1
|
Bobkova MR. Defective HIV proviruses: possible involvement in the HIV infection pathogenesis. Vopr Virusol 2024; 69:399-414. [PMID: 39527763 DOI: 10.36233/0507-4088-261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Indexed: 11/16/2024]
Abstract
This review article analyzes information obtained from a literature search on defective HIV genomes (HIV-1, Human Immunodeficiency Virus, Lentivirus, Orthoretrovirinae, Retroviridae). It discusses the origins of defective HIV genomes, their potential for transcription and translation, and the role of defective RNA and proteins in stimulating both innate and adaptive immunity. The article also explores their contribution to HIV pathogenesis, immune system hyperactivation despite successful antiretroviral therapy (ART), and the evolutionary processes in HIV proviral populations under ART. Additionally, it addresses challenges in reservoir elimination and HIV eradication that arise from the existence of defective HIV viruses.
Collapse
Affiliation(s)
- M R Bobkova
- I. Mechnikov Research Institute for Vaccines and Sera
| |
Collapse
|
2
|
Wang TT, Hirons A, Doerflinger M, Morris KV, Ledger S, Purcell DFJ, Kelleher AD, Ahlenstiel CL. Current State of Therapeutics for HTLV-1. Viruses 2024; 16:1616. [PMID: 39459949 PMCID: PMC11512412 DOI: 10.3390/v16101616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Human T cell leukaemia virus type-1 (HTLV-1) is an oncogenic retrovirus that causes lifelong infection in ~5-10 million individuals globally. It is endemic to certain First Nations populations of Northern and Central Australia, Japan, South and Central America, Africa, and the Caribbean region. HTLV-1 preferentially infects CD4+ T cells and remains in a state of reduced transcription, often being asymptomatic in the beginning of infection, with symptoms developing later in life. HTLV-1 infection is implicated in the development of adult T cell leukaemia/lymphoma (ATL) and HTLV-1-associated myelopathies (HAM), amongst other immune-related disorders. With no preventive or curative interventions, infected individuals have limited treatment options, most of which manage symptoms. The clinical burden and lack of treatment options directs the need for alternative treatment strategies for HTLV-1 infection. Recent advances have been made in the development of RNA-based antiviral therapeutics for Human Immunodeficiency Virus Type-1 (HIV-1), an analogous retrovirus that shares modes of transmission with HTLV-1. This review highlights past and ongoing efforts in the development of HTLV-1 therapeutics and vaccines, with a focus on the potential for gene therapy as a new treatment modality in light of its successes in HIV-1, as well as animal models that may help the advancement of novel antiviral and anticancer interventions.
Collapse
Affiliation(s)
- Tiana T. Wang
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
| | - Ashley Hirons
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia; (A.H.); (D.F.J.P.)
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Kevin V. Morris
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia;
| | - Scott Ledger
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
| | - Damian F. J. Purcell
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia; (A.H.); (D.F.J.P.)
| | - Anthony D. Kelleher
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chantelle L. Ahlenstiel
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Buck AM, LaFranchi BH, Henrich TJ. Gaining momentum: stem cell therapies for HIV cure. Curr Opin HIV AIDS 2024; 19:194-200. [PMID: 38686850 PMCID: PMC11155292 DOI: 10.1097/coh.0000000000000859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
PURPOSE OF REVIEW Durable HIV-1 remission has been reported in a person who received allogeneic stem cell transplants (SCTs) involving CCR5 Δ32/Δ32 donor cells. Much of the reduction in HIV-1 burden following allogeneic SCT with or without donor cells inherently resistant to HIV-1 infection is likely due to cytotoxic graft-versus-host effects on residual recipient immune cells. Nonetheless, there has been growing momentum to develop and implement stem cell therapies that lead to durable long-term antiretroviral therapy (ART)-free remission without the need for SCT. RECENT FINDINGS Most current research leverages gene editing techniques to modify hematopoietic stem cells which differentiate into immune cells capable of harboring HIV-1. Approaches include targeting genes that encode HIV-1 co-receptors using Zinc Finger Nucleases (ZFN) or CRISPR-Cas-9 to render a pool of adult or progenitor cells resistant to de-novo infection. Other strategies involve harnessing multipotent mesenchymal stromal cells to foster immune environments that can more efficiently recognize and target HIV-1 while promoting tissue homeostasis. SUMMARY Many of these strategies are currently in a state of infancy or adolescence; nonetheless, promising preclinical and first-in-human studies have been performed, providing further rationale to focus resources on stem cell therapies.
Collapse
Affiliation(s)
- Amanda M Buck
- Division of Experimental Medicine, University of California San Francisco, San Francisco, California, USA
| | | | | |
Collapse
|
4
|
Liu Y, Binda CS, Berkhout B, Das AT. CRISPR-Cas attack of HIV-1 proviral DNA can cause unintended deletion of surrounding cellular DNA. J Virol 2023; 97:e0133423. [PMID: 37982648 PMCID: PMC10734527 DOI: 10.1128/jvi.01334-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/23/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE Although HIV replication can be effectively inhibited by antiretroviral therapy, this does not result in a cure as the available drugs do not inactivate the integrated HIV-1 DNA in infected cells. Consequently, HIV-infected individuals need lifelong therapy to prevent viral rebound. Several preclinical studies indicate that CRISPR-Cas gene-editing systems can be used to achieve permanent inactivation of the viral DNA. It was previously shown that this inactivation was due to small inactivating mutations at the targeted sites in the HIV genome and to excision or inversion of the viral DNA fragment between two target sites. We, here, demonstrate that CRISPR-Cas treatment also causes large unintended deletions, which can include surrounding chromosomal sequences. As the loss of chromosomal sequences may cause oncogenic transformation of the cell, such unintended large deletions form a potential safety risk in clinical application of this antiviral application and possibly all CRISPR-Cas gene-editing approaches.
Collapse
Affiliation(s)
- Ye Liu
- Amsterdam UMC, location University of Amsterdam, Laboratory of Experimental Virology, Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Caroline S. Binda
- Amsterdam UMC, location University of Amsterdam, Laboratory of Experimental Virology, Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Ben Berkhout
- Amsterdam UMC, location University of Amsterdam, Laboratory of Experimental Virology, Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Atze T. Das
- Amsterdam UMC, location University of Amsterdam, Laboratory of Experimental Virology, Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Au TY, Arudkumar J, Assavarittirong C, Benjamin S. Killing two birds with one stone: CRISPR/Cas9 CCR5 knockout hematopoietic stem cells transplantation to treat patients with HIV infection and hematological malignancies concurrently. Clin Exp Med 2023; 23:4163-4175. [PMID: 37500934 DOI: 10.1007/s10238-023-01129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
Human immunodeficiency virus (HIV) is known to cause hematological malignancy. Hematopoietic stem cell transplantation (HPSCT) is an advanced treatment for that. Currently, there are three successful HIV-eliminated cases, and two received HPSCT from CCR5-absent donors. It is well established that the CCR5 protein on the cell surface assists human immunodeficiency virus entry. Preliminary studies have revealed that knocking out CCR5 and/or CXCR4 may inhibit the viral entry of HIV, which may prove promising in the further development of HIV treatment options. Herein, we suggest performing autologous or allogeneic HSCT with CCR5 KO hematopoietic stem cells in patients who suffer from complicated HIV conditions, particularly drug-resistant HIV or a concurrent diagnosis of HIV with lymphoma/leukemia, to achieve complete HIV remission. Nevertheless, at the clinical forefront of CRISPR-HIV technology, more efforts should be directed to advance nonhuman primate (NHP) models for studies of HIV pathogenesis and off-target assessments within this system. CRISPR-Cas9 knock out of host HSCT-expressing CCR5 or CXCR4 may confer HIV-resistance, which when applied to bedside therapeutics in an allogeneic or autologous manner can warrant a permanent and effective treatment outcome.
Collapse
Affiliation(s)
- Tsz Yuen Au
- Center for Medical Education in English, Poznan University of Medical Sciences, Poznan, Poland
| | - Jayshen Arudkumar
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
- The University of Adelaide, Adelaide, SA, Australia.
| | - Chanika Assavarittirong
- Center for Medical Education in English, Poznan University of Medical Sciences, Poznan, Poland
| | - Shamiram Benjamin
- Center for Medical Education in English, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
6
|
Marino-Merlo F, Grelli S, Mastino A, Lai M, Ferrari P, Nicolini A, Pistello M, Macchi B. Human T-Cell Leukemia Virus Type 1 Oncogenesis between Active Expression and Latency: A Possible Source for the Development of Therapeutic Targets. Int J Mol Sci 2023; 24:14807. [PMID: 37834255 PMCID: PMC10572738 DOI: 10.3390/ijms241914807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/16/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) is the only known human oncogenic retrovirus. HTLV-1 can cause a type of cancer called adult T-cell leukemia/lymphoma (ATL). The virus is transmitted through the body fluids of infected individuals, primarily breast milk, blood, and semen. At least 5-10 million people in the world are infected with HTLV-1. In addition to ATL, HTLV-1 infection can also cause HTLV-I-associated myelopathy (HAM/TSP). ATL is characterized by a low viral expression and poor prognosis. The oncogenic mechanism triggered by HTLV-1 is extremely complex and the molecular pathways are not fully understood. However, viral regulatory proteins Tax and HTLV-1 bZIP factor (HBZ) have been shown to play key roles in the transformation of HTLV-1-infected T cells. Moreover, several studies have shown that the final fate of HTLV-1-infected transformed Tcell clones is the result of a complex interplay of HTLV-1 oncogenic protein expression with cellular transcription factors that subvert the cell cycle and disrupt regulated cell death, thereby exerting their transforming effects. This review provides updated information on the mechanisms underlying the transforming action of HTLV-1 and highlights potential therapeutic targets to combat ATL.
Collapse
Affiliation(s)
- Francesca Marino-Merlo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Antonio Mastino
- The Institute of Translational Pharmacology, CNR, 00133 Rome, Italy;
| | - Michele Lai
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, 56100 Pisa, Italy; (M.L.); (M.P.)
| | - Paola Ferrari
- Unit of Oncology, Department of Medical and Oncological Area, Azienda Ospedaliera—Universitaria Pisana, 56125 Pisa, Italy;
| | - Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, 56100 Pisa, Italy; (M.L.); (M.P.)
| | - Beatrice Macchi
- Department of Chemical Science and Technology, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| |
Collapse
|
7
|
Lai M, La Rocca V, Iacono E, Filipponi C, De Carli A, Favaro D, Fonnesu R, Filippini F, Spezia PG, Amato R, Catelli E, Matteo B, Lottini G, Onorati M, Clementi N, Freer G, Piomelli D, Pistello M. Inhibiting immunoregulatory amidase NAAA blocks ZIKV maturation in Human Neural Stem Cells. Antiviral Res 2023; 216:105664. [PMID: 37414288 DOI: 10.1016/j.antiviral.2023.105664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023]
Abstract
Recent evidence suggests that lipids play a crucial role in viral infections beyond their traditional functions of supplying envelope and energy, and creating protected niches for viral replication. In the case of Zika virus (ZIKV), it alters host lipids by enhancing lipogenesis and suppressing β-oxidation to generate viral factories at the endoplasmic reticulum (ER) interface. This discovery prompted us to hypothesize that interference with lipogenesis could serve as a dual antiviral and anti-inflammatory strategy to combat the replication of positive sense single-stranded RNA (ssRNA+) viruses. To test this hypothesis, we examined the impact of inhibiting N-Acylethanolamine acid amidase (NAAA) on ZIKV-infected human Neural Stem Cells. NAAA is responsible for the hydrolysis of palmitoylethanolamide (PEA) in lysosomes and endolysosomes. Inhibition of NAAA results in PEA accumulation, which activates peroxisome proliferator-activated receptor-α (PPAR-α), directing β-oxidation and preventing inflammation. Our findings indicate that inhibiting NAAA through gene-editing or drugs moderately reduces ZIKV replication by approximately one log10 in Human Neural Stem Cells, while also releasing immature virions that have lost their infectivity. This inhibition impairs furin-mediated prM cleavage, ultimately blocking ZIKV maturation. In summary, our study highlights NAAA as a host target for ZIKV infection.
Collapse
Affiliation(s)
- Michele Lai
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; Centre for Instrumentation Sharing, University of Pisa (CISUP), Italy.
| | - Veronica La Rocca
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Elena Iacono
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Carolina Filipponi
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alessandro De Carli
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Domenico Favaro
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Rossella Fonnesu
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Fabio Filippini
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Pietro Giorgio Spezia
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Rachele Amato
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Elisa Catelli
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Giulia Lottini
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Marco Onorati
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, 56127, Italy
| | - Nicola Clementi
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, 20100, Italy
| | - Giulia Freer
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, 92697-4625, United States
| | - Mauro Pistello
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; Virology Unit, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
8
|
Richetta C, Tu NQ, Delelis O. Different Pathways Conferring Integrase Strand-Transfer Inhibitors Resistance. Viruses 2022; 14:v14122591. [PMID: 36560595 PMCID: PMC9785060 DOI: 10.3390/v14122591] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Integrase Strand Transfer Inhibitors (INSTIs) are currently used as the most effective therapy in the treatment of human immunodeficiency virus (HIV) infections. Raltegravir (RAL) and Elvitegravir (EVG), the first generation of INSTIs used successfully in clinical treatment, are susceptible to the emergence of viral resistance and have a high rate of cross-resistance. To counteract these resistant mutants, second-generation INSTI drugs have been developed: Dolutegravir (DTG), Cabotegravir (CAB), and Bictegravir (BIC). However, HIV is also able to develop resistance mechanisms against the second-generation of INSTIs. This review describes the mode of action of INSTIs and then summarizes and evaluates some typical resistance mutations, such as substitution and insertion mutations. The role of unintegrated viral DNA is also discussed as a new pathway involved in conferring resistance to INSTIs. This allows us to have a more detailed understanding of HIV resistance to these inhibitors, which may contribute to the development of new INSTIs in the future.
Collapse
|
9
|
Wu M, Rai K. Demystifying extrachromosomal DNA circles: Categories, biogenesis, and cancer therapeutics. Comput Struct Biotechnol J 2022; 20:6011-6022. [PMID: 36382182 PMCID: PMC9647416 DOI: 10.1016/j.csbj.2022.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 12/01/2022] Open
Abstract
Since the advent of sequencing technologies in the 1990s, researchers have focused on the association between aberrations in chromosomal DNA and disease. However, not all forms of the DNA are linear and chromosomal. Extrachromosomal circular DNAs (eccDNAs) are double-stranded, closed-circled DNA constructs free from the chromosome that reside in the nuclei. Although widely overlooked, the eccDNAs have recently gained attention for their potential roles in physiological response, intratumoral heterogeneity and cancer therapeutics. In this review, we summarize the history, classifications, biogenesis, and highlight recent progresses on the emerging topic of eccDNAs and comment on their potential application as biomarkers in clinical settings.
Collapse
Affiliation(s)
- Manrong Wu
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kunal Rai
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
10
|
Cisneros WJ, Cornish D, Hultquist JF. Application of CRISPR-Cas9 Gene Editing for HIV Host Factor Discovery and Validation. Pathogens 2022; 11:891. [PMID: 36015010 PMCID: PMC9415735 DOI: 10.3390/pathogens11080891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 12/04/2022] Open
Abstract
Human Immunodeficiency Virus (HIV) interacts with a wide array of host factors at each stage of its lifecycle to facilitate replication and circumvent the immune response. Identification and characterization of these host factors is critical for elucidating the mechanism of viral replication and for developing next-generation HIV-1 therapeutic and curative strategies. Recent advances in CRISPR-Cas9-based genome engineering approaches have provided researchers with an assortment of new, valuable tools for host factor discovery and interrogation. Genome-wide screening in a variety of in vitro cell models has helped define the critical host factors that play a role in various cellular and biological contexts. Targeted manipulation of specific host factors by CRISPR-Cas9-mediated gene knock-out, overexpression, and/or directed repair have furthermore allowed for target validation in primary cell models and mechanistic inquiry through hypothesis-based testing. In this review, we summarize several CRISPR-based screening strategies for the identification of HIV-1 host factors and highlight how CRISPR-Cas9 approaches have been used to elucidate the molecular mechanisms of viral replication and host response. Finally, we examine promising new technologies in the CRISPR field and how these may be applied to address critical questions in HIV-1 biology going forward.
Collapse
Affiliation(s)
- William J. Cisneros
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Daphne Cornish
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| |
Collapse
|
11
|
Chronopoulou L, Falasca F, Di Fonzo F, Turriziani O, Palocci C. siRNA Transfection Mediated by Chitosan Microparticles for the Treatment of HIV-1 Infection of Human Cell Lines. MATERIALS 2022; 15:ma15155340. [PMID: 35955275 PMCID: PMC9369812 DOI: 10.3390/ma15155340] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023]
Abstract
Gene delivery is the basis for developing gene therapies that, in the future, may be able to cure virtually any disease, including viral infections. The use of short interfering RNAs (siRNAs) targeting viral replication is a novel strategy for treating HIV-1 infection. In this study, we prepared chitosan particles containing siRNA tat/rev via ionotropic gelation. Chitosan-based particles were efficiently internalized by cells, as evidenced by fluorescence microscopy. The antiviral effect of chitosan-based particles was studied on the C8166 cell line infected with HIV-1 and compared with the use of commercial liposomes (ESCORT). A significant reduction in HIV replication was also observed in cells treated with empty chitosan particles, suggesting that chitosan may interfere with the early steps of the HIV life cycle and have a synergic effect with siRNA to reduce viral replication significantly.
Collapse
Affiliation(s)
| | - Francesca Falasca
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy; (F.F.); (O.T.)
| | - Federica Di Fonzo
- Department of Biochemical Sciences “Rossi Fanelli”, Sapienza University, 00185 Rome, Italy;
| | - Ombretta Turriziani
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy; (F.F.); (O.T.)
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University, 00185 Rome, Italy;
- CIABC-Centro di Ricerca per le Scienze Applicate alla Protezione dell’Ambiente e dei Beni Culturali, Sapienza University, 00185 Rome, Italy
- Correspondence: ; Tel.: +39-0649913317
| |
Collapse
|
12
|
Kandula UR, Wake AD. Promising Stem Cell therapy in the Management of HIV and AIDS: A Narrative Review. Biologics 2022; 16:89-105. [PMID: 35836496 PMCID: PMC9275675 DOI: 10.2147/btt.s368152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/02/2022] [Indexed: 11/23/2022]
Abstract
Stem cell therapies are becoming a major topic in biomedical research all over the planet. It may be a viable treatment choice for people suffering from a wide range of illnesses and injuries. It has recently emerged as an extremely intriguing and well-established science and research topic. Expectations have risen due to advancements in therapeutic approaches. Multiple laboratory testing of regulated stem cell culture and derivation is carried out before the formation of stem cells for the use of therapeutic process. Whereas HIV infection is contagious and can last a lifetime. Researchers are still working to develop a comprehensive and effective treatment for HIV and its associated condition, as well as AIDS. HIV propagation is primarily restricted to the immune system, notably T lymphocytes, as well as macrophages. Large numbers of research studies have contributed to a plethora of data about the enigmatic AIDS life cycle. This vast amount of data provides potential targets for AIDS therapies. Currently, stem cell transplantation, along with other procedures, provided novel insights into HIV pathogenesis and offered a glimpse of hope for the development of a viable HIV cure technique. One of its existing focus areas in HIV and AIDS research is to develop a novel therapeutic strategic plan capable of providing life-long complete recovery of HIV and AIDS without regular drug treatment and, inevitably, curative therapy for HIV and AIDS. The current paper tries to address the possibilities for improved stem cell treatments with "bone marrow, Hematopoietic, human umbilical cord mesenchymal, Genetical modifications with CRISPR/Cas9 in combination of stem cells, induced pluripotent stem cells applications" are discussed which are specifically applied in the HIV and AIDS therapeutic management advancement procedures.
Collapse
Affiliation(s)
- Usha Rani Kandula
- Department of Clinical Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Addisu Dabi Wake
- Department of Clinical Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| |
Collapse
|
13
|
Kuniholm J, Coote C, Henderson AJ. Defective HIV-1 genomes and their potential impact on HIV pathogenesis. Retrovirology 2022; 19:13. [PMID: 35764966 PMCID: PMC9238239 DOI: 10.1186/s12977-022-00601-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022] Open
Abstract
Defective HIV-1 proviruses represent a population of viral genomes that are selected for by immune pressures, and clonally expanded to dominate the persistent HIV-1 proviral genome landscape. There are examples of RNA and protein expression from these compromised genomes which are generated by a variety of mechanisms. Despite the evidence that these proviruses are transcribed and translated, their role in HIV pathogenesis has not been fully explored. The potential for these genomes to participate in immune stimulation is particularly relevant considering the accumulation of cells harboring these defective proviruses over the course of antiretroviral therapy in people living with HIV. The expression of defective proviruses in different cells and tissues could drive innate sensing mechanisms and inflammation. They may also alter antiviral T cell responses and myeloid cell functions that directly contribute to HIV-1 associated chronic comorbidities. Understanding the impact of these defective proviruses needs to be considered as we advance cure strategies that focus on targeting the diverse population of HIV-1 proviral genomes.
Collapse
Affiliation(s)
- Jeffrey Kuniholm
- Department of Microbiology, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA, 02116, USA
| | - Carolyn Coote
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA, 02116, USA
| | - Andrew J Henderson
- Department of Microbiology, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA, 02116, USA. .,Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA, 02116, USA.
| |
Collapse
|
14
|
Targeted Nanocarrier Delivery of RNA Therapeutics to Control HIV Infection. Pharmaceutics 2022; 14:pharmaceutics14071352. [PMID: 35890248 PMCID: PMC9324444 DOI: 10.3390/pharmaceutics14071352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Our understanding of HIV infection has greatly advanced since the discovery of the virus in 1983. Treatment options have improved the quality of life of people living with HIV/AIDS, turning it from a fatal disease into a chronic, manageable infection. Despite all this progress, a cure remains elusive. A major barrier to attaining an HIV cure is the presence of the latent viral reservoir, which is established early in infection and persists for the lifetime of the host, even during prolonged anti-viral therapy. Different cure strategies are currently being explored to eliminate or suppress this reservoir. Several studies have shown that a functional cure may be achieved by preventing infection and also inhibiting reactivation of the virus from the latent reservoir. Here, we briefly describe the main HIV cure strategies, focussing on the use of RNA therapeutics, including small interfering RNA (siRNA) to maintain HIV permanently in a state of super latency, and CRISPR gRNA to excise the latent reservoir. A challenge with progressing RNA therapeutics to the clinic is achieving effective delivery into the host cell. This review covers recent nanotechnological strategies for siRNA delivery using liposomes, N-acetylgalactosamine conjugation, inorganic nanoparticles and polymer-based nanocapsules. We further discuss the opportunities and challenges of those strategies for HIV treatment.
Collapse
|