1
|
Zhang XY, Hong LL, Ling ZQ. MUC16: clinical targets with great potential. Clin Exp Med 2024; 24:101. [PMID: 38758220 PMCID: PMC11101557 DOI: 10.1007/s10238-024-01365-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
Mucin 16 (MUC16) is a membrane-bound mucin that is abnormally expressed or mutated in a variety of diseases, especially tumors, while being expressed in normal body epithelium. MUC16 and its extracellular components are often important cancer-related biomarkers. Abnormal expression of MUC16 promotes tumor progression through mesenchymal protein, PI3K/AKT pathway, JAK2/STAT3 pathway, ERK/FBW7/c-Myc, and other mechanisms, and plays an important role in the occurrence and development of tumors. In addition, MUC16 also helps tumor immune escape by inhibiting T cells and NK cells. Many drugs and trials targeting MUC16 have been developed, and MUC16 may be a new direction for future treatments. In this paper, the mechanism of action of MUC16 in the development of cancer, especially in the immune escape of tumor, is introduced in detail, indicating the potential of MUC16 in clinical treatment.
Collapse
Affiliation(s)
- Xin-Yu Zhang
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China
- The Second Clinical Medical College of Zhejiang, Chinese Medicine University, Hangzhou, 310053, China
| | - Lian-Lian Hong
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China.
- The Second Clinical Medical College of Zhejiang, Chinese Medicine University, Hangzhou, 310053, China.
| |
Collapse
|
2
|
Li J, Pei L, Liang S, Xu S, Wang Y, Wang X, Liao Y, Zhan Q, Cheng W, Yang Z, Tang X, Zhang H, Xiao Q, Chen J, Liu L, Wang L. Gene mutation analysis using next-generation sequencing and its clinical significance in patients with myeloid neoplasm: A multi-center study from China. Cancer Med 2023; 12:9332-9350. [PMID: 36799265 PMCID: PMC10166913 DOI: 10.1002/cam4.5690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Myeloid neoplasms (MN) tend to relapse and deteriorate. Exploring the genomic mutation landscape of MN using next-generation sequencing (NGS) is a great measure to clarify the mechanism of oncogenesis and progression of MN. METHODS This multicenter retrospective study investigated 303 patients with MN using NGS from 2019 to 2021. The characteristics of the mutation landscape in the MN subgroups and the clinical value of gene variants were analyzed. RESULTS At least one mutation was detected in 88.11% of the patients (267/303). TET2 was the most common mutation in the cohort, followed by GATA2, ASXL1, FLT3, DNMT3A, and TP53. Among patients with myeloid leukemia (ML), multivariate analysis showed that patients aged ≥60 years had lower overall survival (OS, p = 0.004). Further analysis showed TET2, NPM1, SRSF2, and IDH1 gene mutations, and epigenetic genes (p < 0.050) presented significantly higher frequency in older patients. In patients with myelodysplastic syndrome (MDS) and myelodysplastic neoplasms (MPN), univariate analysis showed that BCORL1 had a significant impact on OS (p = 0.040); however, in multivariate analysis, there were no factors significantly associated with OS. Differential analysis of genetic mutations showed FLT3, TP53, MUC16, SRSF2, and KDM5A mutated more frequently (p < 0.050) in secondary acute myeloid leukemia (s-AML) than in MDS and MPN. TP53, U2AF1, SRSF2, and KDM5A were mutated more frequently (p < 0.050) in s-AML than in primary AML. KDM5A was observed to be restricted to patients with s-AML in this study, and only co-occurred with MUC16 and TP53 (2/2, 100%). Another mutation was MUC16, and its co-occurrence pattern differed between s-AML and AML. MUC16 mutations co-occurred with KDM5A and TP53 in 66.7% (2/3) of patients with s-AML and co-occurred with CEBPA in 100% (4/4) of patients with AML. CONCLUSIONS Our results demonstrate different genomic mutation patterns in the MN subgroups and highlight the clinical value of genetic variants.
Collapse
Affiliation(s)
- Junnan Li
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Li Pei
- Department of Hematology, The First Affiliated Hospital of Army Medical University(Southwest Hospital), Chongqing, China
| | - Simin Liang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Shuangnian Xu
- Department of Hematology, The First Affiliated Hospital of Army Medical University(Southwest Hospital), Chongqing, China
| | - Yi Wang
- Department of Hematology, Shaanxi Provincial People's Hospital, Xi'An, Shaanxi, China
| | - Xiao Wang
- Department of Hematology, Shaanxi Provincial People's Hospital, Xi'An, Shaanxi, China
| | - Yi Liao
- Department of Oncology and Hematology, Chongqing University Affiliated Center Hospital, Chongqing, China
| | - Qian Zhan
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Wei Cheng
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zesong Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiaoqiong Tang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hongbin Zhang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Qing Xiao
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jianbin Chen
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Lin Liu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
3
|
Jia Z, Wu N, Jiang X, Li H, Sun J, Shi M, Li C, Ge Y, Hu X, Ye W, Tang Y, Shan J, Cheng Y, Xia XQ, Shi L. Integrative Transcriptomic Analysis Reveals the Immune Mechanism for a CyHV-3-Resistant Common Carp Strain. Front Immunol 2021; 12:687151. [PMID: 34290708 PMCID: PMC8287582 DOI: 10.3389/fimmu.2021.687151] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022] Open
Abstract
Anti-disease breeding is becoming the most promising solution to cyprinid herpesvirus-3 (CyHV-3) infection, the major threat to common carp aquaculture. Virus challenging studies suggested that a breeding strain of common carp developed resistance to CyHV-3 infection. This study illustrates the immune mechanisms involved in both sensitivity and anti-virus ability for CyHV3 infection in fish. An integrative analysis of the protein-coding genes and long non-coding RNAs (lncRNAs) using transcriptomic data was performed. Tissues from the head kidney of common carp were extracted at days 0 (the healthy control) and 7 after CyHV-3 infection (the survivors) and used to analyze the transcriptome through both Illumina and PacBio sequencing. Following analysis of the GO terms and KEGG pathways involved, the immune-related terms and pathways were merged. To dig out details on the immune aspect, the DEGs were filtered using the current common carp immune gene library. Immune gene categories and their corresponding genes in different comparison groups were revealed. Also, the immunological Gene Ontology terms for lncRNA modulation were retained. The weighted gene co-expression network analysis was used to reveal the regulation of immune genes by lncRNA. The results demonstrated that the breeding carp strain develops a marked resistance to CyHV-3 infection through a specific innate immune mechanism. The featured biological processes were autophagy, phagocytosis, cytotoxicity, and virus blockage by lectins and MUC3. Moreover, the immune-suppressive signals, such as suppression of IL21R on STAT3, PI3K mediated inhibition of inflammation by dopamine upon infection, as well as the inhibition of NLRC3 on STING during a steady state. Possible susceptible factors for CyHV-3, such as ITGB1, TLR18, and CCL4, were also revealed from the non-breeding strain. The results of this study also suggested that Nramp and PAI regulated by LncRNA could facilitate virus infection and proliferation for infected cells respectively, while T cell leukemia homeobox 3 (TLX3), as well as galectin 3 function by lncRNA, may play a role in the resistance mechanism. Therefore, immune factors that are immunogenetically insensitive or susceptible to CyHV-3 infection have been revealed.
Collapse
Affiliation(s)
- Zhiying Jia
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China.,Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing, China
| | - Nan Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaona Jiang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
| | - Heng Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxin Sun
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
| | - Mijuan Shi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chitao Li
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
| | - Yanlong Ge
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
| | - Xuesong Hu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
| | - Weidong Ye
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Tang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Junwei Shan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yingyin Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Qin Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Lianyu Shi
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
| |
Collapse
|
4
|
Rodriguez-Garcia M, Connors K, Ghosh M. HIV Pathogenesis in the Human Female Reproductive Tract. Curr HIV/AIDS Rep 2021; 18:139-156. [PMID: 33721260 PMCID: PMC9273024 DOI: 10.1007/s11904-021-00546-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW Women remain disproportionately affected by the HIV/AIDS pandemic. The primary mechanism for HIV acquisition in women is sexual transmission, yet the immunobiological factors that contribute to HIV susceptibility remain poorly characterized. Here, we review current knowledge on HIV pathogenesis in women, focusing on infection and immune responses in the female reproductive tract (FRT). RECENT FINDINGS We describe recent findings on innate immune protection and HIV target cell distribution in the FRT. We also review multiple factors that modify susceptibility to infection, including sex hormones, microbiome, trauma, and how HIV risk changes during women's life cycle. Finally, we review current strategies for HIV prevention and identify barriers for research in HIV infection and pathogenesis in women. A complex network of interrelated biological and sociocultural factors contributes to HIV risk in women and impairs prevention and cure strategies. Understanding how HIV establishes infection in the FRT can provide clues to develop novel interventions to prevent HIV acquisition in women.
Collapse
Affiliation(s)
- Marta Rodriguez-Garcia
- Department of Immunology, Tufts University School of Medicine, 150 Harrison Ave, Boston, MA, 02111, USA
| | - Kaleigh Connors
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA, 15261, USA
| | - Mimi Ghosh
- Department of Epidemiology, Milken Institute School of Public Health and Health Services, The George Washington University, 800 22nd St NW, Washington, DC, 20052, USA.
| |
Collapse
|