1
|
Kumar NA, Cheong K, Powell DR, da Fonseca Pereira C, Anderson J, Evans VA, Lewin SR, Cameron PU. The role of antigen presenting cells in the induction of HIV-1 latency in resting CD4(+) T-cells. Retrovirology 2015; 12:76. [PMID: 26362311 PMCID: PMC4567795 DOI: 10.1186/s12977-015-0204-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/01/2015] [Indexed: 12/24/2022] Open
Abstract
Background Combination antiretroviral therapy (cART) is able to control HIV-1 viral replication, however long-lived latent infection in resting memory CD4+ T-cells persist. The mechanisms for establishment and maintenance of latent infection in resting memory CD4+ T-cells remain unclear. Previously we have shown that HIV-1 infection of resting CD4+ T-cells co-cultured with CD11c+ myeloid dendritic cells (mDC) produced a population of non-proliferating T-cells with latent infection. Here we asked whether different antigen presenting cells (APC), including subpopulations of DC and monocytes, were able to induce post-integration latent infection in resting CD4+ T-cells, and examined potential cell interactions that may be involved using RNA-seq. Results mDC (CD1c+), SLAN+ DC and CD14+ monocytes were most efficient in stimulating proliferation of CD4+ T-cells during syngeneic culture and in generating post-integration latent infection in non-proliferating CD4+ T-cells following HIV-1 infection of APC-T cell co-cultures. In comparison, plasmacytoid DC (pDC) and B-cells did not induce latent infection in APC-T-cell co-cultures. We compared the RNA expression profiles of APC subpopulations that could and could not induce latency in non-proliferating CD4+ T-cells. Gene expression analysis, comparing the CD1c+ mDC, SLAN+ DC and CD14+ monocyte subpopulations to pDC identified 53 upregulated genes that encode proteins expressed on the plasma membrane that could signal to CD4+ T-cells via cell–cell interactions (32 genes), immune checkpoints (IC) (5 genes), T-cell activation (9 genes), regulation of apoptosis (5 genes), antigen presentation (1 gene) and through unknown ligands (1 gene). Conclusions APC subpopulations from the myeloid lineage, specifically mDC subpopulations and CD14+ monocytes, were able to efficiently induce post-integration HIV-1 latency in non-proliferating CD4+ T-cells in vitro. Inhibition of key pathways involved in mDC-T-cell interactions and HIV-1 latency may provide novel targets to eliminate HIV-1 latency. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0204-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nitasha A Kumar
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, 3004, Australia. .,Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, 3004, Australia. .,Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, 3010, Australia.
| | - Karey Cheong
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, 3004, Australia. .,Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, 3004, Australia. .,Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, 3010, Australia.
| | - David R Powell
- Victorian Life Science Computational Initiative, Parkville, 3010, Australia. .,Monash Bioinformatics Platform, Monash University, Clayton, 3800, Australia.
| | | | - Jenny Anderson
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, 3004, Australia. .,Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, 3004, Australia. .,Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, 3010, Australia.
| | - Vanessa A Evans
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, 3004, Australia. .,Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, 3004, Australia. .,Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, 3010, Australia.
| | - Sharon R Lewin
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, 3004, Australia. .,Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, 3004, Australia. .,Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, 3010, Australia.
| | - Paul U Cameron
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, 3004, Australia. .,Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, 3004, Australia. .,Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, 3010, Australia.
| |
Collapse
|
2
|
Paredes Juárez GA, Spasojevic M, Faas MM, de Vos P. Immunological and technical considerations in application of alginate-based microencapsulation systems. Front Bioeng Biotechnol 2014; 2:26. [PMID: 25147785 PMCID: PMC4123607 DOI: 10.3389/fbioe.2014.00026] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/17/2014] [Indexed: 01/31/2023] Open
Abstract
Islets encapsulated in immunoprotective microcapsules are being proposed as an alternative for insulin therapy for treatment of type 1 diabetes. Many materials for producing microcapsules have been proposed but only alginate does currently qualify as ready for clinical application. However, many different alginate-based capsule systems do exist. A pitfall in the field is that these systems are applied without a targeted strategy with varying degrees of success as a consequence. In the current review, the different properties of alginate-based systems are reviewed in view of future application in humans. The use of allogeneic and xenogeneic islet sources are discussed with acknowledging the different degrees of immune protection the encapsulation system should supply. Also issues such as oxygen supply and the role of danger associated molecular patterns (DAMPS) in immune activation are being reviewed. A common property of the encapsulation systems is that alginates for medical application should have an extreme high degree of purity and lack pathogen-associated molecular patterns (PAMPs) to avoid activation of the recipient’s immune system. Up to now, non-inflammatory alginates are only produced on a lab-scale and are not yet commercially available. This is a major pitfall on the route to human application. Also the lack of predictive pre-clinical models is a burden. The principle differences between relevant innate and adaptive immune responses in humans and other species are reviewed. Especially, the extreme differences between the immune system of non-human primates and humans are cumbersome as non-human primates may not be predictive of the immune responses in humans, as opposed to the popular belief of regulatory agencies. Current insight is that although the technology is versatile major research efforts are required for identifying the mechanical, immunological, and physico-chemical requirements that alginate-based capsules should meet for successful human application.
Collapse
Affiliation(s)
- Genaro Alberto Paredes Juárez
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Milica Spasojevic
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands ; Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen , Groningen , Netherlands
| | - Marijke M Faas
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Paul de Vos
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| |
Collapse
|
3
|
Soto PC, Stein LL, Hurtado-Ziola N, Hedrick SM, Varki A. Relative over-reactivity of human versus chimpanzee lymphocytes: implications for the human diseases associated with immune activation. THE JOURNAL OF IMMUNOLOGY 2010; 184:4185-95. [PMID: 20231688 DOI: 10.4049/jimmunol.0903420] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although humans and chimpanzees share >99% identity in alignable protein sequences, they differ surprisingly in the incidence and severity of some common diseases. In general, humans infected with various viruses, such as HIV and hepatitis C virus, appear to develop stronger reactions and long-term complications. Humans also appear to suffer more from other diseases associated with over-reactivity of the adaptive immune system, such as asthma, psoriasis, and rheumatoid arthritis. In this study, we show that human T cells are more reactive than chimpanzee T cells to a wide variety of stimuli, including anti-TCR Abs of multiple isotypes, l-phytohemagglutin, Staphylococcus aureus superantigen, a superagonist anti-CD28 Ab, and in MLRs. We also extend this observation to B cells, again showing a human propensity to react more strongly to stimuli. Finally, we show a relative increase in activation markers and cytokine production in human lymphocytes in response to uridine-rich (viral-like) ssRNA. Thus, humans manifest a generalized lymphocyte over-reactivity relative to chimpanzees, a finding that is correlated with decreased levels of inhibitory sialic acid-recognizing Ig-superfamily lectins (Siglecs; particularly Siglec-5) on human T and B cells. Furthermore, Siglec-5 levels are upregulated by activation in chimpanzee but not human lymphocytes, and human T cell reactivity can be downmodulated by forced expression of Siglec-5. Thus, a key difference in the immune reactivity of chimp and human lymphocytes appears to be related to the differential expression of Siglec-5. Taken together, these data may help explain human propensities for diseases associated with excessive activation of the adaptive immune system.
Collapse
Affiliation(s)
- Paula C Soto
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
4
|
Finch CE. Evolution in health and medicine Sackler colloquium: Evolution of the human lifespan and diseases of aging: roles of infection, inflammation, and nutrition. Proc Natl Acad Sci U S A 2010; 107 Suppl 1:1718-24. [PMID: 19966301 PMCID: PMC2868286 DOI: 10.1073/pnas.0909606106] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Humans have evolved much longer lifespans than the great apes, which rarely exceed 50 years. Since 1800, lifespans have doubled again, largely due to improvements in environment, food, and medicine that minimized mortality at earlier ages. Infections cause most mortality in wild chimpanzees and in traditional forager-farmers with limited access to modern medicine. Although we know little of the diseases of aging under premodern conditions, in captivity, chimpanzees present a lower incidence of cancer, ischemic heart disease, and neurodegeneration than current human populations. These major differences in pathology of aging are discussed in terms of genes that mediate infection, inflammation, and nutrition. Apolipoprotein E alleles are proposed as a prototype of pleiotropic genes, which influence immune responses, arterial and Alzheimer's disease, and brain development.
Collapse
Affiliation(s)
- Caleb E. Finch
- Davis School of Gerontology and the University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
5
|
Ngandu NK, Seoighe C, Scheffler K. Evidence of HIV-1 adaptation to host HLA alleles following chimp-to-human transmission. Virol J 2009; 6:164. [PMID: 19818146 PMCID: PMC2765438 DOI: 10.1186/1743-422x-6-164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 10/10/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cytotoxic T-lymphocyte immune response is important in controlling HIV-1 replication in infected humans. In this immune pathway, viral peptides within infected cells are presented to T-lymphocytes by the polymorphic human leukocyte antigens (HLA). HLA alleles exert selective pressure on the peptide regions and immune escape mutations that occur at some of the targeted sites can enable the virus to adapt to the infected host. The pattern of ongoing immune escape and reversion associated with several human HLA alleles has been studied extensively. Such mutations revert upon transmission to a host without the HLA allele because the escape mutation incurs a fitness cost. However, to-date there has been little attempt to study permanent loss of CTL epitopes due to escape mutations without an effect on fitness. RESULTS Here, we set out to determine the extent of adaptation of HIV-1 to three well-characterized HLA alleles during the initial exposure of the virus to the human cytotoxic immune responses following transmission from chimpanzee. We generated a chimpanzee consensus sequence to approximate the virus sequence that was initially transmitted to the human host and used a method based on peptide binding affinity to HLA crystal structures to predict peptides that were potentially targeted by the HLA alleles on this sequence. Next, we used codon-based phylogenetic models to quantify the average selective pressure that acted on these regions during the period immediately following the zoonosis event, corresponding to the branch of the phylogenetic tree leading to the common ancestor of all of the HIV-1 sequences. Evidence for adaptive evolution during this period was observed at regions recognised by HLA A*6801 and A*0201, both of which are common in African populations. No evidence of adaptive evolution was observed at sites targeted by HLA-B*2705, which is a rare allele in African populations. CONCLUSION Our results suggest that the ancestral HIV-1 virus experienced a period of positive selective pressure due to immune responses associated with HLA alleles that were common in the infected human population. We propose that this resulted in permanent escape from immune responses targeting unconstrained regions of the virus.
Collapse
Affiliation(s)
- Nobubelo K Ngandu
- National Bioinformatics Node, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, 7925, South Africa
| | - Cathal Seoighe
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Ireland
| | - Konrad Scheffler
- Computer Science Division, Dept of Mathematical Sciences, University of Stellenbosch, Private Bag X1, 7602 Matieland, South Africa
| |
Collapse
|
6
|
Decker JM, Zammit KP, Easlick JL, Santiago ML, Bonenberger D, Hahn BH, Kutsch O, Bibollet-Ruche F. Effective activation alleviates the replication block of CCR5-tropic HIV-1 in chimpanzee CD4+ lymphocytes. Virology 2009; 394:109-18. [PMID: 19748647 DOI: 10.1016/j.virol.2009.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 08/10/2009] [Accepted: 08/19/2009] [Indexed: 01/24/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) originated in chimpanzees; yet, several previous studies have shown that primary HIV-1 isolates replicate poorly in chimpanzee CD4+ T lymphocytes in vitro and in vivo. The reasons for this apparent restriction are not understood. Here, we describe a new activation protocol that led to a reproducible expansion and activation of chimpanzee CD4+ T lymphocytes in vitro. Using this protocol, we uncovered species-specific differences in the activation profiles of human and chimpanzee CD4+ T-cells, including HLA-DR and CD62L. Moreover, we found that improved activation facilitated the replication of both CXCR4 and CCR5-tropic HIV-1 in CD4+ T-cell cultures from over 30 different chimpanzees. Thus, the previously reported "replication block" of CCR5-tropic HIV-1 in chimpanzee lymphocytes appears to be due, at least in large part, to suboptimal T-cell activation.
Collapse
Affiliation(s)
- Julie M Decker
- Department of Medicine, University of Alabama at Birmingham, 720 20th Street South, KAUL 852, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Varki A. Multiple changes in sialic acid biology during human evolution. Glycoconj J 2008; 26:231-45. [PMID: 18777136 PMCID: PMC7087641 DOI: 10.1007/s10719-008-9183-z] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Revised: 08/09/2008] [Accepted: 08/18/2008] [Indexed: 12/13/2022]
Abstract
Humans are genetically very similar to “great apes”, (chimpanzees, bonobos, gorillas and orangutans), our closest evolutionary relatives. We have discovered multiple genetic and biochemical differences between humans and these other hominids, in relation to sialic acids and in Siglecs (Sia-recognizing Ig superfamily lectins). An inactivating mutation in the CMAH gene eliminated human expression of N-glycolylneuraminic acid (Neu5Gc) a major sialic acid in “great apes”. Additional human-specific changes have been found, affecting at least 10 of the <60 genes known to be involved in the biology of sialic acids. There are potential implications for unique features of humans, as well as for human susceptibility or resistance to disease. Additionally, metabolic incorporation of Neu5Gc from animal-derived materials occurs into biotherapeutic molecules and cellular preparations - and into human tissues from dietary sources, particularly red meat and milk products. As humans also have varying and sometime high levels of circulating anti-Neu5Gc antibodies, there are implications for biotechnology products, and for some human diseases associated with chronic inflammation.
Collapse
Affiliation(s)
- Ajit Varki
- Center for Academic Research and Training in Anthropogeny, Department of Medicine, University of California, San Diego, 9500 Gilman Dr MC 0687, La Jolla, CA 92093-0687, USA.
| |
Collapse
|