1
|
Duan H, Chi X, Yang X, Pan S, Liu X, Gao P, Zhang F, Zhang X, Dong X, Liao Y, Yang W. Computational design and improvement of a broad influenza virus HA stem targeting antibody. Structure 2025; 33:489-503.e5. [PMID: 39884272 DOI: 10.1016/j.str.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/28/2024] [Accepted: 01/03/2025] [Indexed: 02/01/2025]
Abstract
Broadly neutralizing antibodies (nAbs) are vital therapeutic tools to counteract both pandemic and seasonal influenza threats. Traditional strategies for optimizing nAbs generally rely on labor-intensive, high-throughput mutagenesis screens. Here, we present an innovative structure-based design framework for the optimization of nAbs, which integrates epitope-paratope analysis, computational modeling, and rational design approaches, complemented by comprehensive experimental assessment. This approach was applied to optimize MEDI8852, a nAb targeting the stalk region of influenza A virus hemagglutinin (HA). The resulting variant, M18.1.2.2, shows a marked enhancement in both affinity and neutralizing efficacy, as demonstrated both in vitro and in vivo. Computational modeling reveals that this improvement can be attributed to the fine-tuning of interactions between the antibody's side-chains and the epitope residues that are highly conserved across the influenza A virus HA stalk. Our dry-wet iterative protocol for nAb optimization presented here yielded a promising candidate for influenza intervention.
Collapse
Affiliation(s)
- Huarui Duan
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaojing Chi
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuehua Yang
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shengnan Pan
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiuying Liu
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Peixiang Gao
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fangyuan Zhang
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinhui Zhang
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuemeng Dong
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yi Liao
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Yang
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
De Meyer A, Meuleman P. Preclinical animal models to evaluate therapeutic antiviral antibodies. Antiviral Res 2024; 225:105843. [PMID: 38548022 DOI: 10.1016/j.antiviral.2024.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2024]
Abstract
Despite the availability of effective preventative vaccines and potent small-molecule antiviral drugs, effective non-toxic prophylactic and therapeutic measures are still lacking for many viruses. The use of monoclonal and polyclonal antibodies in an antiviral context could fill this gap and provide effective virus-specific medical interventions. In order to develop these therapeutic antibodies, preclinical animal models are of utmost importance. Due to the variability in viral pathogenesis, immunity and overall characteristics, the most representative animal model for human viral infection differs between virus species. Therefore, throughout the years researchers sought to find the ideal preclinical animal model for each virus. The most used animal models in preclinical research include rodents (mice, ferrets, …) and non-human primates (macaques, chimpanzee, ….). Currently, antibodies are tested for antiviral efficacy against a variety of viruses including different hepatitis viruses, human immunodeficiency virus (HIV), influenza viruses, respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and rabies virus. This review provides an overview of the current knowledge about the preclinical animal models that are used for the evaluation of therapeutic antibodies for the abovementioned viruses.
Collapse
Affiliation(s)
- Amse De Meyer
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
3
|
Huang X, Yin G, Cai Y, Hu J, Huang J, Liu Q, Feng X. Identification of Unique and Conserved Neutralizing Epitopes of Vestigial Esterase Domain in HA Protein of the H9N2 Subtype of Avian Influenza Virus. Viruses 2022; 14:2739. [PMID: 36560743 PMCID: PMC9787348 DOI: 10.3390/v14122739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The H9N2 subtype of avian influenza virus (AIV) has been reported to infect not only birds, but also humans. The hemagglutinin (HA) protein is the main surface antigen of AIV and plays an important role in the viral infection. For treatment strategies and vaccine development, HA protein has been an important target for the development of broadly neutralizing antibodies against influenza A virus. To investigate the vital target determinant cluster in HA protein in this work, HA gene was cloned and expressed in the prokaryotic expression vector pET28a. The spleen lymphocytes from BALC/c mice immunized with the purified recombinant HA protein were fused with SP2/0 cells. After Hypoxanthine-Aminopterin-Thymidine (HAT) medium screening and indirect ELISA detection, six hybridoma cell lines producing anti-HA monoclonal antibodies were screened. The gradually truncated HA gene expression and western blotting were used to identify their major locations in epitopes specific to these monoclonal antibodies. It was found that the epitopes were located in three areas: 112NVENLEEL119, 117EELRSLFS124, and 170PIQDAQ175. Epitope 112NVENLEEL119 has a partial amino acid crossover with 117EELRSLFS124, which is located in the vestigial esterase domain "110-helix" of HA, and the monoclonal antibody recognizing these epitopes showed the neutralizing activity, suggesting that the region 112NVENLEELRSLFS124 might be a novel neutralizing epitope. The results of the homology analysis showed that these three epitopes were generally conserved in H9N2 subtype AIV, and will provide valuable insights into H9N2 vaccine design and improvement, as well as antibody-based therapies for treatment of H9N2 AIV infection.
Collapse
Affiliation(s)
- Xiangyu Huang
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Guihu Yin
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiqin Cai
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianing Hu
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingwen Huang
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingtao Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiuli Feng
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|