase forming a complex with ZNF34. Inhibition of ZNF34 expression results in increased type I interferon expression and decreased PRRSV replication. This finding reveals a novel mechanism by which PRRSV evades the host antiviral innate immune response by downregulating the MAHAT-DDX6-ZNF34 pathway. MAHAT could be a host factor target for antiviral therapies against PRRSV infection. IMPORTANCE Long noncoding RNAs (lncRNAs) play important roles in viral infection by regulating the transcription and expression of host genes, and interferon signaling pathways. Porcine reproductive and respiratory syndrome virus (PRRSV) causes huge economic losses in the swine industry worldwide, but the mechanisms of its pathogenesis and immunology are not fully understood. Here, a new lncRNA, designated MAHAT, was identified as a regulator of host innate immune responses. MAHAT negatively regulates the expression of its target gene, ZNF34, by recruiting and binding DDX6, an RNA helicase, forming a complex with ZNF34. Inhibition of ZNF34 expression increases type I interferon expression and decreases PRRSV replication. This finding suggests that MAHAT has potential as a new target for developing antiviral drugs against PRRSV infection.
Collapse
|
10
|
Xie CZ, Tao YM, Ha Z, Zhang P, Zhang Y, Zhang H, Jin NY, Lu HJ. Characterization of a new NSP2-deletion NADC34-Like Porcine Reproductive and Respiratory Syndrome Virus in China. Res Vet Sci 2022; 152:212-218. [PMID: 35998397 DOI: 10.1016/j.rvsc.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/29/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022]
Abstract
Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) is the causative agent of Porcine Reproductive and Respiratory Syndrome (PRRS), which has caused huge economic losses to the pig industry worldwide. PRRSV NADC34-Like PRRSV 2020-Acheng-1 strain, which caused high morbidity and high mortality were isolated from dead piglets (high-throughput sequencing to show that only PRRSV and TGEV) on a farm in northeastern China. The full-length genome sequence of 2020-Acheng-1 shares 95.6% nucleotide homology with NADC34 PRRSV without any gene insertion, but has a unique 17 amino acid (469aa to 486aa) deletion in Nsp2 compared with all NADC34-Like strains in NCBI and there are unique 100 amino acid deletions. In addition, difference degree of changes in signal peptide, trans-membrane region (TM), main neutralizing epitope (PNE), non-neutralizing epitope and N-glycosylation site were observed in GP5 of 2020-Acheng-1 and other PRRSV-2 strains, we only found a change in the fifteenth amino acid of signal peptide of in GP5 of 2020-Acheng-1 with NADC34 strains. Recombination analysis showed that 2020-Acheng-1 strain did not have any recombination events with representative PRRSV-2 strains in China. This study provided valuable evidence for understanding the role of NADC34-Like strain that impact on pathogenicity.
Collapse
Affiliation(s)
- Chang-Zhan Xie
- Chinese Academy of Agricultural Sciences, Changchun Veterinary Research Institute, Changchun, China
| | - Yi-Mo Tao
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zhuo Ha
- Chinese Academy of Agricultural Sciences, Changchun Veterinary Research Institute, Changchun, China
| | - Ping Zhang
- Institute of specialty, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ying Zhang
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun 130062, China
| | - He Zhang
- Chinese Academy of Agricultural Sciences, Changchun Veterinary Research Institute, Changchun, China
| | - Ning-Yi Jin
- Chinese Academy of Agricultural Sciences, Changchun Veterinary Research Institute, Changchun, China; College of Animal Science and Technology, Guangxi University, Nanning, China; College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun 130062, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China.
| | - Hui-Jun Lu
- Chinese Academy of Agricultural Sciences, Changchun Veterinary Research Institute, Changchun, China; College of Animal Science and Technology, Guangxi University, Nanning, China; College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun 130062, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China.
| |
Collapse
|
11
|
You X, Lei Y, Zhang P, Xu D, Ahmed Z, Yang Y. Role of transcription factors in porcine reproductive and respiratory syndrome virus infection: A review. Front Microbiol 2022; 13:924004. [PMID: 35928151 PMCID: PMC9344050 DOI: 10.3389/fmicb.2022.924004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an infectious disease caused by the PRRS virus that leads to reproductive disorders and severe dyspnoea in pigs, which has serious economic impacts. One of the reasons PRRSV cannot be effectively controlled is that it has developed countermeasures against the host immune response, allowing it to survive and replicate for long periods. Transcription Factors acts as a bridge in the interactions between the host and PRRSV. PRRSV can create an environment conducive to PRRSV replication through transcription factors acting on miRNAs, inflammatory factors, and immune cells. Conversely, some transcription factors also inhibit PRRSV proliferation in the host. In this review, we systematically described how PRRSV uses host transcription factors such as SP1, CEBPB, STATs, and AP-1 to escape the host immune system. Determining the role of transcription factors in immune evasion and understanding the pathogenesis of PRRSV will help to develop new treatments for PRRSV.
Collapse
Affiliation(s)
- Xiangbin You
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, China
| | - Ying Lei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, China
| | - Ping Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Dequan Xu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Youbing Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, China
- *Correspondence: Youbing Yang
| |
Collapse
|
12
|
Shao C, Yu Z, Luo T, Zhou B, Song Q, Li Z, Yu X, Jiang S, Zhou Y, Dong W, Zhou X, Wang X, Song H. Chitosan-Coated Selenium Nanoparticles Attenuate PRRSV Replication and ROS/JNK-Mediated Apoptosis in vitro. Int J Nanomedicine 2022; 17:3043-3054. [PMID: 35832119 PMCID: PMC9273186 DOI: 10.2147/ijn.s370585] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/04/2022] [Indexed: 12/22/2022] Open
Abstract
Introduction Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly prevalent and endemic swine pathogen that causes significant economic losses to the global swine industry. Selenium nanoparticles (SeNPs) have attracted increasing attention in the biomedical field, given their antiviral effects. This study aimed to investigate the inhibitory effect of chitosan-coated SeNPs (CS-SeNPs) on PRRSV replication. Methods In this study, CS-SeNPs were synthesized by chemical reduction and characterized by assessing the morphology, size distribution, zeta potential, and element composition. Marc-145 cells were infected with r-PRRSV-EGFP (0.1 MOI) and inoculated with CS-SeNPs (10 μM). Subsequently, the concentrations of hydrogen peroxide (H2O2) and glutathione (GSH), and glutathione peroxidase (GSH-Px) activity were measured using specific commercial assay kits. ORF5 RNA expression, viral titer, and nucleocapsid (N) protein expression were assessed using qRT-PCR, TCID50, and Western blot. ROS generation, apoptosis rates, and JNK /caspase-3/PARP protein expression were evaluated using dihydroethidium staining, flow cytometry, and Western blot. Results The results showed that CS-SeNPs treatment significantly suppressed oxidative stress induced by r-PRRSV-EGFP infection by increasing GSH-Px activity, promoting GSH production, and inhibiting H2O2 synthesis. CS-SeNPs treatment significantly inhibited ORF5 gene expression, viral titers, and N protein of r-PRRSV-EGFP at 24 and 48 hours post-infection (hpi) in Marc-145 cells. The increase in apoptosis rates induced by r-PRRSV-EGFP infection was significantly decreased by CS-SeNPs inoculation through inhibiting ROS generation, JNK phosphorylation levels, and cleavage of caspase-3 and PARP mainly at 48 hpi. Conclusion These results demonstrated that CS-SeNPs suppress PRRSV-induced apoptosis in Marc-145 cells via the ROS/JNK signaling pathway, thereby inhibiting PRRSV replication, which suggested the potential antiviral activity of CS-SeNPs that deserves further investigation for clinical applications.
Collapse
Affiliation(s)
- Chunyan Shao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, Zhejiang, 311300, People's Republic of China.,Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Hangzhou, Zhejiang, 311300, People's Republic of China.,Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, Zhejiang, 311300, People's Republic of China.,China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, 311300, People's Republic of China.,College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China
| | - Ziwei Yu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, Zhejiang, 311300, People's Republic of China.,Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Hangzhou, Zhejiang, 311300, People's Republic of China.,Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, Zhejiang, 311300, People's Republic of China.,China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, 311300, People's Republic of China.,College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China
| | - Tongwang Luo
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, Zhejiang, 311300, People's Republic of China.,Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Hangzhou, Zhejiang, 311300, People's Republic of China.,Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, Zhejiang, 311300, People's Republic of China.,China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, 311300, People's Republic of China.,College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China
| | - Bin Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, Zhejiang, 311300, People's Republic of China.,Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Hangzhou, Zhejiang, 311300, People's Republic of China.,Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, Zhejiang, 311300, People's Republic of China.,China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, 311300, People's Republic of China.,College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China
| | - Quanjiang Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, Zhejiang, 311300, People's Republic of China.,Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Hangzhou, Zhejiang, 311300, People's Republic of China.,Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, Zhejiang, 311300, People's Republic of China.,China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, 311300, People's Republic of China.,College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China
| | - Zhuoyue Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, Zhejiang, 311300, People's Republic of China.,Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Hangzhou, Zhejiang, 311300, People's Republic of China.,Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, Zhejiang, 311300, People's Republic of China.,China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, 311300, People's Republic of China.,College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China
| | - Xiaoqiang Yu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, Zhejiang, 311300, People's Republic of China.,Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Hangzhou, Zhejiang, 311300, People's Republic of China.,Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, Zhejiang, 311300, People's Republic of China.,China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, 311300, People's Republic of China.,College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China
| | - Sheng Jiang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, Zhejiang, 311300, People's Republic of China.,Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Hangzhou, Zhejiang, 311300, People's Republic of China.,Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, Zhejiang, 311300, People's Republic of China.,China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, 311300, People's Republic of China.,College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China
| | - Yingshan Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, Zhejiang, 311300, People's Republic of China.,Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Hangzhou, Zhejiang, 311300, People's Republic of China.,Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, Zhejiang, 311300, People's Republic of China.,China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, 311300, People's Republic of China.,College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China
| | - Wanyu Dong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, Zhejiang, 311300, People's Republic of China.,Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Hangzhou, Zhejiang, 311300, People's Republic of China.,Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, Zhejiang, 311300, People's Republic of China.,China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, 311300, People's Republic of China.,College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China
| | - Xingdong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, Zhejiang, 311300, People's Republic of China.,Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Hangzhou, Zhejiang, 311300, People's Republic of China.,Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, Zhejiang, 311300, People's Republic of China.,China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, 311300, People's Republic of China.,College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China
| | - Xiaodu Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, Zhejiang, 311300, People's Republic of China.,Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Hangzhou, Zhejiang, 311300, People's Republic of China.,Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, Zhejiang, 311300, People's Republic of China.,China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, 311300, People's Republic of China.,College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, Zhejiang, 311300, People's Republic of China.,Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Hangzhou, Zhejiang, 311300, People's Republic of China.,Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Hangzhou, Zhejiang, 311300, People's Republic of China.,China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, 311300, People's Republic of China.,College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China
| |
Collapse
|
13
|
Deng H, Xin N, Zeng F, Wen F, Yi H, Ma C, Huang S, Zhang G, Chen Y. A novel amino acid site of N protein could affect the PRRSV-2 replication by regulating the viral RNA transcription. BMC Vet Res 2022; 18:171. [PMID: 35546407 PMCID: PMC9092334 DOI: 10.1186/s12917-022-03274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022] Open
Abstract
Background Finding the key amino acid sites that could affect viral biological properties or protein functions has always been a topic of substantial interest in virology. The nucleocapsid (N) protein is one of the principal proteins of the porcine reproductive and respiratory syndrome virus (PRRSV) and plays a vital role in the virus life cycle. The N protein has only 123 or 128 amino acids, some of key amino acid sites which could affect the protein functions or impair the viral biological characteristics have been identified. In this research, our objective was to find out whether there are other novel amino acid sites of the N protein can affect N protein functions or PRRSV-2 replication. Results In this study, we found mutated the serine78 and serine 99of the nucleocapsid (N) protein can reduce the N-induced expression of IL-10 mRNA; Then, by using reverse genetics system, we constructed and rescued the mutant viruses, namely, A78 and A99.The IFA result proved that the mutations did not affect the rescue of the PRRSV-2. However, the results of the multistep growth kinetics and qPCR assays indicated that, compared with the viral replication ability, the titres and gRNA levels of A78 were significantly decreased compared with the wild-type. Further study showed that a single amino acid change from serine to alanine at position 78 of the N protein could abrogates the level of viral genomic and subgenomic RNAs. It means the mutation could significant decrease the viral replication efficiency in vitro. Conclusions Our results suggest that the serine78 of N protein is a key site which could affect the N protein function and PRRSV replication ability. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03274-9.
Collapse
Affiliation(s)
- Hua Deng
- School of Life Science and Engineering, Foshan University, Foshan, 528000, People's Republic of China
| | - Ning Xin
- School of Life Science and Engineering, Foshan University, Foshan, 528000, People's Republic of China
| | - Fancong Zeng
- School of Life Science and Engineering, Foshan University, Foshan, 528000, People's Republic of China
| | - Feng Wen
- School of Life Science and Engineering, Foshan University, Foshan, 528000, People's Republic of China
| | - Heyou Yi
- MOA Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Chunquan Ma
- School of Life Science and Engineering, Foshan University, Foshan, 528000, People's Republic of China
| | - Shujian Huang
- School of Life Science and Engineering, Foshan University, Foshan, 528000, People's Republic of China
| | - Guihong Zhang
- MOA Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Yao Chen
- School of Life Science and Engineering, Foshan University, Foshan, 528000, People's Republic of China.
| |
Collapse
|
14
|
Zhao P, Jing H, Dong W, Duan E, Ke W, Tao R, Li Y, Cao S, Wang H, Zhang Y, Sun Y, Wang J. TRIM26-mediated degradation of nucleocapsid protein limits porcine reproductive and respiratory syndrome virus-2 infection. Virus Res 2022; 311:198690. [PMID: 35077707 DOI: 10.1016/j.virusres.2022.198690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by PRRSV, has ranked among the most economically important veterinary infectious diseases globally. Recently, tripartite motif (TRIMs) family members have arisen as novel restriction factors in antiviral immunity. Noteworthy, TRIM26 was reported as a binding partner of IRF3, TBK1, TAB1, and NEMO, yet its role in virus infection remains controversial. Herein, we showed that TRIM26 bound N protein by the C-terminal PRY/SPRY domain. Moreover, ectopic expression of TRIM26 impaired PRRSV replication and induced degradation of N protein. The anti-PRRSV activity was independent of the nuclear localization signal (NLS). Instead, deletion of the RING domain, or the PRY/SPRY portion, abrogated the antiviral function. Finally, siRNA depletion of TRIM26 resulted in enhanced production of viral RNA and virus yield in porcine alveolar macrophages (PAMs) after PRRSV infection. Overexpression of an RNAi-resistant TRIM26 rescue-plasmid led to the acquisition of PRRSV restriction in TRIM26-knockdown cells. Together, these data add TRIM26 as a potential target for drug design against PRRSV.
Collapse
Affiliation(s)
- Pandeng Zhao
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Huiyuan Jing
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China.
| | - Wang Dong
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Erzhen Duan
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Wenting Ke
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ran Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sufang Cao
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Haihua Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Yan Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Yanting Sun
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Jinhe Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| |
Collapse
|
15
|
Prashanth G, Vastrad B, Vastrad C, Kotrashetti S. Potential Molecular Mechanisms and Remdesivir Treatment for Acute Respiratory Syndrome Corona Virus 2 Infection/COVID 19 Through RNA Sequencing and Bioinformatics Analysis. Bioinform Biol Insights 2022; 15:11779322211067365. [PMID: 34992355 PMCID: PMC8725226 DOI: 10.1177/11779322211067365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction: Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) infections
(COVID 19) is a progressive viral infection that has been investigated
extensively. However, genetic features and molecular pathogenesis underlying
remdesivir treatment for SARS-CoV-2 infection remain unclear. Here, we used
bioinformatics to investigate the candidate genes associated in the
molecular pathogenesis of remdesivir-treated SARS-CoV-2-infected
patients. Methods: Expression profiling by high-throughput sequencing dataset (GSE149273) was
downloaded from the Gene Expression Omnibus, and the differentially
expressed genes (DEGs) in remdesivir-treated SARS-CoV-2 infection samples
and nontreated SARS-CoV-2 infection samples with an adjusted
P value of <.05 and a |log fold change| > 1.3
were first identified by limma in R software package. Next, pathway and gene
ontology (GO) enrichment analysis of these DEGs was performed. Then, the hub
genes were identified by the NetworkAnalyzer plugin and the other
bioinformatics approaches including protein-protein interaction network
analysis, module analysis, target gene—miRNA regulatory network, and target
gene—TF regulatory network. Finally, a receiver-operating characteristic
analysis was performed for diagnostic values associated with hub genes. Results: A total of 909 DEGs were identified, including 453 upregulated genes and 457
downregulated genes. As for the pathway and GO enrichment analysis, the
upregulated genes were mainly linked with influenza A and defense response,
whereas downregulated genes were mainly linked with drug
metabolism—cytochrome P450 and reproductive process. In addition, 10 hub
genes (VCAM1, IKBKE, STAT1, IL7R, ISG15, E2F1, ZBTB16, TFAP4, ATP6V1B1, and
APBB1) were identified. Receiver-operating characteristic analysis showed
that hub genes (CIITA, HSPA6, MYD88, SOCS3, TNFRSF10A, ADH1A, CACNA2D2,
DUSP9, FMO5, and PDE1A) had good diagnostic values. Conclusion: This study provided insights into the molecular mechanism of
remdesivir-treated SARS-CoV-2 infection that might be useful in further
investigations.
Collapse
Affiliation(s)
- G Prashanth
- Department of General Medicine, Basaveshwara Medical College, Chitradurga, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, India
| | | | | |
Collapse
|
16
|
Huo S, Wu F, Zhang J, Wang X, Li W, Cui D, Zuo Y, Hu M, Zhong F. Porcine soluble CD83 alleviates LPS-induced abortion in mice by promoting Th2 cytokine production, Treg cell generation and trophoblast invasion. Theriogenology 2020; 157:149-161. [PMID: 32810792 DOI: 10.1016/j.theriogenology.2020.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/16/2020] [Accepted: 07/25/2020] [Indexed: 01/24/2023]
Abstract
CD83, either in its membrance-bound form (mCD83) or soluble form (sCD83), is an important immunomodulatory molecule in humans and mice. While mCD83 is immunostimulatory, sCD83 exhibits striking immunosuppressive activities, suggesting that sCD83 may be used to combat inflammatory diseases, such as rheumatoid arthritis, graft-versus-host disease and habitual abortion. Although many studies had shed lights on the role of CD83 in humans and mice, little is known about CD83 in other animals. Recently, we showed that porcine CD83 had similar biochemical characteristics and immunoregulatory functions as its human counterpart. However, whether porcine sCD83 (psCD83) is involved in maintaining the immunological tolerance at the maternal-fetal interface and thereby prevents embryo loss and abortion during pregnancy is unclear. In this study, we used LPS-induced animal model to analyze the effect of porcine sCD83 on the mouse abortion. Results showed that psCD83 could significantly alleviate LPS-induced abortion in mice, indicating that the psCD83 had the function of fetal protection. Mechanically, psCD83-mediated fetal protection was related to the promotion on Th2 cytokine production, Treg cell differentiation and trophoblast invasion. This study provides a molecular basis for the fetal protection of psCD83, as well as a potential target for the regulation of maternal-fetal interfacial immune tolerance.
Collapse
Affiliation(s)
- Shanshan Huo
- College of Animal Science and Technology and College of Veterinary Medicine, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, Hebei, 071000, China; Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, 071001, China.
| | - Fengyang Wu
- College of Animal Science and Technology and College of Veterinary Medicine, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, Hebei, 071000, China.
| | - Jianlou Zhang
- College of Animal Science and Technology and College of Veterinary Medicine, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, Hebei, 071000, China; Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, 071001, China.
| | - Xing Wang
- College of Animal Science and Technology and College of Veterinary Medicine, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, Hebei, 071000, China.
| | - Wenyan Li
- College of Animal Science and Technology and College of Veterinary Medicine, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, Hebei, 071000, China; Department of Biology, College of Basic Medicine, Hebei University, 180 Wusi Dong Road, Baoding, Hebei, 071000, China.
| | - Dan Cui
- College of Animal Science and Technology and College of Veterinary Medicine, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, Hebei, 071000, China.
| | - Yuzhu Zuo
- College of Animal Science and Technology and College of Veterinary Medicine, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, Hebei, 071000, China; Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, 071001, China.
| | - Man Hu
- College of Animal Science and Technology and College of Veterinary Medicine, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, Hebei, 071000, China; Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, 071001, China.
| | - Fei Zhong
- College of Animal Science and Technology and College of Veterinary Medicine, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, Hebei, 071000, China; Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, 289 Lingyusi Streat, Baoding, 071001, China.
| |
Collapse
|
17
|
Song Z, Zhang Q, Chen Y, Shen H, Yang G, Jiang P, Chen JL, Lin L. The emergence of a novel recombinant porcine reproductive and respiratory syndrome virus with an amino acid insertion in GP5 protein. Microb Pathog 2020; 149:104573. [PMID: 33091580 DOI: 10.1016/j.micpath.2020.104573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/25/2020] [Accepted: 10/09/2020] [Indexed: 10/23/2022]
Abstract
As an economic devastating virus, porcine reproductive and respiratory syndrome virus (PRRSV) has spread globally, and seriously hinders the healthy development of the swine industry worldwide. In recent years, however, recombinant PRRSV strains are continuously emerging, resulting in the death of a large number of pigs in China. In this study, we reported a NADC30-like PRRSV strain GD1909, a recombinant virus, which may originate from NADC30-like and HUN4-like strains. The GP5 protein of GD1909 strain has an asparagine insertion at position 60 and has more complex glycosylation pattern. This should be helpful for a better understanding of PRRSV molecular epidemiology and the prevention of PRRSV infection in the future.
Collapse
Affiliation(s)
- Zhongbao Song
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Qiaoya Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Ye Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Haiyang Shen
- College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Guang Yang
- College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Li Lin
- College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| |
Collapse
|
18
|
Identification of potential mRNA panels for severe acute respiratory syndrome coronavirus 2 (COVID-19) diagnosis and treatment using microarray dataset and bioinformatics methods. 3 Biotech 2020; 10:422. [PMID: 33251083 PMCID: PMC7679428 DOI: 10.1007/s13205-020-02406-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
The goal of the present investigation is to identify the differentially expressed genes (DEGs) between SARS-CoV-2 infected and normal control samples to investigate the molecular mechanisms of infection with SARS-CoV-2. The microarray data of the dataset E-MTAB-8871 were retrieved from the ArrayExpress database. Pathway and Gene Ontology (GO) enrichment study, protein–protein interaction (PPI) network, modules, target gene–miRNA regulatory network, and target gene–TF regulatory network have been performed. Subsequently, the key genes were validated using an analysis of the receiver operating characteristic (ROC) curve. In SARS-CoV-2 infection, a total of 324 DEGs (76 up- and 248 down-regulated genes) were identified and enriched in a number of associated SARS-CoV-2 infection pathways and GO terms. Hub and target genes such as TP53, HRAS, MAPK11, RELA, IKZF3, IFNAR2, SKI, TNFRSF13C, JAK1, TRAF6, KLRF2, CD1A were identified from PPI network, target gene–miRNA regulatory network, and target gene–TF regulatory network. Study of the ROC showed that ten genes (CCL5, IFNAR2, JAK2, MX1, STAT1, BID, CD55, CD80, HAL-B, and HLA-DMA) were substantially involved in SARS-CoV-2 patients. The present investigation identified key genes and pathways that deepen our understanding of the molecular mechanisms of SARS-CoV-2 infection, and could be used for SARS-CoV-2 infection as diagnostic and therapeutic biomarkers.
Collapse
|
19
|
Porcine reproductive and respiratory syndrome virus Nsp4 cleaves ZAP to antagonize its antiviral activity. Vet Microbiol 2020; 250:108863. [PMID: 33035816 DOI: 10.1016/j.vetmic.2020.108863] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important pathogens impacting the global swine industry. PRRSV has been recognized to modulate the host immune response through a number of mechanisms. In our previous study, we found that over-expression of ZAP, a zinc finger antiviral protein of host, could suppress PRRSV replication, but how PRRSV escape the restriction of ZAP under natural conditions was still unknown. In this study, We found PRRSV infection significantly down-regulate the endogenous ZAP protein expression in Marc-145 cells. And PRRSV nonstructural protein 4 (Nsp4), a 3C-like serine proteinase, was screened to be responsible for ZAP reduction. Nsp4 could cleave ZAP, depending on its protease activity. The anti-PRRSV activity of ZAP was antagonized by Nsp4 in Marc-145 cells. In addition, we identified a unique amino acid, serine 180 of Nsp4 was required for efficient degradation of ZAP, and the mutation at residue 180 could decrease the ability of recombinant PRRSV to degrade ZAP. Those findings reveal a manner of PRRSV Nsp4 antagonizing the antiviral activity of ZAP, and shed light on a new strategy evolved by PRRSV to escape the host defense.
Collapse
|
20
|
Qian S, Gao Z, Cao R, Yang K, Cui Y, Li S, Meng X, He Q, Li Z. Transmissible Gastroenteritis Virus Infection Up-Regulates FcRn Expression via Nucleocapsid Protein and Secretion of TGF-β in Porcine Intestinal Epithelial Cells. Front Microbiol 2020; 10:3085. [PMID: 32038538 PMCID: PMC6990134 DOI: 10.3389/fmicb.2019.03085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/20/2019] [Indexed: 12/23/2022] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is a porcine intestinal coronavirus that causes fatal severe watery diarrhea in piglets. The neonatal Fc receptor (FcRn) is the only IgG transport receptor, its expression on mucosal surfaces is triggered upon viral stimulation, which significantly enhances mucosal immunity. We utilized TGEV as a model pathogen to explore the role of FcRn in resisting viral invasion in overall intestinal mucosal immunity. TGEV induced FcRn expression by activating NF-κB signaling in porcine small intestinal epithelial (IPEC-J2) cells, however, the underlying mechanisms are unclear. First, using small interfering RNAs, we found that TGEV up-regulated FcRn expression via TLR3, TLR9 and RIG-I. Moreover, TGEV induced IL-1β, IL-6, IL-8, TGF-β, and TNF-α production. TGF-β-stimulated IPEC-J2 cells highly up-regulated FcRn expression, while treatment with a JNK-specific inhibitor down-regulated the expression. TGEV nucleocapsid (N) protein also enhanced FcRn promoter activity via the NF-κB signaling pathway and its central region (aa 128–252) was essential for FcRn activation. Additionally, N protein-mediated FcRn up-regulation promotes IgG transcytosis. Thus, TGEV N protein and TGF-β up-regulated FcRn expression, further clarifying the molecular mechanism of up-regulation of FcRn expression by TGEV.
Collapse
Affiliation(s)
- Shaoju Qian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zitong Gao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Cao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kang Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yijie Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shaowen Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Xianrong Meng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Zili Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| |
Collapse
|
21
|
Luo X, Chen XX, Qiao S, Li R, Xie S, Zhou X, Deng R, Zhou EM, Zhang G. Porcine Reproductive and Respiratory Syndrome Virus Enhances Self-Replication via AP-1-Dependent Induction of SOCS1. THE JOURNAL OF IMMUNOLOGY 2019; 204:394-407. [PMID: 31826939 DOI: 10.4049/jimmunol.1900731] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/07/2019] [Indexed: 12/25/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has caused tremendous economic losses in the swine industry since its emergence in the late 1980s. PRRSV exploits various strategies to evade immune responses and establish chronic persistent infections. Suppressor of cytokine signaling (SOCS) 1, a member of the SOCS family, is a crucial intracellular negative regulator of innate immunity. In this study, it was shown that SOCS1 can be co-opted by PRRSV to evade host immune responses, facilitating viral replication. It was observed that PRRSV induced SOCS1 production in porcine alveolar macrophages, monkey-derived Marc-145 cells, and porcine-derived CRL2843-CD163 cells. SOCS1 inhibited the expression of IFN-β and IFN-stimulated genes, thereby markedly enhancing PRRSV replication. It was observed that the PRRSV N protein has the ability to upregulate SOCS1 production and that nuclear localization signal-2 (NLS-2) is essential for SOCS1 induction. Moreover, SOCS1 upregulation was dependent on p38/AP-1 and JNK/AP-1 signaling pathways rather than classical type I IFN signaling pathways. In summary, to our knowledge, the findings of this study uncovered the molecular mechanism that underlay SOCS1 induction during PRRSV infection, providing new insights into viral immune evasion and persistent infection.
Collapse
Affiliation(s)
- Xuegang Luo
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, People's Republic of China.,Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and
| | - Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and
| | - Sha Xie
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and
| | - Xinyu Zhou
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and
| | - Ruiguang Deng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and
| | - En-Min Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, People's Republic of China; .,Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; and.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| |
Collapse
|
22
|
Song Z, Bai J, Liu X, Nauwynck H, Wu J, Liu X, Jiang P. S100A9 regulates porcine reproductive and respiratory syndrome virus replication by interacting with the viral nucleocapsid protein. Vet Microbiol 2019; 239:108498. [PMID: 31767072 PMCID: PMC7125916 DOI: 10.1016/j.vetmic.2019.108498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/27/2019] [Accepted: 11/01/2019] [Indexed: 11/28/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has caused huge economic losses to the pig industry worldwide over the last 30 years, yet the associated viral-host interactions remain poorly understood. S100A9 is a damage-associated molecular pattern of the S100 protein family. Here, we found that PRRSV infection stimulated S100A9 expression in porcine alveolar macrophages (PAMs) and Marc-145 cells. S100A9 inhibited PRRSV replication via cellular Ca2+ dependent manner. The viral nucleocapsid (N) protein co-localized with S100A9 in the cytoplasm, and directly interacted at amino acid 78 of S100A9 and amino acids 36-37 of N protein. Moreover, we also found that the mutant S100A9 (E78Q) protein exhibited decreased antiviral activity against PRRSV compared with the parent S100A9. Recombinant PRRSV rBB (36/37) with two mutations in amino acid 36-37 in the N protein exhibited greater replication than the parent PRRSV BB0907 in S100A9-overexpressed PAM and Marc-145 cells. Thus, S100A9 may restrict PRRSV proliferation by interacting with the viral N protein.
Collapse
Affiliation(s)
- Zhongbao Song
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuewei Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Jiaqiang Wu
- Institute of Animal Husbandry and Veterinary Medicine, Shandong Academy of Agricultural Science, Jinan 250100, China
| | - Xing Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China.
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
23
|
Huo S, Zhang J, Liang S, Wu F, Zuo Y, Cui D, Zhang Y, Zhong Z, Zhong F. Membrane-bound and soluble porcine CD83 functions antithetically in T cell activation and dendritic cell differentiation in vitro. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 99:103398. [PMID: 31121186 DOI: 10.1016/j.dci.2019.103398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Emerging evidence suggests that CD83, a dendritic cells (DCs) maturation marker in humans and mice, may prossess immunomodulatory capacities. Although porcine CD83 shares ∼75% sequence homology with its human counterpart, whether it functions as an immunoregulatory molecule remains unknown. To investigate porcine CD83 function, we deleted it in porcine DCs by RNA intereference. Results show that membrane-bound CD83 (mCD83) promotes DC-mediated T cell proliferation and cytokine production, thus confirming its immunoregulatory capacity. Intriguingly, porcine soluble CD83 (sCD83) treatment instead led to inhibition of DC-mediated T cell activation. Moreover, porcine sCD83 also inhibited differentiation of prepheral blood mononuclear cells (PBMCs) into DCs. These results collectively indicate that in addition to being a DC maturation maker, both membrane bound and souble porcine CD83 serve as immunoregulatory molecules with opposite effects on DC-mediated T cell activation and DC differentiation.
Collapse
Affiliation(s)
- Shanshan Huo
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Jianlou Zhang
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Shuang Liang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Fengyang Wu
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Yuzhu Zuo
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Dan Cui
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Yonghong Zhang
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Zhenyu Zhong
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Fei Zhong
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China.
| |
Collapse
|
24
|
Nuclear localization signal in TRIM22 is essential for inhibition of type 2 porcine reproductive and respiratory syndrome virus replication in MARC-145 cells. Virus Genes 2019; 55:660-672. [PMID: 31375995 PMCID: PMC7089487 DOI: 10.1007/s11262-019-01691-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection causes one of the most economically important swine diseases worldwide. Tripartite motif-containing 22 (TRIM22), a TRIM family protein, has been identified as a crucial restriction factor that inhibits a group of human viruses. Currently, the role of cellular TRIM22 in PRRSV infection remains unclear. In the present study, we analyzed the effect of TRIM22 on PRRSV replication in vitro and explored the underlying mechanism. Ectopic expression of TRIM22 impaired the viral replication, while TRIM22-RNAi favored the replication of PRRSV in MARC-145 cells. Additionally, we observed that TRIM22 deletion SPRY domain or Nuclear localization signal (NLS) losses the ability to inhibit PRRSV replication. Finally, Co-IP analysis identified that TRIM22 interacts with PRRSV nucleocapsid (N) protein through the SPRY domain, while the NLS2 motif of N protein is involved in interaction with TRIM22. Although the concentration of PRRSV N protein was not altered in the presence of TRIM22, the abundance of N proteins from simian hemorrhagic fever virus (SHFV), equine arteritis virus (EAV), and murine lactate dehydrogenase-elevating virus (LDV) diminished considerably with increasing TRIM22 expression. Together, our findings uncover a previously unrecognized role for TRIM22 and extend the antiviral effects of TRIM22 to arteriviruses.
Collapse
|
25
|
ZAP, a CCCH-Type Zinc Finger Protein, Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication and Interacts with Viral Nsp9. J Virol 2019; 93:JVI.00001-19. [PMID: 30867303 DOI: 10.1128/jvi.00001-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/04/2019] [Indexed: 01/27/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important pathogens affecting many swine-producing regions. Current vaccination strategies and antiviral drugs provide only limited protection. PRRSV infection can cleave mitochondrial antiviral signaling protein (MAVS) and inhibit the induction of type I interferon. The antiviral effector molecules that are involved in host protective responses to PRRSV infection are not fully understood. Here, by using transcriptome sequencing, we found that a zinc finger antiviral protein, ZAP, is upregulated in MAVS-transfected Marc-145 cells and that ZAP suppresses PRRSV infection at the early stage of replication. We also found that the viral protein Nsp9, an RNA-dependent RNA polymerase (RdRp), interacts with ZAP. The interacting locations were mapped to the zinc finger domain of ZAP and N-terminal amino acids 150 to 160 of Nsp9. These findings suggest that ZAP is an effective antiviral factor for suppressing PRRSV infection, and they shed light on virus-host interaction.IMPORTANCE PRRSV continues to adversely impact the global swine industry. It is important to understand the various antiviral factors against PRRSV infection. Here, a zinc finger protein, termed ZAP, was screened from MAVS-induced antiviral genes by transcriptome sequencing, and it was found to remarkably suppress PRRSV replication and interact with PRRSV Nsp9. The zinc finger domain of ZAP and amino acids 150 to 160 of Nsp9 are responsible for the interaction. These findings expand the antiviral spectrum of ZAP and provide a better understanding of ZAP antiviral mechanisms, as well as virus-host interactions.
Collapse
|
26
|
Cellular Innate Immunity against PRRSV and Swine Influenza Viruses. Vet Sci 2019; 6:vetsci6010026. [PMID: 30862035 PMCID: PMC6466325 DOI: 10.3390/vetsci6010026] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Porcine respiratory disease complex (PRDC) is a polymicrobial syndrome that results from a combination of infectious agents, such as environmental stressors, population size, management strategies, age, and genetics. PRDC results in reduced performance as well as increased mortality rates and production costs in the pig industry worldwide. This review focuses on the interactions of two enveloped RNA viruses—porcine reproductive and respiratory syndrome virus (PRRSV) and swine influenza virus (SwIV)—as major etiological agents that contribute to PRDC within the porcine cellular innate immunity during infection. The innate immune system of the porcine lung includes alveolar and parenchymal/interstitial macrophages, neutrophils (PMN), conventional dendritic cells (DC) and plasmacytoid DC, natural killer cells, and γδ T cells, thus the in vitro and in vivo interactions between those cells and PRRSV and SwIV are reviewed. Likewise, the few studies regarding PRRSV-SwIV co-infection are illustrated together with the different modulation mechanisms that are induced by the two viruses. Alterations in responses by natural killer (NK), PMN, or γδ T cells have not received much attention within the scientific community as their counterpart antigen-presenting cells and there are numerous gaps in the knowledge regarding the role of those cells in both infections. This review will help in paving the way for future directions in PRRSV and SwIV research and enhancing the understanding of the innate mechanisms that are involved during infection with these viruses.
Collapse
|
27
|
Huo S, Zhang J, Wu F, Zuo Y, Cui D, Li X, Zhong Z, Zhong F. Porcine CD83 is a glycosylated dimeric protein existing naturally in membrane-bound and soluble forms. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 90:60-69. [PMID: 30193829 DOI: 10.1016/j.dci.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Human and mouse CD83 have been well characteized, however, the other mammalian CD83 genes have not been cloned and characterized. In this study, the porcine CD83 (pCD83) was cloned, expressed and characterized, and showed that the pCD83 gene has 81% and 74% homologies with humans and mice, respectively, which was identified to be glycosylated when expressed in eukaryotic cells, existing naturally in two forms: membrance-bound CD83 (mCD83) and soluble CD83 (sCD83), the latter was identified to be generated mainly from mCD83 by proteolytic shedding. The pCD83 was a dimmer mediated by intermolecular disulfide bond formed by the fifth cysteine in the exrtracellular domain. Functionally, the recombinant porcine sCD83 was preliminarily tested to have the ability to inhibit DC-mediated T cell activition. This study provided necessary fundation for further investigation on pCD83 functions.
Collapse
Affiliation(s)
- Shanshan Huo
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Agricultural University of Hebei, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Jianlou Zhang
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Agricultural University of Hebei, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Fengyang Wu
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Agricultural University of Hebei, Baoding, Hebei, 071000, China
| | - Yuzhu Zuo
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Agricultural University of Hebei, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Dan Cui
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Agricultural University of Hebei, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China
| | - Xiujin Li
- Department of Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei, 066004, China
| | - Zhenyu Zhong
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Fei Zhong
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology/College of Veterinary Medicine, Agricultural University of Hebei, Baoding, Hebei, 071000, China; Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, Hebei, 071000, China.
| |
Collapse
|
28
|
Xie X, Gan Y, Pang M, Shao G, Zhang L, Liu B, Xu Q, Wang H, Feng Y, Yu Y, Chen R, Wu M, Zhang Z, Hua L, Xiong Q, Liu M, Feng Z. Establishment and characterization of a telomerase-immortalized porcine bronchial epithelial cell line. J Cell Physiol 2018; 233:9763-9776. [PMID: 30078190 DOI: 10.1002/jcp.26942] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 06/12/2018] [Indexed: 01/03/2023]
Abstract
Primary porcine bronchial epithelial cells (PBECs) are an ideal model to study the molecular and pathogenic mechanisms of various porcine respiratory pathogens. However, the short lifespan of primary PBECs greatly limit their application. Here, we isolated and cultured primary PBECs and established immortalized PBECs by transfecting primary PBECs with the pEGFP-hTERT recombinant plasmid containing human telomerase reverse transcriptase (hTERT). Immortalized PBECs (hTERT-PBECs) retained the morphological and functional features of primary PBECs as indicated by cytokeratin 18 expression, telomerase activity assay, proliferation assays, karyotype analysis, and quantitative reverse-transcriptase polymerase chain reaction. Compared to primary PBECs, hTERT-PBECs had higher telomerase activity, extended replicative lifespan, and displayed enhanced proliferative activity. Moreover, this cell line is not transformed in vitro and does not exhibit a malignant phenotype in vivo, suggesting that it can be safely used in further studies. Besides, hTERT-PBECs were susceptible to swine influenza virus of H3N2 subtype and porcine circovirus type 2. In conclusion, the immortalized hTERT-PBECs represent a valuable in vitro model, which can be widely used in the study of porcine respiratory pathogenic infections.
Collapse
Affiliation(s)
- Xing Xie
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuan Gan
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Maoda Pang
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guoqing Shao
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lei Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Beibei Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qi Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Haiyan Wang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanyan Feng
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yanfei Yu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rong Chen
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Meng Wu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhenzhen Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lizhong Hua
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiyan Xiong
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Maojun Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhixin Feng
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
29
|
Chen X, Bai J, Liu X, Song Z, Zhang Q, Wang X, Jiang P. Nsp1α of Porcine Reproductive and Respiratory Syndrome Virus Strain BB0907 Impairs the Function of Monocyte-Derived Dendritic Cells via the Release of Soluble CD83. J Virol 2018; 92:e00366-18. [PMID: 29793955 PMCID: PMC6052304 DOI: 10.1128/jvi.00366-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/08/2018] [Indexed: 12/21/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), a virulent pathogen of swine, suppresses the innate immune response and induces persistent infection. One mechanism used by viruses to evade the immune system is to cripple the antigen-processing machinery in monocyte-derived dendritic cells (MoDCs). In this study, we show that MoDCs infected by PRRSV express lower levels of the major histocompatibility complex (MHC)-peptide complex proteins TAP1 and ERp57 and are impaired in their ability to stimulate T cell proliferation and increase their production of CD83. Neutralization of sCD83 removes the inhibitory effects of PRRSV on MoDCs. When MoDCs are incubated with exogenously added sCD83 protein, TAP1 and ERp57 expression decreases and T lymphocyte activation is impaired. PRRSV nonstructural protein 1α (Nsp1α) enhances CD83 promoter activity. Mutations in the ZF domain of Nsp1α abolish its ability to activate the CD83 promoter. We generated recombinant PRRSVs with mutations in Nsp1α and the corresponding repaired PRRSVs. Viruses with Nsp1α mutations did not decrease levels of TAP1 and ERp57, impair the ability of MoDCs to stimulate T cell proliferation, or increase levels of sCD83. We show that the ZF domain of Nsp1α stimulates the secretion of CD83, which in turn inhibits MoDC function. Our study provides new insights into the mechanisms of immune suppression by PRRSV.IMPORTANCE PRRSV has a severe impact on the swine industry throughout the world. Understanding the mechanisms by which PRRSV infection suppresses the immune system is essential for a robust and sustainable swine industry. Here, we demonstrated that PRRSV infection manipulates MoDCs by interfering with their ability to produce proteins in the MHC-peptide complex. The virus also impairs the ability of MoDCs to stimulate cell proliferation, due in large part to the enhanced release of soluble CD83 from PRRSV-infected MoDCs. The viral nonstructural protein 1 (Nsp1) is responsible for upregulating CD83 promoter activity. Amino acids in the ZF domain of Nsp1α (L5-2A, rG45A, G48A, and L61-6A) are essential for CD83 promoter activation. Viruses with mutations at these sites no longer inhibit MoDC-mediated T cell proliferation. These findings provide novel insights into the mechanism by which the adaptive immune response is suppressed during PRRSV infection.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xuewei Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhongbao Song
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qiaoya Zhang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xianwei Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
30
|
Serine 105 and 120 are important phosphorylation sites for porcine reproductive and respiratory syndrome virus N protein function. Vet Microbiol 2018; 219:128-135. [PMID: 29778185 PMCID: PMC7117435 DOI: 10.1016/j.vetmic.2018.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/10/2023]
Abstract
We identified one novel phophorylation site of the PRRSV N protein. We firstly found that the mutated the residue 105 and 120 could down-regulate the N-induced IL-10. We firstly found that mutating the residue 105 could impair the virus growth ability.
The nucleocapsid (N) protein is the most abundant protein of porcine reproductive and respiratory syndrome virus (PRRSV). It has been shown to be multiphosphorylated. However, the phosphorylation sites are still unknown. In this study, we used liquid chromatography tandem mass spectrometry (LC–MS/MS) to analyze the phosphorylation sites of N protein expressed in Sf9 cells. The results showed that N protein contains two phosphorylation sites. Since N protein can regulate IL-10, which may facilitate PRRSV replication, we constructed four plasmids (pCA-XH-GD, pCA-A105, pCA-A120 and pCA-A105-120) and transfected them into Pig alveolar macrophages (PAMs,3D4/2). The qPCR results showed that mutations at residues 105 and 120 were associated with down-regulation of the IL-10 mRNA level, potentially decreasing the viral growth ability. Then, we mutated the phosphorylation sites (S105A and S120A) and rescued three mutated viruses, namely, A105, A120 and A105-120. Compared with wild-type virus titers, the titers of the mutated viruses at 48 hpi were significantly decreased. The Nsp(non-structural protein) 9 qPCR results were consistent with the multistep growth kinetics results. The infected PAMs (primary PAMs) results were similar with Marc-145.The findings indicated that the mutations impaired the viral replication ability. The confocal microscopy results suggested that mutations to residues 105 and 120 did not affect N protein distribution. Whether the mutations affected other functions of N protein and what the underlying mechanisms are need further investigation. In conclusion, our results show that residues 105 and 120 are phosphorylation sites and are important for N protein function and for viral replication ability.
Collapse
|