1
|
Buck AM, LaFranchi BH, Henrich TJ. Gaining momentum: stem cell therapies for HIV cure. Curr Opin HIV AIDS 2024; 19:194-200. [PMID: 38686850 PMCID: PMC11155292 DOI: 10.1097/coh.0000000000000859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
PURPOSE OF REVIEW Durable HIV-1 remission has been reported in a person who received allogeneic stem cell transplants (SCTs) involving CCR5 Δ32/Δ32 donor cells. Much of the reduction in HIV-1 burden following allogeneic SCT with or without donor cells inherently resistant to HIV-1 infection is likely due to cytotoxic graft-versus-host effects on residual recipient immune cells. Nonetheless, there has been growing momentum to develop and implement stem cell therapies that lead to durable long-term antiretroviral therapy (ART)-free remission without the need for SCT. RECENT FINDINGS Most current research leverages gene editing techniques to modify hematopoietic stem cells which differentiate into immune cells capable of harboring HIV-1. Approaches include targeting genes that encode HIV-1 co-receptors using Zinc Finger Nucleases (ZFN) or CRISPR-Cas-9 to render a pool of adult or progenitor cells resistant to de-novo infection. Other strategies involve harnessing multipotent mesenchymal stromal cells to foster immune environments that can more efficiently recognize and target HIV-1 while promoting tissue homeostasis. SUMMARY Many of these strategies are currently in a state of infancy or adolescence; nonetheless, promising preclinical and first-in-human studies have been performed, providing further rationale to focus resources on stem cell therapies.
Collapse
Affiliation(s)
- Amanda M Buck
- Division of Experimental Medicine, University of California San Francisco, San Francisco, California, USA
| | | | | |
Collapse
|
2
|
Herd CL, Mellet J, Mashingaidze T, Durandt C, Pepper MS. Consequences of HIV infection in the bone marrow niche. Front Immunol 2023; 14:1163012. [PMID: 37497228 PMCID: PMC10366613 DOI: 10.3389/fimmu.2023.1163012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023] Open
Abstract
Dysregulation of the bone marrow niche resulting from the direct and indirect effects of HIV infection contributes to haematological abnormalities observed in HIV patients. The bone marrow niche is a complex, multicellular environment which functions primarily in the maintenance of haematopoietic stem/progenitor cells (HSPCs). These adult stem cells are responsible for replacing blood and immune cells over the course of a lifetime. Cells of the bone marrow niche support HSPCs and help to orchestrate the quiescence, self-renewal and differentiation of HSPCs through chemical and molecular signals and cell-cell interactions. This narrative review discusses the HIV-associated dysregulation of the bone marrow niche, as well as the susceptibility of HSPCs to infection by HIV.
Collapse
|
3
|
Renelt S, Schult-Dietrich P, Baldauf HM, Stein S, Kann G, Bickel M, Kielland-Kaisen U, Bonig H, Marschalek R, Rieger MA, Dietrich U, Duerr R. HIV-1 Infection of Long-Lived Hematopoietic Precursors In Vitro and In Vivo. Cells 2022; 11:cells11192968. [PMID: 36230931 PMCID: PMC9562211 DOI: 10.3390/cells11192968] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Latent reservoirs in human-immunodeficiency-virus-1 (HIV-1)-infected individuals represent a major obstacle in finding a cure for HIV-1. Hematopoietic stem and progenitor cells (HSPCs) have been described as potential HIV-1 targets, but their roles as HIV-1 reservoirs remain controversial. Here we provide additional evidence for the susceptibility of several distinct HSPC subpopulations to HIV-1 infection in vitro and in vivo. In vitro infection experiments of HSPCs were performed with different HIV-1 Env-pseudotyped lentiviral particles and with replication-competent HIV-1. Low-level infection/transduction of HSPCs, including hematopoietic stem cells (HSCs) and multipotent progenitors (MPP), was observed, preferentially via CXCR4, but also via CCR5-mediated entry. Multi-lineage colony formation in methylcellulose assays and repetitive replating of transduced cells provided functional proof of susceptibility of primitive HSPCs to HIV-1 infection. Further, the access to bone marrow samples from HIV-positive individuals facilitated the detection of HIV-1 gag cDNA copies in CD34+ cells from eight (out of eleven) individuals, with at least six of them infected with CCR5-tropic HIV-1 strains. In summary, our data confirm that primitive HSPC subpopulations are susceptible to CXCR4- and CCR5-mediated HIV-1 infection in vitro and in vivo, which qualifies these cells to contribute to the HIV-1 reservoir in patients.
Collapse
Affiliation(s)
- Sebastian Renelt
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Patrizia Schult-Dietrich
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Hanna-Mari Baldauf
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, 81377 Munich, Germany
- Institute of Medical Virology, Goethe University, 60596 Frankfurt, Germany
| | - Stefan Stein
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Gerrit Kann
- Department of Medicine II/Infectious Diseases, Goethe University Hospital, 60596 Frankfurt, Germany
- Infektiologikum, Center for Infectious Diseases, 60596 Frankfurt, Germany
| | - Markus Bickel
- Infektiologikum, Center for Infectious Diseases, 60596 Frankfurt, Germany
| | | | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Goethe University, 60528 Frankfurt, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe University, 60438 Frankfurt, Germany
| | - Michael A. Rieger
- Department of Medicine, Hematology/Oncology, Goethe University Hospital, 60590 Frankfurt, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center, 69120 Heidelberg, Germany
- Frankfurt Cancer Institute, 60596 Frankfurt, Germany
- Cardio-Pulmonary Institute, 60596 Frankfurt, Germany
| | - Ursula Dietrich
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Ralf Duerr
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Correspondence:
| |
Collapse
|
4
|
Tsukamoto T. Hematopoietic Stem/Progenitor Cells and the Pathogenesis of HIV/AIDS. Front Cell Infect Microbiol 2020; 10:60. [PMID: 32154191 PMCID: PMC7047323 DOI: 10.3389/fcimb.2020.00060] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
The interaction between human immunodeficiency virus (HIV) and hematopoietic stem/progenitor cells (HSPCs) has been of great interest. However, it remains unclear whether HSPCs can act as viral reservoirs. Many studies have reported the presence of latently infected HSPCs in the bone marrow of HIV-infected patients, whereas many other investigators have reported negative results. Hence, further evidence is required to elucidate this controversy. The other arm of HSPC investigations of HIV infection involves dynamics analysis in the early and late stages of infection to understand the impact on the pathogenesis of acquired immunodeficiency syndrome. Several recent studies have suggested reduced amounts and/or functional impairment of multipotent, myeloid, and lymphoid progenitors in HIV infection that may contribute to hematological manifestations, including anemia, pancytopenia, and T-cell depletion. In addition, ongoing and future studies on the senescence of HSPCs are expected to further the understanding of HIV pathogenesis. This mini review summarizes reports describing the basic aspects of hematopoiesis in response to HIV infection and offers insights into the association of HIV infection/exposure of the host HSPCs and hematopoietic potential.
Collapse
Affiliation(s)
- Tetsuo Tsukamoto
- Department of Immunology, Faculty of Medicine, Kindai University, Osaka, Japan
| |
Collapse
|
5
|
Sebrow J, Goff SP, Griffin DO. Successfully transfected primary peripherally mobilized human CD34+ hematopoietic stem and progenitor cells (HSPCs) demonstrate increased susceptibility to retroviral infection. Virol J 2020; 17:22. [PMID: 32039735 PMCID: PMC7008578 DOI: 10.1186/s12985-020-1297-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
Transfection, the process of introducing purified nucleic acids into cells, and viral transduction, viral-mediated nucleic acid transfer, are two commonly utilized techniques for gene delivery in the research setting. Transfection allows purified nucleic acid to be introduced into target cells through chemical-based techniques, nonchemical methods or particle-based methods, while viral transduction employs genomes or vectors based on adenoviruses, retroviruses (e.g. lentiviruses), adeno-associated viruses, or hybrid viruses. Transfected DNAs are often tested for potential effects on subsequent transduction, but it is not clear whether transfection itself rather than the particular nucleic acid being introduced might impact subsequent viral transfection. We observed a significant association between successfully transfected mobilized peripheral blood CD34+ human stem and progenitor cells (HSPCs) and permissiveness to subsequent lentiviral transduction, which was not evident in other cells such as 293 T cells and Jurkat cells. This association, apparently specific to CD34+ human stem and progenitor cells (HSPCs), is critical to both research and clinical applications as these cells are a frequent target of transfection and viral transduction owing to the durable nature of these cells in living systems. This finding may also present a significant opportunity to enhance the success of viral transduction for clinical applications.
Collapse
Affiliation(s)
- Jeffrey Sebrow
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 701 West 168th Street, HHSC 1310, New York, NY, 10032, USA
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 701 West 168th Street, HHSC 1310, New York, NY, 10032, USA.,HHMI, Department of Biochemistry and Molecular Biophysics, and Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Daniel O Griffin
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 701 West 168th Street, HHSC 1310, New York, NY, 10032, USA. .,Department of Medicine, Division of Infectious Diseases, Columbia University, College of Physicians and Surgeons, New York, NY, 10032, USA.
| |
Collapse
|
6
|
Resveratrol trimer enhances gene delivery to hematopoietic stem cells by reducing antiviral restriction at endosomes. Blood 2020; 134:1298-1311. [PMID: 31416800 DOI: 10.1182/blood.2019000040] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/19/2019] [Indexed: 12/21/2022] Open
Abstract
Therapeutic gene delivery to hematopoietic stem cells (HSCs) holds great potential as a life-saving treatment of monogenic, oncologic, and infectious diseases. However, clinical gene therapy is severely limited by intrinsic HSC resistance to modification with lentiviral vectors (LVs), thus requiring high doses or repeat LV administration to achieve therapeutic gene correction. Here we show that temporary coapplication of the cyclic resveratrol trimer caraphenol A enhances LV gene delivery efficiency to human and nonhuman primate hematopoietic stem and progenitor cells with integrating and nonintegrating LVs. Although significant ex vivo, this effect was most dramatically observed in human lineages derived from HSCs transplanted into immunodeficient mice. We further show that caraphenol A relieves restriction of LV transduction by altering the levels of interferon-induced transmembrane (IFITM) proteins IFITM2 and IFITM3 and their association with late endosomes, thus augmenting LV core endosomal escape. Caraphenol A-mediated IFITM downregulation did not alter the LV integration pattern or bias lineage differentiation. Taken together, these findings compellingly demonstrate that the pharmacologic modification of intrinsic immune restriction factors is a promising and nontoxic approach for improving LV-mediated gene therapy.
Collapse
|
7
|
Tsukamoto T. HIV Impacts CD34 + Progenitors Involved in T-Cell Differentiation During Coculture With Mouse Stromal OP9-DL1 Cells. Front Immunol 2019; 10:81. [PMID: 30761146 PMCID: PMC6361802 DOI: 10.3389/fimmu.2019.00081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/11/2019] [Indexed: 12/21/2022] Open
Abstract
HIV-1 causes the loss of CD4+ T cells via depletion or impairment of their production. The latter involves infection of thymocytes, but the involvement of hematopoietic CD34+ cells remains unclear even though HIV-positive patients frequently manifest myelosuppression. In order to have a closer look at the impact of HIV-1 on T-lineage differentiation, this study utilized the OP9-DL1 coculture system, which supports in vitro T-lineage differentiation of human hematopoietic stem/progenitor cells. In the newly developed in vitro OP9-DL1/HIV-1 model, cord-derived CD34+ cells were infected with CXCR4-tropic HIV-1NL4−3 and cocultured. The HIV-infected cocultures exhibited reduced CD4+ T-cell growth at weeks 3–5 post infection compared to autologous uninfected cocultures. Further assays and analyses revealed that CD34+CD7+CXCR4+ cells can be quickly depleted as early as 1 week after infection of the subset, and this was accompanied by the emergence of rare CD34+CD7+CD4+ cells. A subsequent theoretical model analysis suggested potential influence of HIV-1 on the differentiation rate or death rate of lymphoid progenitor cells. These results indicate that CXCR4-tropic HIV-1 strains may impact the dynamics of CD34+CD7+ lymphoid progenitor cell pools, presumably leading to impaired T-cell production potential.
Collapse
Affiliation(s)
- Tetsuo Tsukamoto
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, NSW, Australia.,Center for AIDS Research, Kumamoto University, Kumamoto, Japan.,Department of Immunology, Faculty of Medicine, Kindai University, Osaka, Japan
| |
Collapse
|
8
|
Griffin DO. The diagnosis of symptomatic acute antiretroviral syndrome during the window period with antigen/antibody testing and HIV viral load. IDCases 2018; 12:157-160. [PMID: 29942779 PMCID: PMC6011141 DOI: 10.1016/j.idcr.2018.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 01/30/2023] Open
Abstract
Despite much focus on moving toward a cure to end the epidemic human immunodeficiency virus (HIV) epidemic there are still thousands of new infections occurring every year in the United States. Although there is ongoing transmission of HIV in the United States and a growing population of people living with HIV, the acute presentation of HIV infection can be challenging to diagnose and is often not considered when patients present to healthcare providers. Although in certain states there are HIV testing laws that require that all persons between the ages of 13 and 64 be offered HIV testing in an opt-out approach, many patient presenting with an acute illness, that would warrant diagnostic testing for HIV, leave without having an HIV test performed for either diagnostic or screening purposes. We describe the case of a woman who presented to medical attention with symptoms later confirmed to be due to acute HIV infection. She was initially discharged from the hospital and only underwent HIV testing with confirmation of her diagnosis after readmission. We describe the algorithm where fourth generation testing combined with HIV viral load testing allowed for the diagnosis of acute HIV prior to the development of a specific immunoglobulin response. Consideration of this diagnosis, improved HIV screening, and understanding of the use of antigen/antibody screening tests, combined with Multispot and HIV viral RNA detection, when appropriate, can allow for early diagnosis of HIV before progression of disease and before undiagnosed patient spread the infection to new contacts.
Collapse
Affiliation(s)
- Daniel O Griffin
- Columbia University Medical Center, Department of Biochemistry and Molecular Biophysics, Department of Medicine-Division of Infectious Diseases, New York, NY 10032, United States
| |
Collapse
|
9
|
Bhukhai K, de Dreuzy E, Giorgi M, Colomb C, Negre O, Denaro M, Gillet-Legrand B, Cheuzeville J, Paulard A, Trebeden-Negre H, Borwornpinyo S, Sii-Felice K, Maouche L, Down JD, Leboulch P, Payen E. Ex Vivo Selection of Transduced Hematopoietic Stem Cells for Gene Therapy of β-Hemoglobinopathies. Mol Ther 2018; 26:480-495. [PMID: 29221807 PMCID: PMC5835017 DOI: 10.1016/j.ymthe.2017.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/11/2017] [Accepted: 10/18/2017] [Indexed: 12/14/2022] Open
Abstract
Although gene transfer to hematopoietic stem cells (HSCs) has shown therapeutic efficacy in recent trials for several individuals with inherited disorders, transduction incompleteness of the HSC population remains a hurdle to yield a cure for all patients with reasonably low integrated vector numbers. In previous attempts at HSC selection, massive loss of transduced HSCs, contamination with non-transduced cells, or lack of applicability to large cell populations has rendered the procedures out of reach for human applications. Here, we fused codon-optimized puromycin N-acetyltransferase to herpes simplex virus thymidine kinase. When expressed from a ubiquitous promoter within a complex lentiviral vector comprising the βAT87Q-globin gene, viral titers and therapeutic gene expression were maintained at effective levels. Complete selection and preservation of transduced HSCs were achieved after brief exposure to puromycin in the presence of MDR1 blocking agents, suggesting the procedure's suitability for human clinical applications while affording the additional safety of conditional suicide.
Collapse
Affiliation(s)
- Kanit Bhukhai
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France
| | - Edouard de Dreuzy
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France
| | - Marie Giorgi
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France
| | - Charlotte Colomb
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France
| | - Olivier Negre
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France; bluebird bio, Inc., Cambridge, MA 02141, USA; bluebird bio France, Fontenay aux Roses 92260, France
| | | | - Béatrix Gillet-Legrand
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France; bluebird bio France, Fontenay aux Roses 92260, France
| | - Joëlle Cheuzeville
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France; bluebird bio France, Fontenay aux Roses 92260, France
| | - Anaïs Paulard
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France; bluebird bio France, Fontenay aux Roses 92260, France
| | | | | | - Karine Sii-Felice
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France
| | - Leila Maouche
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France; INSERM, Paris 75013, France
| | - Julian D Down
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Phillippe Leboulch
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France; Ramathibodi Hospital, Bangkok 10400, Thailand; Harvard Medical School and Genetics Division, Department of Medicine, Brigham & Women's Hospital, Boston, MA 02115, USA.
| | - Emmanuel Payen
- CEA, Institute of Biology François Jacob, Fontenay aux Roses 92260, France; UMR_007, CEA and University of Paris Saclay, Fontenay aux Roses 92260, France; INSERM, Paris 75013, France.
| |
Collapse
|
10
|
Tsukamoto T, Okada S. The use of RetroNectin in studies requiring in vitro HIV-1 infection of human hematopoietic stem/progenitor cells. J Virol Methods 2017; 248:234-237. [PMID: 28789988 DOI: 10.1016/j.jviromet.2017.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 12/26/2022]
Abstract
Human immunodeficiency virus (HIV) causes damage, directly or indirectly, to the whole hematopoietic system, including CD34+ hematopoietic stem/progenitor cells (HSPCs). CXCR4-tropic strains of HIV-1 may affect the function of CD34+CXCR4+ progenitor cells either by infecting the cells or modifying the dynamics of more differentiated hematopoietic cells. However, CD34+ cells are known for their resistance to HIV-1 infection in vitro, which restricts any detailed analysis of the impact of HIV on HSPCs. We report the use of RetroNectin, a recombinant fibronectin fragment used for gene transfer with lentiviral vectors, to overcome the limitation associated with CD34+ cell resistance to HIV-1 infection. RetroNectin coating of plates improved in vitro HIV-1 infectivity on human CD34+ cells by 10 fold. This resulted in stable HIV-1 infection for 5 weeks in an OP9-DL1 coculture. These results suggest that RetroNectin may be a useful tool for long-term monitoring of in vitro HIV-infected CD34+ cells.
Collapse
Affiliation(s)
- Tetsuo Tsukamoto
- The Kirby Institute for infection and immunity in society, University of New South Wales, Sydney, Australia; Center for AIDS Research, Kumamoto University, Kumamoto, Japan; Department of Immunology, Kindai University Faculty of Medicine, Osaka, Japan.
| | - Seiji Okada
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
11
|
Geis FK, Galla M, Hoffmann D, Kuehle J, Zychlinski D, Maetzig T, Schott JW, Schwarzer A, Goffinet C, Goff SP, Schambach A. Potent and reversible lentiviral vector restriction in murine induced pluripotent stem cells. Retrovirology 2017; 14:34. [PMID: 28569216 PMCID: PMC5452410 DOI: 10.1186/s12977-017-0358-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/23/2017] [Indexed: 12/12/2022] Open
Abstract
Background Retroviral vectors are derived from wild-type retroviruses, can be used to study retrovirus-host interactions and are effective tools in gene and cell therapy. However, numerous cell types are resistant or less permissive to retrovirus infection due to the presence of active defense mechanisms, or the absence of important cellular host co-factors. In contrast to multipotent stem cells, pluripotent stem cells (PSC) have potential to differentiate into all three germ layers. Much remains to be elucidated in the field of anti-viral immunity in stem cells, especially in PSC. Results In this study, we report that transduction with HIV-1-based, lentiviral vectors (LV) is impaired in murine PSC. Analyses of early retroviral events in induced pluripotent stem cells (iPSC) revealed that the restriction is independent of envelope choice and does not affect reverse transcription, but perturbs nuclear entry and proviral integration. Proteasomal inhibition by MG132 could not circumvent the restriction. However, prevention of cyclophilin A (CypA) binding to the HIV-1 capsid via use of either a CypA inhibitor (cyclosporine A) or CypA-independent capsid mutants improved transduction. In addition, application of higher vector doses also increased transduction. Our data revealed a CypA mediated restriction in iPSC, which was acquired during reprogramming, associated with pluripotency and relieved upon subsequent differentiation. Conclusions We showed that murine PSC and iPSC are less susceptible to LV. The block observed in iPSC was CypA-dependent and resulted in reduced nuclear entry of viral DNA and proviral integration. Our study helps to improve transduction of murine pluripotent cells with HIV-1-based vectors and contributes to our understanding of retrovirus-host interactions in PSC. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0358-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Franziska K Geis
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Dirk Hoffmann
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Johannes Kuehle
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Daniela Zychlinski
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Tobias Maetzig
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Juliane W Schott
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Adrian Schwarzer
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Christine Goffinet
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infections Research, Hannover, Germany
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY, USA.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA.,Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY, USA
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany. .,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany. .,Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Latent human cytomegalovirus enhances HIV-1 infection in CD34 + progenitor cells. Blood Adv 2017; 1:306-318. [PMID: 29296946 DOI: 10.1182/bloodadvances.2016000638] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/15/2016] [Indexed: 01/12/2023] Open
Abstract
Individuals who have been preinfected by human cytomegalovirus (HCMV) are more prone to AIDS disease progression after subsequent HIV-1 infection but the underlying mechanism remains elusive. HCMV is a ubiquitous DNA virus that commonly establishes lifelong latent infection in CD34+ progenitor cells, where latency-specific HCMV genes may modulate host restriction to HIV-1 infection. To test this hypothesis, we studied progenitor cells that are known to resist replicative HIV-1 infection because of the intrinsic expression of host restriction factors. Interestingly, in primary CD34+ cells undergoing latent HCMV infection, an enhanced level of HIV-1 proviral DNA and replication was observed as measured by digital polymerase chain reaction, quantitative polymerase chain reaction, and Gag expression, and confirmed using dual-reporter pseudovirus encoding X4- or R5-tropic envelope and T-cell transfer. This phenomenon may be partially explained by the upregulation of HIV-1 entry coreceptors, including chemokine receptors CXCR4 and CCR5, but not of the primary receptor CD4. Furthermore, latent HCMV infection downregulated the expression of HIV-1 restriction factors SAMHD1, APOBEC3G, tetherin, and Mx2 in CD34+ progenitor cells, which may confer to enhanced HIV-1 infection. However, this enhancement was abrogated when ultraviolet-inactivated HCMV was used for comparison, suggesting that expression of latent HCMV genes is essential for this effect. Importantly, HCMV gB and HIV-1 p24 can be detected in the same cell by immunofluorescence and flow cytometry; therefore, the establishment of HCMV latency in CD34+ cells likely leads to host cell gene modulation that favors HIV-1 infection.
Collapse
|
13
|
Borsotti C, Borroni E, Follenzi A. Lentiviral vector interactions with the host cell. Curr Opin Virol 2016; 21:102-108. [PMID: 27637073 DOI: 10.1016/j.coviro.2016.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022]
Abstract
Lentiviral vectors (LVs)-mediated gene transfer is an efficient method for ex vivo and in vivo gene therapy. Actually, LVs have been used in several clinical trials and therapeutic correction was reached in affected patients. However, in order to be effective gene therapy needs to be efficient without detrimental effects for target cells. Successful cell transduction by LVs can be hampered by several factors such as the activation of innate immune sensors during cell transduction and different restriction factors (RFs) inhibiting viral replication inside the cells. Therefore, a better knowledge of host-vector interactions is important for the development of more efficient gene therapy strategies improving the LVs platform by limiting harmful responses.
Collapse
Affiliation(s)
- Chiara Borsotti
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara 28100, Italy
| | - Ester Borroni
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara 28100, Italy
| | - Antonia Follenzi
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara 28100, Italy.
| |
Collapse
|
14
|
Griffin DO, Goff SP. Restriction of HIV-1-based lentiviral vectors in adult primary marrow-derived and peripheral mobilized human CD34+ hematopoietic stem and progenitor cells occurs prior to viral DNA integration. Retrovirology 2016; 13:14. [PMID: 26945863 PMCID: PMC4779582 DOI: 10.1186/s12977-016-0246-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/18/2016] [Indexed: 01/10/2023] Open
Abstract
Background Gene therapy is currently being attempted using a number of delivery vehicles including lentiviral-based vectors. The delivery and insertion of a gene using lentiviral-based vectors involves multiple discrete steps, including reverse transcription of viral RNA into DNA, nuclear entry, integration of viral DNA into the host genome and expression of integrated genes. Transduction of murine stem cells by the murine leukemia viruses is inefficient because the expression of the integrated DNA is profoundly blocked. Transduction of human stem cells by lentivirus vectors is also inefficient, but the cause and specific part of the retroviral lifecycle where this block occurs is unknown. Results Here we demonstrate that the dominant point of restriction of an HIV-1-based lentiviral vector in adult human hematopoietic stem and progenitor cells (HSPCs) from bone marrow and also those obtained following peripheral mobilization is prior to viral DNA integration. We specifically show that restriction of HSPCs to an HIV-1-based lentiviral vector is prior to formation of nuclear DNA forms. Conclusions Murine restriction of MLV and human cellular restriction of HIV-1 are fundamentally different. While murine restriction of MLV occurs post integration, human restriction of HIV-1 occurs before integration.
Collapse
Affiliation(s)
- Daniel O Griffin
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, HHSC 1310c, 701 West 168th Street, New York, NY, 10032, USA. .,Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA.
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, HHSC 1310c, 701 West 168th Street, New York, NY, 10032, USA. .,Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY, 10032, USA. .,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|