1
|
Le Boulch M, Jacquet E, Nhiri N, Shmulevitz M, Jaïs PH. Rational design of an artificial tethered enzyme for non-templated post-transcriptional mRNA polyadenylation by the second generation of the C3P3 system. Sci Rep 2024; 14:5156. [PMID: 38431749 PMCID: PMC10908868 DOI: 10.1038/s41598-024-55947-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/29/2024] [Indexed: 03/05/2024] Open
Abstract
We have previously introduced the first generation of C3P3, an artificial system that allows the autonomous in-vivo production of mRNA with m7GpppN-cap. While C3P3-G1 synthesized much larger amounts of capped mRNA in human cells than conventional nuclear expression systems, it produced a proportionately much smaller amount of the corresponding proteins, indicating a clear defect of mRNA translatability. A possible mechanism for this poor translatability could be the rudimentary polyadenylation of the mRNA produced by the C3P3-G1 system. We therefore sought to develop the C3P3-G2 system using an artificial enzyme to post-transcriptionally lengthen the poly(A) tail. This system is based on the mutant mouse poly(A) polymerase alpha fused at its N terminus with an N peptide from the λ virus, which binds to BoxBr sequences placed in the 3'UTR region of the mRNA of interest. The resulting system selectively brings mPAPαm7 to the target mRNA to elongate its poly(A)-tail to a length of few hundred adenosine. Such elongation of the poly(A) tail leads to an increase in protein expression levels of about 2.5-3 times in cultured human cells compared to the C3P3-G1 system. Finally, the coding sequence of the tethered mutant poly(A) polymerase can be efficiently fused to that of the C3P3-G1 enzyme via an F2A sequence, thus constituting the single-ORF C3P3-G2 enzyme. These technical developments constitute an important milestone in improving the performance of the C3P3 system, paving the way for its applications in bioproduction and non-viral human gene therapy.
Collapse
Affiliation(s)
- Marine Le Boulch
- Eukarÿs SAS, Pépinière Genopole, 4 rue Pierre Fontaine, Genopole Entreprises Campus 3, 4 Rue Pierre Fontaine, 91000, Evry-Courcouronnes, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-Sur-Yvette, France
| | - Naïma Nhiri
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-Sur-Yvette, France
| | - Maya Shmulevitz
- Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, 6-142J Katz Group Centre for Pharmacy and Health Research, 114 Street NW, Edmonton, AB, T6G 2E1, Canada
| | - Philippe H Jaïs
- Eukarÿs SAS, Pépinière Genopole, 4 rue Pierre Fontaine, Genopole Entreprises Campus 3, 4 Rue Pierre Fontaine, 91000, Evry-Courcouronnes, France.
| |
Collapse
|
2
|
LaPointe A, Gale M, Kell AM. Orthohantavirus Replication in the Context of Innate Immunity. Viruses 2023; 15:1130. [PMID: 37243216 PMCID: PMC10220641 DOI: 10.3390/v15051130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Orthohantaviruses are rodent-borne, negative-sense RNA viruses that are capable of causing severe vascular disease in humans. Over the course of viral evolution, these viruses have tailored their replication cycles in such a way as to avoid and/or antagonize host innate immune responses. In the rodent reservoir, this results in life long asymptomatic infections. However, in hosts other than its co-evolved reservoir, the mechanisms for subduing the innate immune response may be less efficient or absent, potentially leading to disease and/or viral clearance. In the case of human orthohantavirus infection, the interaction of the innate immune response with viral replication is thought to give rise to severe vascular disease. The orthohantavirus field has made significant advancements in understanding how these viruses replicate and interact with host innate immune responses since their identification by Dr. Ho Wang Lee and colleagues in 1976. Therefore, the purpose of this review, as part of this special issue dedicated to Dr. Lee, was to summarize the current knowledge of orthohantavirus replication, how viral replication activates innate immunity, and how the host antiviral response, in turn, impacts viral replication.
Collapse
Affiliation(s)
- Autumn LaPointe
- Department of Molecular Genetics and Microbiology, University of New Mexico, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Alison M. Kell
- Department of Molecular Genetics and Microbiology, University of New Mexico, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| |
Collapse
|
3
|
Vera-Otarola J, Castillo-Vargas E, Angulo J, Barriga FM, Batlle E, Lopez-Lastra M. The viral nucleocapsid protein and the human RNA-binding protein Mex3A promote translation of the Andes orthohantavirus small mRNA. PLoS Pathog 2021; 17:e1009931. [PMID: 34547046 PMCID: PMC8454973 DOI: 10.1371/journal.ppat.1009931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022] Open
Abstract
The capped Small segment mRNA (SmRNA) of the Andes orthohantavirus (ANDV) lacks a poly(A) tail. In this study, we characterize the mechanism driving ANDV-SmRNA translation. Results show that the ANDV-nucleocapsid protein (ANDV-N) promotes in vitro translation from capped mRNAs without replacing eukaryotic initiation factor (eIF) 4G. Using an RNA affinity chromatography approach followed by mass spectrometry, we identify the human RNA chaperone Mex3A (hMex3A) as a SmRNA-3’UTR binding protein. Results show that hMex3A enhances SmRNA translation in a 3’UTR dependent manner, either alone or when co-expressed with the ANDV-N. The ANDV-N and hMex3A proteins do not interact in cells, but both proteins interact with eIF4G. The hMex3A–eIF4G interaction showed to be independent of ANDV-infection or ANDV-N expression. Together, our observations suggest that translation of the ANDV SmRNA is enhanced by a 5’-3’ end interaction, mediated by both viral and cellular proteins. Andes orthohantavirus (ANDV) is endemic in Argentina and Chile and is the primary etiological agent of hantavirus cardiopulmonary syndrome (HCPS) in South America. ANDV is unique among other members of the Hantaviridae family of viruses because of its ability to spread from person to person. The molecular mechanisms driving ANDV protein synthesis remain poorly understood. A previous report showed that translation of the Small segment mRNA (SmRNA) of ANDV relied on both the 5’cap and the 3’untranslated region (UTR) of the SmRNA. In this new study, we further characterize the mechanism by which the 5’ and 3’end of the SmRNA interact to assure viral protein synthesis. We establish that the viral nucleocapsid protein N and the cellular protein hMex3A participate in the process. These observations indicated that both viral and cellular proteins regulate viral gene expression during ANDV infection by enabling the viral mRNA to establish a non-covalent 5’-3’end interaction.
Collapse
Affiliation(s)
- Jorge Vera-Otarola
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Unidad de Virología Aplicada, Dirección de Investigación y Doctorados de la Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Estefania Castillo-Vargas
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Odontología, Universidad Finis Terrae, Santiago, Chile
| | - Jenniffer Angulo
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco M. Barriga
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology. Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology. Barcelona, Spain
- ICREA, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Marcelo Lopez-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
4
|
Laenen L, Dellicour S, Vergote V, Nauwelaers I, De Coster S, Verbeeck I, Vanmechelen B, Lemey P, Maes P. Spatio-temporal analysis of Nova virus, a divergent hantavirus circulating in the European mole in Belgium. Mol Ecol 2016; 25:5994-6008. [PMID: 27862516 DOI: 10.1111/mec.13887] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022]
Abstract
Over the last decade, the recognized host range of hantaviruses has expanded considerably with the discovery of distinct hantaviruses in shrews, moles and bats. Unfortunately, in-depth studies of these viruses have been limited. Here we describe a comprehensive analysis of the spatial distribution, genetic diversity and evolution of Nova virus, a hantavirus that has the European mole as its natural host. Our analysis demonstrated that Nova virus has a high prevalence and widespread distribution in Belgium. While Nova virus displayed relatively high nucleotide diversity in Belgium, amino acid changes were limited. The nucleocapsid protein was subjected to strong purifying selection, reflecting the strict evolutionary constraints placed upon Nova virus by its host. Spatio-temporal analysis using Bayesian evolutionary inference techniques demonstrated that Nova virus had efficiently spread in the European mole population in Belgium, forming two distinct clades, representing east and west of Belgium. The influence of landscape barriers, in the form of the main waterways, on the dispersal velocity of Nova virus was assessed using an analytical framework for comparing Bayesian viral phylogenies with environmental landscape data. We demonstrated that waterways did not act as an environmental resistance factor slowing down Nova virus diffusion in the mole population. With this study, we provide information about the spatial diffusion of Nova virus and contribute sequence information that can be applied in further functional studies.
Collapse
Affiliation(s)
- Lies Laenen
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical Virology, Herestraat 49, 3000, Leuven, Belgium
| | - Simon Dellicour
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Evolutionary and Computational Virology, Herestraat 49, 3000, Leuven, Belgium
| | - Valentijn Vergote
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical Virology, Herestraat 49, 3000, Leuven, Belgium
| | - Inne Nauwelaers
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical Virology, Herestraat 49, 3000, Leuven, Belgium
| | - Sarah De Coster
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical Virology, Herestraat 49, 3000, Leuven, Belgium
| | - Ina Verbeeck
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical Virology, Herestraat 49, 3000, Leuven, Belgium
| | - Bert Vanmechelen
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical Virology, Herestraat 49, 3000, Leuven, Belgium
| | - Philippe Lemey
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Evolutionary and Computational Virology, Herestraat 49, 3000, Leuven, Belgium
| | - Piet Maes
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical Virology, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
5
|
Cáceres CJ, Angulo J, Contreras N, Pino K, Vera-Otarola J, López-Lastra M. Targeting deoxyhypusine hydroxylase activity impairs cap-independent translation initiation driven by the 5'untranslated region of the HIV-1, HTLV-1, and MMTV mRNAs. Antiviral Res 2016; 134:192-206. [PMID: 27633452 DOI: 10.1016/j.antiviral.2016.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022]
Abstract
Replication of the human immunodeficiency virus type 1 (HIV-1) is dependent on eIF5A hypusination. Hypusine is formed post-translationally on the eIF5A precursor by two consecutive enzymatic steps; a reversible reaction involving the enzyme deoxyhypusine synthase (DHS) and an irreversible step involving the enzyme deoxyhypusine hydroxylase (DOHH). In this study we explored the effect of inhibiting DOHH activity and therefore eIF5A hypusination, on HIV-1 gene expression. Results show that the expression of proteins from an HIV-1 molecular clone is reduced when DOHH activity is inhibited by Deferiprone (DFP) or Ciclopirox (CPX). Next we evaluated the requirement of DOHH activity for internal ribosome entry site (IRES)-mediated translation initiation driven by the 5'untranslated region (5'UTR) of the full length HIV-1 mRNA. Results show that HIV-1 IRES activity relies on DOHH protein concentration and enzymatic activity. Similar results were obtained for IRES-dependent translation initiation mediated by 5'UTR of the human T-cell lymphotropic virus type 1 (HTLV-1) and the mouse mammary tumor virus (MMTV) mRNAs. Interestingly, activity of the poliovirus IRES, was less sensitive to the targeting of DOHH suggesting that not all viral IRESs are equally dependent on the cellular concentration or the activity of DOHH. In summary we present evidence indicating that the cellular concentration of DOHH and its enzymatic activity play a role in HIV-1, HTLV-1 and MMTV IRES-mediated translation initiation.
Collapse
Affiliation(s)
- C Joaquín Cáceres
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Jenniffer Angulo
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Nataly Contreras
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Karla Pino
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Jorge Vera-Otarola
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile.
| |
Collapse
|
6
|
Poblete-Durán N, Prades-Pérez Y, Vera-Otarola J, Soto-Rifo R, Valiente-Echeverría F. Who Regulates Whom? An Overview of RNA Granules and Viral Infections. Viruses 2016; 8:v8070180. [PMID: 27367717 PMCID: PMC4974515 DOI: 10.3390/v8070180] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/10/2016] [Accepted: 06/21/2016] [Indexed: 12/22/2022] Open
Abstract
After viral infection, host cells respond by mounting an anti-viral stress response in order to create a hostile atmosphere for viral replication, leading to the shut-off of mRNA translation (protein synthesis) and the assembly of RNA granules. Two of these RNA granules have been well characterized in yeast and mammalian cells, stress granules (SGs), which are translationally silent sites of RNA triage and processing bodies (PBs), which are involved in mRNA degradation. This review discusses the role of these RNA granules in the evasion of anti-viral stress responses through virus-induced remodeling of cellular ribonucleoproteins (RNPs).
Collapse
Affiliation(s)
- Natalia Poblete-Durán
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8389100, Chile.
| | - Yara Prades-Pérez
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8389100, Chile.
| | - Jorge Vera-Otarola
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago 8330024, Chile.
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8389100, Chile.
| | - Fernando Valiente-Echeverría
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8389100, Chile.
| |
Collapse
|
7
|
Cáceres CJ, Contreras N, Angulo J, Vera-Otarola J, Pino-Ajenjo C, Llorian M, Ameur M, Lisboa F, Pino K, Lowy F, Sargueil B, López-Lastra M. Polypyrimidine tract-binding protein binds to the 5' untranslated region of the mouse mammary tumor virus mRNA and stimulates cap-independent translation initiation. FEBS J 2016; 283:1880-901. [PMID: 26972759 DOI: 10.1111/febs.13708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/01/2016] [Accepted: 03/08/2016] [Indexed: 12/23/2022]
Abstract
The 5' untranslated region (UTR) of the full-length mRNA of the mouse mammary tumor virus (MMTV) harbors an internal ribosomal entry site (IRES). In this study, we show that the polypyrimidine tract-binding protein (PTB), an RNA-binding protein with four RNA recognition motifs (RRMs), binds to the MMTV 5' UTR stimulating its IRES activity. There are three isoforms of PTB: PTB1, PTB2, and PTB4. Results show that PTB1 and PTB4, but not PTB2, stimulate MMTV-IRES activity. PTB1 promotes MMTV-IRES-mediated initiation more strongly than PTB4. When expressed in combination, PTB1 further enhanced PTB4 stimulation of the MMTV-IRES, while PTB2 fully abrogates PTB4-induced stimulation. PTB1-induced stimulation of MMTV-IRES was not altered in the presence of PTB4 or PTB2. Mutational analysis reveals that stimulation of MMTV-IRES activity is abrogated when PTB1 is mutated either in RRM1/RRM2 or RRM3/RRM4. In contrast, a PTB4 RRM1/RRM2 mutant has reduced effect over MMTV-IRES activity, while stimulation of the MMTV-IRES activity is still observed when the PTB4 RRM3/RMM4 mutant is used. Therefore, PTB1 and PTB4 differentially stimulate the IRES activity. In contrast, PTB2 acts as a negative modulator of PTB4-induced stimulation of MMTV-IRES. We conclude that PTB1 and PTB4 act as IRES trans-acting factors of the MMTV-IRES.
Collapse
Affiliation(s)
- Carlos J Cáceres
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nataly Contreras
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jenniffer Angulo
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Vera-Otarola
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Constanza Pino-Ajenjo
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Melissa Ameur
- Centre national de la Recherche Scientifique, Unité Mixte de Recherche 8015, Laboratoire de Cristallographie et RMN Biologique, Université Paris Descartes, France
| | - Francisco Lisboa
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karla Pino
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando Lowy
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bruno Sargueil
- Centre national de la Recherche Scientifique, Unité Mixte de Recherche 8015, Laboratoire de Cristallographie et RMN Biologique, Université Paris Descartes, France
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
General Molecular Strategy for Development of Arenavirus Live-Attenuated Vaccines. J Virol 2015; 89:12166-77. [PMID: 26401045 DOI: 10.1128/jvi.02075-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/14/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Hemorrhagic fever arenaviruses (HFA) pose important public health problems in regions where they are endemic. Thus, Lassa virus (LASV) infects several hundred thousand individuals yearly in West Africa, causing a large number of Lassa fever cases associated with high morbidity and mortality. Concerns about human-pathogenic arenaviruses are exacerbated because of the lack of FDA-licensed arenavirus vaccines and because current antiarenaviral therapy is limited to an off-label use of ribavirin that is only partially effective. The Mopeia virus (MOPV)/LASV reassortant (ML29) is a LASV candidate live-attenuated vaccine (LAV) that has shown promising results in animal models. Nevertheless, the mechanism of ML29 attenuation remains unknown, which raises concerns about the phenotypic stability of ML29 in response to additional mutations. Development of LAVs based on well-defined molecular mechanisms of attenuation will represent a major step in combatting HFA. We used the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) to develop a general molecular strategy for arenavirus attenuation. Our approach involved replacement of the noncoding intergenic region (IGR) of the L genome segment with the IGR of the S genome segment to generate a recombinant LCMV, rLCMV(IGR/S-S), that was highly attenuated in vivo but induced protection against a lethal challenge with wild-type LCMV. Attenuation of rLCMV(IGR/S-S) was associated with a stable reorganization of the control of viral gene expression. This strategy can facilitate the rapid development of LAVs with the antigenic composition of the parental HFA and a mechanism of attenuation that minimizes concerns about increased virulence that could be caused by genetic changes in the LAV. IMPORTANCE Hemorrhagic fever arenaviruses (HFA) cause high morbidity and mortality, and pose important public health problems in the regions where they are endemic. Implementation of live-attenuated vaccines (LAV) will represent a major step in combatting HFA. Here we have used the prototypic arenavirus LCMV to document a general molecular strategy for arenavirus attenuation that can facilitate the rapid development of safe and effective, as well as stable, LAV to combat HFA.
Collapse
|
9
|
Ribosomal protein S19-binding domain provides insights into hantavirus nucleocapsid protein-mediated translation initiation mechanism. Biochem J 2015; 464:109-21. [PMID: 25062117 DOI: 10.1042/bj20140449] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The hantaviral zoonotic diseases pose a significant threat to human health due to the lack of potential antiviral therapeutics or a vaccine against hantaviruses. N (Sin Nombre hantavirus nucleocapsid protein) augments mRNA translation. N binds to both the mRNA 5' cap and 40S ribosomal subunit via RPS19 (ribosomal protein S19). N with the assistance of the viral mRNA 5'-UTR preferentially favours the translation of a downstream ORF. We identified and characterized the RPS19-binding domain at the N-terminus of N. Its deletion did not influence the secondary structure, but affected the conformation of trimeric N molecules. The N variant lacking the RPS19-binding region was able to bind both the mRNA 5' cap and panhandle-like structure, formed by the termini of viral genomic RNA. In addition, the N variant formed stable trimers similar to wild-type N. Use of this variant in multiple experiments provided insights into the mechanism of ribosome loading during N-mediated translation strategy. The present study suggests that N molecules individually associated with the mRNA 5' cap and RPS19 of the 40S ribosomal subunit undergo N-N interaction to facilitate the engagement of N-associated ribosomes at the mRNA 5' cap. This has revealed new targets for therapeutic intervention of hantavirus infection.
Collapse
|
10
|
Sagar V, Murray KE. The mammalian orthoreovirus bicistronic M3 mRNA initiates translation using a 5' end-dependent, scanning mechanism that does not require interaction of 5'-3' untranslated regions. Virus Res 2014; 183:30-40. [PMID: 24486484 DOI: 10.1016/j.virusres.2014.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 12/12/2022]
Abstract
Mammalian orthoreovirus mRNAs possess short 5' UTR, lack 3' poly(A) tails, and may lack 5' cap structures at late times post-infection. As such, the mechanisms by which these viral mRNAs recruit ribosomes remain completely unknown. Toward addressing this question, we used bicistronic MRV M3 mRNA to analyze the role of 5' and 3' UTRs during MRV protein synthesis. The 5' UTR was found to be dispensable for translation initiation; however, reducing its length promoted increased downstream initiation. Modifying start site Kozak context altered the ratio of upstream to downstream initiation, whereas mutations in the 3' UTR did not. Moreover, an M3 mRNA lacking a 3' UTR was able to rescue MRV infection to WT levels in an siRNA trans-complementation assay. Together, these data allow us to propose a model in which the MRV M3 mRNA initiates translation using a 5' end-dependent, scanning mechanism that does not require the viral mRNA 3' UTR or 5'-3' UTRs interaction.
Collapse
Affiliation(s)
- Vidya Sagar
- Department of Biological Sciences, Florida International University, Miami, FL 33199, United States.
| | - Kenneth E Murray
- Department of Biological Sciences, Florida International University, Miami, FL 33199, United States
| |
Collapse
|
11
|
Mini-genome rescue of Crimean-Congo hemorrhagic fever virus and research into the evolutionary patterns of its untranslated regions. Virus Res 2013; 177:22-34. [PMID: 23891575 DOI: 10.1016/j.virusres.2013.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 07/04/2013] [Accepted: 07/05/2013] [Indexed: 11/23/2022]
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a member of genus Nairovirus, family Bunyaviridae, which are distributed widely in Africa, Europe and Asia with several genotypes. As a BSL-4 level pathogen, the requirement of high-level biosafety facilities severely constrains researches on live virus manipulation. In this study, we developed a helper-virus-independent mini-genome rescue system for the Chinese YL04057 strain. Based on the enhanced green fluorescent protein (EGFP)-derived mini-genome plasmids, this polymerase I driven system permits easy observation and quantification. Unlike previous report, gradually reduced levels of activity of the CCHFV L, M and S untranslated regions (UTRs) were observed in our system. We also demonstrated that the UTRs at both ends were indispensable for mini-genome background expression. In addition, we phylogentically analyzed all six UTRs of CCHFV and showed that L-UTRs were clustered together approximately corresponding to their original geographical continents. The UTRs of M segment showed a similar branch structure to its open reading frames (ORFs), and nearly an identical tree was generated with 5' UTRs of S segment compared with its ORFs. However, the 3' UTRs of S segment formed new divergent groups. Compatibility tests of YL04057 strain nucleocapsid protein and L protein expression plasmids with Nigerian strain IbAr10200 mini-genomes revealed lower compatibility of L-UTRs without an obvious effect on M-UTRs. Moreover, we demonstrated that the L-UTRs could tolerate certain nucleotide mutations. This system may provide a foundation for future studies of the viral replication cycle, pathogenic mechanisms and evolutionary patterns of CCHFV.
Collapse
|
12
|
The Andes hantavirus NSs protein is expressed from the viral small mRNA by a leaky scanning mechanism. J Virol 2011; 86:2176-87. [PMID: 22156529 DOI: 10.1128/jvi.06223-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The small mRNA (SmRNA) of all Bunyaviridae encodes the nucleocapsid (N) protein. In 4 out of 5 genera in the Bunyaviridae, the smRNA encodes an additional nonstructural protein denominated NSs. In this study, we show that Andes hantavirus (ANDV) SmRNA encodes an NSs protein. Data show that the NSs protein is expressed in the context of an ANDV infection. Additionally, our results suggest that translation initiation from the NSs initiation codon is mediated by ribosomal subunits that have bypassed the upstream N protein initiation codon through a leaky scanning mechanism.
Collapse
|
13
|
Walter CT, Barr JN. Recent advances in the molecular and cellular biology of bunyaviruses. J Gen Virol 2011; 92:2467-2484. [PMID: 21865443 DOI: 10.1099/vir.0.035105-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The family Bunyaviridae of segmented, negative-stranded RNA viruses includes over 350 members that infect a bewildering variety of animals and plants. Many of these bunyaviruses are the causative agents of serious disease in their respective hosts, and are classified as emerging viruses because of their increased incidence in new populations and geographical locations throughout the world. Emerging bunyaviruses, such as Crimean-Congo hemorrhagic fever virus, tomato spotted wilt virus and Rift Valley fever virus, are currently attracting great interest due to migration of their arthropod vectors, a situation possibly linked to climate change. These and other examples of continued emergence suggest that bunyaviruses will probably continue to pose a sustained global threat to agricultural productivity, animal welfare and human health. The threat of emergence is particularly acute in light of the lack of effective preventative or therapeutic treatments for any of these viruses, making their study an important priority. This review presents recent advances in the understanding of the bunyavirus life cycle, including aspects of their molecular, cellular and structural biology. Whilst special emphasis is placed upon the emerging bunyaviruses, we also describe the extensive body of work involving model bunyaviruses, which have been the subject of major contributions to our overall understanding of this important group of viruses.
Collapse
Affiliation(s)
- Cheryl T Walter
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| | - John N Barr
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| |
Collapse
|
14
|
Ribosome binding to a 5' translational enhancer is altered in the presence of the 3' untranslated region in cap-independent translation of turnip crinkle virus. J Virol 2011; 85:4638-53. [PMID: 21389125 DOI: 10.1128/jvi.00005-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plus-strand RNA viruses without 5' caps require noncanonical mechanisms for ribosome recruitment. A translational enhancer in the 3' untranslated region (UTR) of Turnip crinkle virus (TCV) contains an internal T-shaped structure (TSS) that binds to 60S ribosomal subunits. We now report that the 63-nucleotide (nt) 5' UTR of TCV contains a 19-nt pyrimidine-rich element near the initiation codon that supports translation of an internal open reading frame (ORF) independent of upstream 5' UTR sequences. Addition of 80S ribosomes to the 5' UTR reduced the flexibility of the polypyrimidine residues and generated a toeprint consistent with binding to this region. Binding of salt-washed 40S ribosomal subunits was reduced 6-fold when the pyrimidine-rich sequence was mutated. 40S subunit binding generated the same toeprint as 80S ribosomes but also additional ones near the 5' end. Generation of out-of-frame AUGs upstream of the polypyrimidine region reduced translation, which suggests that 5'-terminal entry of 40S subunits is followed by scanning and that the polypyrimidine region is needed for an alternative function that requires ribosome binding. No evidence for RNA-RNA interactions between 5' and 3' sequences was found, suggesting that TCV utilizes an alternative means for circularizing its genome. Combining 5' and 3' UTR fragments in vitro had no discernible effect on the structures of the RNAs. In contrast, when 80S ribosomes were added to both fragments, structural changes were found in the 5' UTR polypyrimidine tract that were not evident when ribosomes interacted with the individual fragments. This suggests that ribosomes can promote an interaction between the 5' and 3' UTRs of TCV.
Collapse
|