1
|
Riva L, Spriet C, Barois N, Popescu CI, Dubuisson J, Rouillé Y. Comparative Analysis of Hepatitis C Virus NS5A Dynamics and Localization in Assembly-Deficient Mutants. Pathogens 2021; 10:pathogens10020172. [PMID: 33557275 PMCID: PMC7919264 DOI: 10.3390/pathogens10020172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022] Open
Abstract
The hepatitis C virus (HCV) life cycle is a tightly regulated process, during which structural and non-structural proteins cooperate. However, the interplay between HCV proteins during genomic RNA replication and progeny virion assembly is not completely understood. Here, we studied the dynamics and intracellular localization of non-structural 5A protein (NS5A), which is a protein involved both in genome replication and encapsidation. An NS5A-eGFP (enhanced green fluorescent protein) tagged version of the strain JFH-1-derived wild-type HCV was compared to the corresponding assembly-deficient viruses Δcore, NS5A basic cluster 352–533 mutant (BCM), and serine cluster 451 + 454 + 457 mutant (SC). These analyses highlighted an increase of NS5A motility when the viral protein core was lacking. Although to a lesser extent, NS5A motility was also increased in the BCM virus, which is characterized by a lack of interaction of NS5A with the viral RNA, impairing HCV genome encapsidation. This observation suggests that the more static NS5A population is mainly involved in viral assembly rather than in RNA replication. Finally, NS4B exhibited a reduced co-localization with NS5A and lipid droplets for both Δcore and SC mutants, which is characterized by the absence of interaction of NS5A with core. This observation strongly suggests that NS5A is involved in targeting NS4B to lipid droplets (LDs). In summary, this work contributes to a better understanding of the interplay between HCV proteins during the viral life cycle.
Collapse
Affiliation(s)
- Laura Riva
- University of Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France; (L.R.); (N.B.); (J.D.)
| | - Corentin Spriet
- University of Lille, CNRS, UMR 8576-UGSF-Department of Functional and Structural Glycobiology, 59000 Lille, France;
- University of Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, US 41-UMS 2014-PLBS, 59000 Lille, France
| | - Nicolas Barois
- University of Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France; (L.R.); (N.B.); (J.D.)
- University of Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, US 41-UMS 2014-PLBS, 59000 Lille, France
| | - Costin-Ioan Popescu
- Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania;
| | - Jean Dubuisson
- University of Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France; (L.R.); (N.B.); (J.D.)
| | - Yves Rouillé
- University of Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France; (L.R.); (N.B.); (J.D.)
- Correspondence:
| |
Collapse
|
2
|
Moustafa RI, Haddad JG, Linna L, Hanoulle X, Descamps V, Mesalam AA, Baumert TF, Duverlie G, Meuleman P, Dubuisson J, Lavie M. Functional Study of the C-Terminal Part of the Hepatitis C Virus E1 Ectodomain. J Virol 2018; 92:e00939-18. [PMID: 30068644 PMCID: PMC6158422 DOI: 10.1128/jvi.00939-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/26/2018] [Indexed: 12/24/2022] Open
Abstract
In the hepatitis C virus (HCV) envelope glycoproteins E1 and E2, which form a heterodimer, E2 is the receptor binding protein and the major target of neutralizing antibodies, whereas the function of E1 remains less characterized. To investigate E1 functions, we generated a series of mutants in the conserved residues of the C-terminal region of the E1 ectodomain in the context of an infectious clone. We focused our analyses on two regions of interest. The first region is located in the middle of the E1 glycoprotein (between amino acid [aa] 270 and aa 291), which contains a conserved hydrophobic sequence and was proposed to constitute a putative fusion peptide. The second series of mutants was generated in the region from aa 314 to aa 342 (the aa314-342 region), which has been shown to contain two α helices (α2 and α3) by nuclear magnetic resonance studies. Of the 22 generated mutants, 20 were either attenuated or noninfectious. Several mutations modulated the virus's dependence on claudin-1 and the scavenger receptor BI coreceptors for entry. Most of the mutations in the putative fusion peptide region affected virus assembly. Conversely, mutations in the α-helix aa 315 to 324 (315-324) residues M318, W320, D321, and M322 resulted in a complete loss of infectivity without any impact on E1E2 folding and on viral assembly. Further characterization of the W320A mutant in the HCVpp model indicated that the loss of infectivity was due to a defect in viral entry. Together, these results support a role for E1 in modulating HCV interaction with its coreceptors and in HCV assembly. They also highlight the involvement of α-helix 315-324 in a late step of HCV entry.IMPORTANCE HCV is a major public health problem worldwide. The virion harbors two envelope proteins, E1 and E2, which are involved at different steps of the viral life cycle. Whereas E2 has been extensively characterized, the function of E1 remains poorly defined. We characterized here the function of the putative fusion peptide and the region containing α helices of the E1 ectodomain, which had been previously suggested to be important for virus entry. We could confirm the importance of these regions for the virus infectivity. Interestingly, we found several residues modulating the virus's dependence on several HCV receptors, thus highlighting the role of E1 in the interaction of the virus with cellular receptors. Whereas mutations in the putative fusion peptide affected HCV infectivity and morphogenesis, several mutations in the α2-helix region led to a loss of infectivity with no effect on assembly, indicating a role of this region in virus entry.
Collapse
Affiliation(s)
- Rehab I Moustafa
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL/Centre d'Infection et d'Immunité de Lille, Lille, France
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Cairo, Egypt
| | - Juliano G Haddad
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL/Centre d'Infection et d'Immunité de Lille, Lille, France
- Laboratoire Microbiologie Santé et Environnement, Ecole Doctorale en Sciences et Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Liban
| | - Lydia Linna
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL/Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Xavier Hanoulle
- University of Lille, CNRS, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Véronique Descamps
- Equipe AGIR EA4294, Laboratoire de Virologie du Centre Hospitalier Universitaire d'Amiens, Université de Picardie Jules Verne, Amiens, France
| | - Ahmed Atef Mesalam
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo, Egypt
- Research Group Immune- and Bio-markers for Infection, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo, Egypt
| | - Thomas F Baumert
- INSERM, U1110, University of Strasbourg, Pôle Hépato-digestif-Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Gilles Duverlie
- Equipe AGIR EA4294, Laboratoire de Virologie du Centre Hospitalier Universitaire d'Amiens, Université de Picardie Jules Verne, Amiens, France
| | - Philip Meuleman
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Jean Dubuisson
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL/Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Muriel Lavie
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL/Centre d'Infection et d'Immunité de Lille, Lille, France
| |
Collapse
|
3
|
Abstract
Hepatitis C virus (HCV) infection leads to severe liver diseases including hepatocellular carcinoma (HCC). Phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumour suppressor, is frequently mutated or deleted in HCC tumors. PTEN has previously been demonstrated to inhibit HCV secretion. In this study, we determined the effects of PTEN on the other steps in HCV life cycle, including entry, translation, and replication. We showed that PTEN inhibits HCV entry through its lipid phosphatase activity. PTEN has no effect on HCV RNA translation. PTEN decreases HCV replication and the protein phosphatase activity of PTEN is essential for this function. PTEN interacts with the HCV core protein and requires R50 in domain I of HCV core and PTEN residues 1–185 for this interaction. This interaction is required for PTEN-mediated inhibition of HCV replication. This gives rise to a reduction in PTEN levels and intracellular lipid abundance, which may in turn regulate HCV replication. HCV core domain I protein increases the lipid phosphatase activity of PTEN in an in vitro assay, suggesting that HCV infection can also regulate PTEN. Taken together, our results demonstrated an important regulatory role of PTEN in the HCV life cycle.
Collapse
|
4
|
Novel replicons and trans-encapsidation systems for Hepatitis C Virus proteins live imaging and virus-host interaction proteomics. J Virol Methods 2017; 246:42-50. [PMID: 28438609 DOI: 10.1016/j.jviromet.2017.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 03/22/2017] [Accepted: 04/18/2017] [Indexed: 12/17/2022]
Abstract
Proteomics and imaging techniques are used more and more in tandem to investigate the virus-host interaction. Herein we present novel replicons, methods and trans-encapsidation systems suitable for determination of Hepatitis C Virus (HCV) proteins interactomes and live imaging of viral proteins dynamics in HCV cell culture (HCVcc) system. To identify endogenous factors involved in the HCV life cycle, we constructed full-length functional replicons with affinity purification (AP) tags fused to NS2 and NS5A proteins. Viral-host interactomes were determined and validated in HCVcc system. To investigate the dynamics of viral-host interactions, we developed a core-inducible packaging cell line which trans-encapsidates various subgenomic replicons suitable for AP in replication and assembly stages. Further, a transient trans-encapsidation system was developed for live imaging of the NS5A viral protein in replication and assembly steps, respectively. The NS5A dynamics was determined also in the full-length HCV replicon system. The analysis of NS5A dynamics showed a decreased mobility of the protein in assembly versus the replication step. The tools presented herein will allow the investigation of HCV-host interaction with improved biological relevance and biosafety.
Collapse
|
5
|
Identification of Novel Functions for Hepatitis C Virus Envelope Glycoprotein E1 in Virus Entry and Assembly. J Virol 2017; 91:JVI.00048-17. [PMID: 28179528 DOI: 10.1128/jvi.00048-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/31/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) envelope glycoprotein complex is composed of E1 and E2 subunits. E2 is the receptor-binding protein as well as the major target of neutralizing antibodies, whereas the functions of E1 remain poorly defined. Here, we took advantage of the recently published structure of the N-terminal region of the E1 ectodomain to interrogate the functions of this glycoprotein by mutating residues within this 79-amino-acid region in the context of an infectious clone. The phenotypes of the mutants were characterized to determine the effects of the mutations on virus entry, replication, and assembly. Furthermore, biochemical approaches were also used to characterize the folding and assembly of E1E2 heterodimers. Thirteen out of 19 mutations led to viral attenuation or inactivation. Interestingly, two attenuated mutants, T213A and I262A, were less dependent on claudin-1 for cellular entry in Huh-7 cells. Instead, these viruses relied on claudin-6, indicating a shift in receptor dependence for these two mutants in the target cell line. An unexpected phenotype was also observed for mutant D263A which was no longer infectious but still showed a good level of core protein secretion. Furthermore, genomic RNA was absent from these noninfectious viral particles, indicating that the D263A mutation leads to the assembly and release of viral particles devoid of genomic RNA. Finally, a change in subcellular colocalization between HCV RNA and E1 was observed for the D263A mutant. This unique observation highlights for the first time cross talk between HCV glycoprotein E1 and the genomic RNA during HCV morphogenesis.IMPORTANCE Hepatitis C virus (HCV) infection is a major public health problem worldwide. It encodes two envelope proteins, E1 and E2, which play a major role in the life cycle of this virus. E2 has been extensively characterized, whereas E1 remains poorly understood. Here, we investigated E1 functions by using site-directed mutagenesis in the context of the viral life cycle. Our results identify unique phenotypes. Unexpectedly, two mutants clearly showed a shift in receptor dependence for cell entry, highlighting a role for E1 in modulating HCV particle interaction with a cellular receptor(s). More importantly, another mutant led to the assembly and release of viral particles devoid of genomic RNA. This unique phenotype was further characterized, and we observed a change in subcellular colocalization between HCV RNA and E1. This unique observation highlights for the first time cross talk between a viral envelope protein and genomic RNA during morphogenesis.
Collapse
|
6
|
Liu X, Chen N, Lin S, Liu M. Synthesized peptide 710-725 from HCV subtype 1a E2 glycoprotein blocks HCV infection through competitive binding of CD81. Int J Mol Med 2016; 37:836-42. [PMID: 26796693 DOI: 10.3892/ijmm.2016.2459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/12/2016] [Indexed: 11/05/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a significant public health problem worldwide. However, there is still a lack of effective therapeutic drugs which could be used for the interruption of the disease. In the present study, for the first time, we reported that a synthesized peptide, which was synthesized by solid phase peptide synthesis and derived from the amino acids 710 to 725 of the HCV E2, functioned as an inhibitor of HCV infection. Using an MTT assay, we found that the E2 (710-725) peptide exerted no specific cytotoxicity on Huh7.5 cells and primary human hepatocytes (pHH). Interestingly, E2 (710-725) peptide blocked the entry of cell culture‑derived HCV (HCVcc) into hepatocytes. Moreover, it suppressed HCV RNA replication and HCV-specific protein NS3 and NS5B expression, as shown by western blot analysis. Moreover, E2 (710-725) markedly attenuated the inhibitory effect of HCVcc on hepatocyte viability. Additionally, a co-immunino-precipitation assay demonstrated that E2 (710-725) abrogated the interaction between CD81 and HCV E2 envelope protein through competitive binding of CD81. Overall, our results revealed that the synthesized peptide E2 (710-725) blocked CD81‑mediated HCV entry and possessed the potential to treat HCV infection. Thus, the present study provided novel insights into the development of new drugs for preventing HCV infection.
Collapse
Affiliation(s)
- Xiaojing Liu
- Department of Infectious Diseases, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Na Chen
- Department of Infectious Diseases, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shumei Lin
- Department of Infectious Diseases, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Min Liu
- Department of Infectious Diseases, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
7
|
Zayas M, Long G, Madan V, Bartenschlager R. Coordination of Hepatitis C Virus Assembly by Distinct Regulatory Regions in Nonstructural Protein 5A. PLoS Pathog 2016; 12:e1005376. [PMID: 26727512 PMCID: PMC4699712 DOI: 10.1371/journal.ppat.1005376] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/09/2015] [Indexed: 12/19/2022] Open
Abstract
Hepatitis C virus (HCV) nonstructural protein (NS)5A is a RNA-binding protein composed of a N-terminal membrane anchor, a structured domain I (DI) and two intrinsically disordered domains (DII and DIII) interacting with viral and cellular proteins. While DI and DII are essential for RNA replication, DIII is required for assembly. How these processes are orchestrated by NS5A is poorly understood. In this study, we identified a highly conserved basic cluster (BC) at the N-terminus of DIII that is critical for particle assembly. We generated BC mutants and compared them with mutants that are blocked at different stages of the assembly process: a NS5A serine cluster (SC) mutant blocked in NS5A-core interaction and a mutant lacking the envelope glycoproteins (ΔE1E2). We found that BC mutations did not affect core-NS5A interaction, but strongly impaired core–RNA association as well as virus particle envelopment. Moreover, BC mutations impaired RNA-NS5A interaction arguing that the BC might be required for loading of core protein with viral RNA. Interestingly, RNA-core interaction was also reduced with the ΔE1E2 mutant, suggesting that nucleocapsid formation and envelopment are coupled. These findings argue for two NS5A DIII determinants regulating assembly at distinct, but closely linked steps: (i) SC-dependent recruitment of replication complexes to core protein and (ii) BC-dependent RNA genome delivery to core protein, triggering encapsidation that is tightly coupled to particle envelopment. These results provide a striking example how a single viral protein exerts multiple functions to coordinate the steps from RNA replication to the assembly of infectious virus particles. Hepatitis C virus (HCV) nonstructural protein (NS)5A is an enigmatic RNA-binding protein that appears to regulate the different steps from RNA replication to the assembly of infectious virus particles by yet unknown mechanisms. Assembly requires delivery of the viral RNA genome from the replication machinery to the capsid protein to ensure genome packaging into nucleocapsids that acquire a membranous envelope by budding into the lumen of the endoplasmic reticulum. In this study, we provide genetic and biochemical evidence that the viral nonstructural protein (NS)5A contains two regulatory determinants in its domain (D)III that orchestrate virus assembly at two closely linked steps: (i) recruitment of replication complexes to core protein requiring a serine cluster in the C-terminal region of DIII and (ii) RNA genome delivery to core protein requiring a basic cluster in the N-terminal region of DIII. This RNA transfer most likely triggers encapsidation, which is tightly coupled to particle envelopment. These results provide a striking example for a multi-purpose viral protein exerting several distinct functions in the viral replication cycle, thus reflecting genetic economy.
Collapse
Affiliation(s)
- Margarita Zayas
- Department for Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- * E-mail: (MZ); (RB)
| | - Gang Long
- Department for Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Vanesa Madan
- Department for Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department for Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- * E-mail: (MZ); (RB)
| |
Collapse
|
8
|
Calland N, Sahuc ME, Belouzard S, Pène V, Bonnafous P, Mesalam AA, Deloison G, Descamps V, Sahpaz S, Wychowski C, Lambert O, Brodin P, Duverlie G, Meuleman P, Rosenberg AR, Dubuisson J, Rouillé Y, Séron K. Polyphenols Inhibit Hepatitis C Virus Entry by a New Mechanism of Action. J Virol 2015; 89:10053-63. [PMID: 26202241 PMCID: PMC4577911 DOI: 10.1128/jvi.01473-15] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/17/2015] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Despite the validation of direct-acting antivirals for hepatitis C treatment, the discovery of new compounds with different modes of action may still be of importance for the treatment of special patient populations. We recently identified a natural molecule, epigallocatechin-3-gallate (EGCG), as an inhibitor of hepatitis C virus (HCV) targeting the viral particle. The aim of this work was to discover new natural compounds with higher anti-HCV activity than that of EGCG and determine their mode of action. Eight natural molecules with structure similarity to EGCG were selected. HCV JFH1 in cell culture and HCV pseudoparticle systems were used to determine the antiviral activity and mechanism of action of the compounds. We identified delphinidin, a polyphenol belonging to the anthocyanidin family, as a new inhibitor of HCV entry. Delphinidin inhibits HCV entry in a pangenotypic manner by acting directly on the viral particle and impairing its attachment to the cell surface. Importantly, it is also active against HCV in primary human hepatocytes, with no apparent cytotoxicity and in combination with interferon and boceprevir in cell culture. Different approaches showed that neither aggregation nor destruction of the particle occurred. Cryo-transmission electron microscopy observations of HCV pseudoparticles treated with delphinidin or EGCG showed a bulge on particles that was not observed under control conditions. In conclusion, EGCG and delphinidin inhibit HCV entry by a new mechanism, i.e., alteration of the viral particle structure that impairs its attachment to the cell surface. IMPORTANCE In this article, we identify a new inhibitor of hepatitis C virus (HCV) infection, delphinidin, that prevents HCV entry. This natural compound, a plant pigment responsible for the blue-purple color of flowers and berries, belongs to the flavonoid family, like the catechin EGCG, the major component present in green tea extract, which is also an inhibitor of HCV entry. We studied the mode of action of these two compounds against HCV and demonstrated that they both act directly on the virus, inducing a bulging of the viral envelope. This deformation might be responsible for the observed inhibition of virus attachment to the cell surface. The discovery of such HCV inhibitors with an unusual mode of action is important to better characterize the mechanism of HCV entry into hepatocytes and to help develop a new class of HCV entry inhibitors.
Collapse
Affiliation(s)
- Noémie Calland
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Marie-Emmanuelle Sahuc
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Sandrine Belouzard
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Véronique Pène
- University Paris Descartes, EA 4474, Hepatitis C Virology, Paris, France
| | - Pierre Bonnafous
- University Bordeaux, CBMN UMR 5248, Bordeaux INP, Pessac, France
| | - Ahmed Atef Mesalam
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Gaspard Deloison
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Véronique Descamps
- Virology Laboratory, EA 4294, Centre Hospitalier Universitaire d'Amiens, Université de Picardie Jules Verne, Amiens, France
| | - Sevser Sahpaz
- Laboratory of Pharmacognosy, EA 4481, Université Lille 2, Lille, France
| | - Czeslaw Wychowski
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Olivier Lambert
- University Bordeaux, CBMN UMR 5248, Bordeaux INP, Pessac, France
| | - Priscille Brodin
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Gilles Duverlie
- Virology Laboratory, EA 4294, Centre Hospitalier Universitaire d'Amiens, Université de Picardie Jules Verne, Amiens, France
| | - Philip Meuleman
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | | | - Jean Dubuisson
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Yves Rouillé
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Karin Séron
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| |
Collapse
|
9
|
Hepatitis C Virus Envelope Glycoprotein E1 Forms Trimers at the Surface of the Virion. J Virol 2015; 89:10333-46. [PMID: 26246575 DOI: 10.1128/jvi.00991-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/13/2015] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED In hepatitis C virus (HCV)-infected cells, the envelope glycoproteins E1 and E2 assemble as a heterodimer. To investigate potential changes in the oligomerization of virion-associated envelope proteins, we performed SDS-PAGE under reducing conditions but without thermal denaturation. This revealed the presence of SDS-resistant trimers of E1 in the context of cell-cultured HCV (HCVcc) as well as in the context of HCV pseudoparticles (HCVpp). The formation of E1 trimers was found to depend on the coexpression of E2. To further understand the origin of E1 trimer formation, we coexpressed in bacteria the transmembrane (TM) domains of E1 (TME1) and E2 (TME2) fused to reporter proteins and analyzed the fusion proteins by SDS-PAGE and Western blotting. As expected for strongly interacting TM domains, TME1-TME2 heterodimers resistant to SDS were observed. These analyses also revealed homodimers and homotrimers of TME1, indicating that such complexes are stable species. The N-terminal segment of TME1 exhibits a highly conserved GxxxG sequence, a motif that is well documented to be involved in intramembrane protein-protein interactions. Single or double mutations of the glycine residues (Gly354 and Gly358) in this motif markedly decreased or abrogated the formation of TME1 homotrimers in bacteria, as well as homotrimers of E1 in both HCVpp and HCVcc systems. A concomitant loss of infectivity was observed, indicating that the trimeric form of E1 is essential for virus infectivity. Taken together, these results indicate that E1E2 heterodimers form trimers on HCV particles, and they support the hypothesis that E1 could be a fusion protein. IMPORTANCE HCV glycoproteins E1 and E2 play an essential role in virus entry into liver cells as well as in virion morphogenesis. In infected cells, these two proteins form a complex in which E2 interacts with cellular receptors, whereas the function of E1 remains poorly understood. However, recent structural data suggest that E1 could be the protein responsible for the process of fusion between viral and cellular membranes. Here we investigated the oligomeric state of HCV envelope glycoproteins. We demonstrate that E1 forms functional trimers after virion assembly and that in addition to the requirement for E2, a determinant for this oligomerization is present in a conserved GxxxG motif located within the E1 transmembrane domain. Taken together, these results indicate that a rearrangement of E1E2 heterodimer complexes likely occurs during the assembly of HCV particles to yield a trimeric form of the E1E2 heterodimer. Gaining structural information on this trimer will be helpful for the design of an anti-HCV vaccine.
Collapse
|
10
|
Abstract
Chronic hepatitis C virus (HCV) infection results in a progressive disease that may end in cirrhosis and, eventually, in hepatocellular carcinoma. In the last several years, tremendous progress has been made in understanding the HCV life cycle and in the development of small molecule compounds for the treatment of chronic hepatitis C. Nevertheless, the complete understanding of HCV assembly and particle release as well as the detailed characterization and structure of HCV particles is still missing. One of the most important events in the HCV assembly is the nucleocapsid formation which is driven by the core protein, that can oligomerize upon interaction with viral RNA, and is orchestrated by viral and host proteins. Despite a growing number of new factors involved in HCV assembly process, we do not know the three-dimensional structure of the core protein or its topology in the nucleocapsid. Since the core protein contains a hydrophobic C-terminal domain responsible for the binding to cellular membranes, the assembly pathway of HCV virions might proceed via coassembly at endoplasmic reticulum membranes. Recently, new mechanisms involving viral proteins and host factors in HCV particle formation and egress have been described. The present review aims to summarize the advances in our understanding of HCV assembly with an emphasis on the core protein as a structural component of virus particles that possesses the ability to interact with a variety of cellular components and is potentially an attractive target for the development of a novel class of anti-HCV agents.
Collapse
Affiliation(s)
- Katarzyna Gawlik
- Department of Immunology and Microbial Science, IMM-9, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, 92037, USA
| | | |
Collapse
|
11
|
Qin ZL, Ju HP, Gao TT, Wang WB, Ren H, Zhao P, Qi ZT. Two conserved histidines (His490 and His621) on the E2 glycoprotein of hepatitis C virus are critical for CD81-mediated cell entry. J Gen Virol 2015; 96:1389-1399. [PMID: 25701820 DOI: 10.1099/vir.0.000091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/09/2015] [Indexed: 12/21/2022] Open
Abstract
Hepatitis C virus (HCV) entry is a sequential and multi-step process that includes receptor interactions followed by pH-dependent membrane fusion. Specific and conserved histidine residues on the viral envelope proteins are involved in most pH-induced virus entries. In the case of HCV, some conserved histidines on the E1 and E2 proteins have been investigated in HCV pseudotype particle (HCVpp) systems. However, the roles of these histidines in cell-culture-derived HCV particle (HCVcc) systems remain unclear due to the different aspects of the viral life cycle emphasized by the two systems. In this study, the role of two conserved histidines (His490 and His621, located in domains II and III of E2, respectively) in HCV infection was evaluated in the context of JFH-1-based HCVcc using alanine substitutions. The infectivity of the H490A mutant decreased in spite of comparable initial RNA replication, protein expression and assembly efficiency as WT virus. The H621A mutant did not affect viral protein expression, but exhibited no obvious infectivity; there were fewer core proteins in the culture supernatant compared with WT virus, indicating the partially deficient virus assembly. The HCV receptor CD81-binding ability of the two mutant E2s was assessed further using enzyme immunoassays. The CD81-binding activity of H490A-E2 was reduced, and H621A-E2 was unable to bind to CD81. These data revealed the crucial role played by His490 and His621 in HCV infection, particularly during CD81 binding in cell entry. These results also contributed to the mechanical identification of the histidines involved in pH-dependent HCV entry.
Collapse
Affiliation(s)
- Zhao-Ling Qin
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, PR China
| | - He-Peng Ju
- Center for Disease Control and Prevention of Guangzhou Military District, Guangzhou 510507, PR China.,Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, PR China
| | - Ting-Ting Gao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, PR China
| | - Wen-Bo Wang
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, PR China
| | - Hao Ren
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, PR China
| | - Ping Zhao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, PR China
| | - Zhong-Tian Qi
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai 200433, PR China
| |
Collapse
|
12
|
Afzal MS, Alsaleh K, Farhat R, Belouzard S, Danneels A, Descamps V, Duverlie G, Wychowski C, Zaidi NUSS, Dubuisson J, Rouillé Y. Regulation of core expression during the hepatitis C virus life cycle. J Gen Virol 2015; 96:311-321. [DOI: 10.1099/vir.0.070433-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Muhammad Sohail Afzal
- Atta ur Rahman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad, Pakistan
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Khaled Alsaleh
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Rayan Farhat
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Sandrine Belouzard
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Adeline Danneels
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Véronique Descamps
- EA4294, Unité de Virologie Clinique et Fondamentale, CHU d’Amiens, University of Picardie Jules Verne, Amiens, France
| | - Gilles Duverlie
- EA4294, Unité de Virologie Clinique et Fondamentale, CHU d’Amiens, University of Picardie Jules Verne, Amiens, France
| | - Czeslaw Wychowski
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Najam us Sahar Sadaf Zaidi
- Atta ur Rahman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Jean Dubuisson
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Yves Rouillé
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| |
Collapse
|
13
|
Afzal MS, Zaidi NUSS, Dubuisson J, Rouille Y. Hepatitis C virus capsid protein and intracellular lipids interplay and its association with hepatic steatosis. HEPATITIS MONTHLY 2014; 14:e17812. [PMID: 25237371 PMCID: PMC4165984 DOI: 10.5812/hepatmon.17812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/09/2014] [Accepted: 05/08/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatitis C Virus (HCV) is a major causative agent for chronic liver disease worldwide. Hepatic steatosis is a frequent histological feature in patients with chronic HCV. Both host and viral factors are involved in steatosis development. It results from uncontrolled growth of cytoplasmic lipid droplets (LDs) in hepatocytes. LDs are intracellular organelles playing key role in the HCV life cycle. HCV core protein localizes at the LD surface and this localization is crucial for virion production. OBJECTIVES We explored in vitro interplay of core and LDs to investigate the role of core in steatosis. MATERIALS AND METHODS Core expression vectors were transfected in Huh-7 cells. The effect of core protein on LDs content and distribution in the cells was monitored by confocal microscopy. Cells were treated with oleic acid to analyze the effect of increased intracellular LDs on core expression. Core protein expression was monitored by western blot analysis. RESULTS Core expression altered the intracellular lipid metabolism, which resulted in a change in LDs morphology. Core LDs interaction was required for this effect since the mutation of two prolines (P138A, P143A), which impair LDs localization, had no impact on LDs morphology. Conversely, oleic acid induced intracellular LD content resulted in increased core expression. CONCLUSIONS Core-LDs interaction may be an underlying molecular mechanism to induce liver steatosis in patients with HCV infection. This interaction is also crucial for efficient viral replication and persistence in infected cells. Steatosis can also interfere with efficient standard interferon therapy treatment. Management of steatosis should be considered along with standard care for achieving higher sustained virological response (SVR) in patients receiving interferon regimen.
Collapse
Affiliation(s)
- Muhammad Sohail Afzal
- Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Univ Lille Nord de France, Lille, France
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, H-12 Islamabad, Pakistan
- Corresponding Author: Muhammad Sohail Afzal, Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan. Tel: +92-3215244808, Fax: +92-5190856102, E-mail:
| | - Najam Us Sahar Sadaf Zaidi
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, H-12 Islamabad, Pakistan
| | - Jean Dubuisson
- Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Univ Lille Nord de France, Lille, France
| | - Yves Rouille
- Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Univ Lille Nord de France, Lille, France
| |
Collapse
|
14
|
Incorporation of hepatitis C virus E1 and E2 glycoproteins: the keystones on a peculiar virion. Viruses 2014; 6:1149-87. [PMID: 24618856 PMCID: PMC3970144 DOI: 10.3390/v6031149] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/21/2014] [Accepted: 02/27/2014] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) encodes two envelope glycoproteins, E1 and E2. Their structure and mode of fusion remain unknown, and so does the virion architecture. The organization of the HCV envelope shell in particular is subject to discussion as it incorporates or associates with host-derived lipoproteins, to an extent that the biophysical properties of the virion resemble more very-low-density lipoproteins than of any virus known so far. The recent development of novel cell culture systems for HCV has provided new insights on the assembly of this atypical viral particle. Hence, the extensive E1E2 characterization accomplished for the last two decades in heterologous expression systems can now be brought into the context of a productive HCV infection. This review describes the biogenesis and maturation of HCV envelope glycoproteins, as well as the interplay between viral and host factors required for their incorporation in the viral envelope, in a way that allows efficient entry into target cells and evasion of the host immune response.
Collapse
|
15
|
HCV core residues critical for infectivity are also involved in core-NS5A complex formation. PLoS One 2014; 9:e88866. [PMID: 24533158 PMCID: PMC3923060 DOI: 10.1371/journal.pone.0088866] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 01/14/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a major cause of liver disease. The molecular machinery of HCV assembly and particle release remains obscure. A better understanding of the assembly events might reveal new potential antiviral strategies. It was suggested that the nonstructural protein 5A (NS5A), an attractive recent drug target, participates in the production of infectious particles as a result of its interaction with the HCV core protein. However, prior to the present study, the NS5A-binding site in the viral core remained unknown. We found that the D1 domain of core contains the NS5A-binding site with the strongest interacting capacity in the basic P38-K74 cluster. We also demonstrated that the N-terminal basic residues of core at positions 50, 51, 59 and 62 were required for NS5A binding. Analysis of all substitution combinations of R50A, K51A, R59A, and R62A, in the context of the HCVcc system, showed that single, double, triple, and quadruple mutants were fully competent for viral RNA replication, but deficient in secretion of viral particles. Furthermore, we found that the extracellular and intracellular infectivity of all the mutants was abolished, suggesting a defect in the formation of infectious particles. Importantly, we showed that the interaction between the single and quadruple core mutants and NS5A was impaired in cells expressing full-length HCV genome. Interestingly, mutations of the four basic residues of core did not alter the association of core or NS5A with lipid droplets. This study showed for the first time that basic residues in the D1 domain of core that are critical for the formation of infectious extracellular and intracellular particles also play a role in core-NS5A interactions.
Collapse
|
16
|
Inhibition of hepatitis C virus in chimeric mice by short synthetic hairpin RNAs: sequence analysis of surviving virus shows added selective pressure of combination therapy. J Virol 2014; 88:4647-56. [PMID: 24478422 DOI: 10.1128/jvi.00105-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED We have recently shown that a cocktail of two short synthetic hairpin RNAs (sshRNAs), targeting the internal ribosome entry site of hepatitis C virus (HCV) formulated with lipid nanoparticles, was able to suppress viral replication in chimeric mice infected with HCV GT1a by up to 2.5 log10 (H. Ma et al., Gastroenterology 146:63-66.e5, http://dx.doi.org/10.1053/j.gastro.2013.09.049) Viral load remained about 1 log10 below pretreatment levels 21 days after the end of dosing. We have now sequenced the HCV viral RNA amplified from serum of treated mice after the 21-day follow-up period. Viral RNA from the HCV sshRNA-treated groups was altered in sequences complementary to the sshRNAs and nowhere else in the 500-nucleotide sequenced region, while the viruses from the control group that received an irrelevant sshRNA had no mutations in that region. The ability of the most commonly selected mutations to confer resistance to the sshRNAs was confirmed in vitro by introducing those mutations into HCV-luciferase reporters. The mutations most frequently selected by sshRNA treatment within the sshRNA target sequence occurred at the most polymorphic residues, as identified from an analysis of available clinical isolates. These results demonstrate a direct antiviral activity with effective HCV suppression, demonstrate the added selective pressure of combination therapy, and confirm an RNA interference (RNAi) mechanism of action. IMPORTANCE This study presents a detailed analysis of the impact of treating a hepatitis C virus (HCV)-infected animal with synthetic hairpin-shaped RNAs that can degrade the virus's RNA genome. These RNAs can reduce the viral load in these animals by over 99% after 1 to 2 injections. The study results confirm that the viral rebound that often occurred a few weeks after treatment is due to emergence of a virus whose genome is mutated in the sequences targeted by the RNAs. The use of two RNA inhibitors, which is more effective than use of either one by itself, requires that any resistant virus have mutations in the targets sites of both agents, a higher hurdle, if the virus is to retain the ability to replicate efficiently. These results demonstrate a direct antiviral activity with effective HCV suppression, demonstrate the added selective pressure of combination therapy, and confirm an RNAi mechanism of action.
Collapse
|
17
|
Lyn RK, Hope G, Sherratt AR, McLauchlan J, Pezacki JP. Bidirectional lipid droplet velocities are controlled by differential binding strengths of HCV core DII protein. PLoS One 2013; 8:e78065. [PMID: 24223760 PMCID: PMC3815211 DOI: 10.1371/journal.pone.0078065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/09/2013] [Indexed: 12/16/2022] Open
Abstract
Host cell lipid droplets (LD) are essential in the hepatitis C virus (HCV) life cycle and are targeted by the viral capsid core protein. Core-coated LDs accumulate in the perinuclear region and facilitate viral particle assembly, but it is unclear how mobility of these LDs is directed by core. Herein we used two-photon fluorescence, differential interference contrast imaging, and coherent anti-Stokes Raman scattering microscopies, to reveal novel core-mediated changes to LD dynamics. Expression of core protein’s lipid binding domain II (DII-core) induced slower LD speeds, but did not affect directionality of movement on microtubules. Modulating the LD binding strength of DII-core further impacted LD mobility, revealing the temporal effects of LD-bound DII-core. These results for DII-core coated LDs support a model for core-mediated LD localization that involves core slowing down the rate of movement of LDs until localization at the perinuclear region is accomplished where LD movement ceases. The guided localization of LDs by HCV core protein not only is essential to the viral life cycle but also poses an interesting target for the development of antiviral strategies against HCV.
Collapse
Affiliation(s)
- Rodney K. Lyn
- National Research Council of Canada, Ottawa, Ontario, Canada
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
| | - Graham Hope
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | | | - John McLauchlan
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
- * E-mail: (JPP); (JM)
| | - John Paul Pezacki
- National Research Council of Canada, Ottawa, Ontario, Canada
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail: (JPP); (JM)
| |
Collapse
|
18
|
Farhat R, Goueslain L, Wychowski C, Belouzard S, Fénéant L, Jackson CL, Dubuisson J, Rouillé Y. Hepatitis C virus replication and Golgi function in brefeldin a-resistant hepatoma-derived cells. PLoS One 2013; 8:e74491. [PMID: 24058576 PMCID: PMC3776844 DOI: 10.1371/journal.pone.0074491] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/01/2013] [Indexed: 12/15/2022] Open
Abstract
Recent reports indicate that the replication of hepatitis C virus (HCV) depends on the GBF1-Arf1-COP-I pathway. We generated Huh-7-derived cell lines resistant to brefeldin A (BFA), which is an inhibitor of this pathway. The resistant cell lines could be sorted into two phenotypes regarding BFA-induced toxicity, inhibition of albumin secretion, and inhibition of HCV infection. Two cell lines were more than 100 times more resistant to BFA than the parental Huh-7 cells in these 3 assays. This resistant phenotype was correlated with the presence of a point mutation in the Sec7 domain of GBF1, which is known to impair the binding of BFA. Surprisingly, the morphology of the cis-Golgi of these cells remained sensitive to BFA at concentrations of the drug that allowed albumin secretion, indicating a dichotomy between the phenotypes of secretion and Golgi morphology. Cells of the second group were about 10 times more resistant than parental Huh-7 cells to the BFA-induced toxicity. The EC50 for albumin secretion was only 1.5–1.8 fold higher in these cells than in Huh-7 cells. However their level of secretion in the presence of inhibitory doses of BFA was 5 to 15 times higher. Despite this partially effective secretory pathway in the presence of BFA, the HCV infection was almost as sensitive to BFA as in Huh-7 cells. This suggests that the function of GBF1 in HCV replication does not simply reflect its role of regulator of the secretory pathway of the host cell. Thus, our results confirm the involvement of GBF1 in HCV replication, and suggest that GBF1 might fulfill another function, in addition to the regulation of the secretory pathway, during HCV replication.
Collapse
Affiliation(s)
- Rayan Farhat
- Inserm U1019, CNRS UMR8204, Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Lucie Goueslain
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Czeslaw Wychowski
- Inserm U1019, CNRS UMR8204, Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Sandrine Belouzard
- Inserm U1019, CNRS UMR8204, Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Lucie Fénéant
- Inserm U1019, CNRS UMR8204, Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Catherine L. Jackson
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Jean Dubuisson
- Inserm U1019, CNRS UMR8204, Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Yves Rouillé
- Inserm U1019, CNRS UMR8204, Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
- * E-mail:
| |
Collapse
|
19
|
Vausselin T, Calland N, Belouzard S, Descamps V, Douam F, Helle F, François C, Lavillette D, Duverlie G, Wahid A, Fénéant L, Cocquerel L, Guérardel Y, Wychowski C, Biot C, Dubuisson J. The antimalarial ferroquine is an inhibitor of hepatitis C virus. Hepatology 2013; 58:86-97. [PMID: 23348596 PMCID: PMC7165689 DOI: 10.1002/hep.26273] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/20/2012] [Indexed: 12/15/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) is a major cause of chronic liver disease. Despite recent success in improving anti-HCV therapy, additional progress is still needed to develop cheaper and interferon (IFN)-free treatments. Here, we report that ferroquine (FQ), an antimalarial ferrocenic analog of chloroquine, is a novel inhibitor of HCV. FQ potently inhibited HCV infection of hepatoma cell lines by affecting an early step of the viral life cycle. The antiviral activity of FQ on HCV entry was confirmed with pseudoparticles expressing HCV envelope glycoproteins E1 and E2 from six different genotypes. In addition to its effect on HCV entry, FQ also inhibited HCV RNA replication, albeit at a higher concentration. We also showed that FQ has no effect on viral assembly and virion secretion. Using a binding assay at 4°C, we showed that FQ does not prevent attachment of the virus to the cell surface. Furthermore, virus internalization was not affected by FQ, whereas the fusion process was impaired in the presence of FQ as shown in a cell-cell fusion assay. Finally, virus with resistance to FQ was selected by sequential passage in the presence of the drug, and resistance was shown to be conferred by a single mutation in E1 glycoprotein (S327A). By inhibiting cell-free virus transmission using a neutralizing antibody, we also showed that FQ inhibits HCV cell-to-cell spread between neighboring cells. Combinations of FQ with IFN, or an inhibitor of HCV NS3/4A protease, also resulted in additive to synergistic activity. CONCLUSION FQ is a novel, interesting anti-HCV molecule that could be used in combination with other direct-acting antivirals.
Collapse
Affiliation(s)
- Thibaut Vausselin
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France; CNRS UMR8204, Lille, France; INSERM U1019, Lille, France; and Université Lille Nord de France, Lille, France
| | - Noémie Calland
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France; CNRS UMR8204, Lille, France; INSERM U1019, Lille, France; and Université Lille Nord de France, Lille, France
| | - Sandrine Belouzard
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France; CNRS UMR8204, Lille, France; INSERM U1019, Lille, France; and Université Lille Nord de France, Lille, France
| | - Véronique Descamps
- Laboratoire de Virologie EA4294, Centre Hospitalier Universitaire d'Amiens, Université de Picardie Jules Verne, Amiens, France
| | - Florian Douam
- INSERM, U758, Human Virology Laboratory, Lyon, France,Ecole Normale Supérieure de Lyon, Lyon, France,Université de Lyon, UCB‐Lyon1, Lyon, France
| | - François Helle
- Laboratoire de Virologie EA4294, Centre Hospitalier Universitaire d'Amiens, Université de Picardie Jules Verne, Amiens, France
| | - Catherine François
- Laboratoire de Virologie EA4294, Centre Hospitalier Universitaire d'Amiens, Université de Picardie Jules Verne, Amiens, France
| | - Dimitri Lavillette
- INSERM, U758, Human Virology Laboratory, Lyon, France,Ecole Normale Supérieure de Lyon, Lyon, France,Université de Lyon, UCB‐Lyon1, Lyon, France
| | - Gilles Duverlie
- Laboratoire de Virologie EA4294, Centre Hospitalier Universitaire d'Amiens, Université de Picardie Jules Verne, Amiens, France
| | - Ahmed Wahid
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France; CNRS UMR8204, Lille, France; INSERM U1019, Lille, France; and Université Lille Nord de France, Lille, France,Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Lucie Fénéant
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France; CNRS UMR8204, Lille, France; INSERM U1019, Lille, France; and Université Lille Nord de France, Lille, France
| | - Laurence Cocquerel
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France; CNRS UMR8204, Lille, France; INSERM U1019, Lille, France; and Université Lille Nord de France, Lille, France
| | - Yann Guérardel
- Université Lille Nord de France, Université Lille1, CNRS UMR8576, Villeneuve d'Ascq, France
| | - Czeslaw Wychowski
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France; CNRS UMR8204, Lille, France; INSERM U1019, Lille, France; and Université Lille Nord de France, Lille, France
| | - Christophe Biot
- Université Lille Nord de France, Université Lille1, CNRS UMR8576, Villeneuve d'Ascq, France
| | - Jean Dubuisson
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France; CNRS UMR8204, Lille, France; INSERM U1019, Lille, France; and Université Lille Nord de France, Lille, France
| |
Collapse
|
20
|
Atoom AM, Jones DM, Russell RS. Evidence suggesting that HCV p7 protects E2 glycoprotein from premature degradation during virus production. Virus Res 2013; 176:199-210. [PMID: 23816605 DOI: 10.1016/j.virusres.2013.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 06/14/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
The hepatitis C virus (HCV) genome encodes a 63 amino acid (aa) protein, p7, which is located between the structural and non-structural proteins. p7 localizes to endoplasmic reticulum membranes and is composed of two transmembrane domains (TM1 and TM2) and a cytoplasmic loop. While its exact role is unknown, p7 is crucial for assembly and/or release of infectious virus production in cell culture, as well as infectivity in chimpanzees. The contribution of p7 to the HCV life cycle may result from at least two distinct roles. Firstly, several studies have shown that p7 acts as an ion channel, the functionality of which is critical for infection. Secondly, p7 interacts with NS2 in a manner that may regulate the targeting of other structural proteins during the assembly process. In this study, we observed that mutations in TM1 and the cytoplasmic loop of p7 decreased infectious virus production in a single-cycle virus production assay. Analysis of intra- and extracellular virus titers indicated that p7 functions at a stage prior to generation of infectious particles. These effects were not due to altered RNA replication since no effects on levels of NS3 or NS5A protein were observed, and were not a consequence of altered recruitment of core protein to lipid droplets. Similarly, these mutations seemingly did not prevent nucleocapsid oligomerization. Importantly, we found that an alanine triplet substitution including the two basic residues of the cytoplasmic loop, which is integral to p7 ion channel function, significantly reduced E2 glycoprotein levels. A time course experiment tracking E2 levels indicated that E2 was degraded over time, as opposed to being synthesized in reduced quantities. The results of this study provide strong evidence that one of the functions of p7 is to protect HCV glycoproteins from premature degradation during virion morphogenesis.
Collapse
Affiliation(s)
- Ali M Atoom
- Immunology and Infectious Diseases, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | | | | |
Collapse
|
21
|
Qin ZL, Ju HP, Wang WB, Ren H, Guan M, Zhao P, Qi ZT. The Arg719 residue at the C-terminal end of the stem region in hepatitis C virus JFH-1 E2 glycoprotein promotes viral infection. Virus Res 2013. [DOI: 10.1016/j.virusres.2012.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
Tsirulnikov K, Abuladze N, Vahi R, Hasnain H, Phillips M, Ryan CM, Atanasov I, Faull KF, Kurtz I, Pushkin A. Aminoacylase 3 binds to and cleaves the N-terminus of the hepatitis C virus core protein. FEBS Lett 2012; 586:3799-804. [PMID: 23010594 DOI: 10.1016/j.febslet.2012.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 08/30/2012] [Accepted: 09/06/2012] [Indexed: 01/13/2023]
Abstract
Aminoacylase 3 (AA3) mediates deacetylation of N-acetyl aromatic amino acids and mercapturic acids. Deacetylation of mercapturic acids of exo- and endobiotics are likely involved in their toxicity. AA3 is predominantly expressed in kidney, and to a lesser extent in liver, brain, and blood. AA3 has been recently reported to interact with the hepatitis C virus core protein (HCVCP) in the yeast two-hybrid system. Here we demonstrate that AA3 directly binds to HCVCP (K(d) ~10 μM) that may by implicated in HCV pathogenesis. AA3 also revealed a weak endopeptidase activity towards the N-terminus of HCVCP.
Collapse
Affiliation(s)
- Kirill Tsirulnikov
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Calland N, Albecka A, Belouzard S, Wychowski C, Duverlie G, Descamps V, Hober D, Dubuisson J, Rouillé Y, Séron K. (-)-Epigallocatechin-3-gallate is a new inhibitor of hepatitis C virus entry. Hepatology 2012; 55:720-9. [PMID: 22105803 DOI: 10.1002/hep.24803] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Here, we identify (-)-epigallocatechin-3-gallate (EGCG) as a new inhibitor of hepatitis C virus (HCV) entry. EGCG is a flavonoid present in green tea extract belonging to the subclass of catechins, which has many properties. Particularly, EGCG possesses antiviral activity and impairs cellular lipid metabolism. Because of close links between HCV life cycle and lipid metabolism, we postulated that EGCG may interfere with HCV infection. We demonstrate that a concentration of 50 μM of EGCG inhibits HCV infectivity by more than 90% at an early step of the viral life cycle, most likely the entry step. This inhibition was not observed with other members of the Flaviviridae family tested. The antiviral activity of EGCG on HCV entry was confirmed with pseudoparticles expressing HCV envelope glycoproteins E1 and E2 from six different genotypes. In addition, using binding assays at 4°C, we demonstrate that EGCG prevents attachment of the virus to the cell surface, probably by acting directly on the particle. We also show that EGCG has no effect on viral replication and virion secretion. By inhibiting cell-free virus transmission using agarose or neutralizing antibodies, we show that EGCG inhibits HCV cell-to-cell spread. Finally, by successive inoculation of naïve cells with supernatant of HCV-infected cells in the presence of EGCG, we observed that EGCG leads to undetectable levels of infection after four passages. CONCLUSION EGCG is a new, interesting anti-HCV molecule that could be used in combination with other direct-acting antivirals. Furthermore, it is a novel tool to further dissect the mechanisms of HCV entry into the hepatocyte.
Collapse
Affiliation(s)
- Noémie Calland
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille (CIIL), Lille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Suzuki T. Morphogenesis of infectious hepatitis C virus particles. Front Microbiol 2012; 3:38. [PMID: 22347224 PMCID: PMC3273859 DOI: 10.3389/fmicb.2012.00038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 01/23/2012] [Indexed: 12/17/2022] Open
Abstract
More than 170 million individuals are currently infected with hepatitis C virus (HCV) worldwide and are at continuous risk of developing chronic liver disease. Since a cell culture system enabling relatively efficient propagation of HCV has become available, an increasing number of viral and host factors involved in HCV particle formation have been identified. Association of the viral Core, which forms the capsid with lipid droplets appears to be prerequisite for early HCV morphogenesis. Maturation and release of HCV particles is tightly linked to very-low-density lipoprotein biogenesis. Although expression of Core as well as E1 and E2 envelope proteins produces virus-like particles in heterologous expression systems, there is increasing evidence that non-structural viral proteins and p7 are also required for the production of infectious particles, suggesting that HCV genome replication and virion assembly are closely linked. Advances in our understanding of the various molecular mechanisms by which infectious HCV particles are formed are summarized.
Collapse
Affiliation(s)
- Tetsuro Suzuki
- Department of Infectious Diseases, Hamamatsu University School of Medicine Hamamatsu, Japan
| |
Collapse
|
25
|
Strong correlation between liver and serum levels of hepatitis C virus core antigen and RNA in chronically infected patients. J Clin Microbiol 2011; 50:465-8. [PMID: 22162563 DOI: 10.1128/jcm.06503-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
HCV core antigen (Ag) and HCV RNA levels were evaluated in matched liver biopsy samples and sera from 22 patients with hepatitis C infection by using the quantitative Architect HCV Ag immunoassay and a real-time RT-qPCR assay, respectively. The data showed a strong correlation between liver and serum compartments of HCV Ag levels (r = 0.80) and HCV RNA levels (r = 0.87). In summary, the serum HCV Ag and RNA levels reflect the intrahepatic values.
Collapse
|
26
|
Conserved glycine 33 residue in flexible domain I of hepatitis C virus core protein is critical for virus infectivity. J Virol 2011; 86:679-90. [PMID: 22072760 DOI: 10.1128/jvi.05452-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis C virus core protein forms the viral nucleocapsid and plays a critical role in the formation of infectious particles. In this study, we demonstrate that the highly conserved residue G33, located within domain 1 of the core protein, is important for the production of cell culture-infectious virus (HCVcc). Alanine substitution at this position in the JFH1 genome did not alter viral RNA replication but reduced infectivity by ∼2 logs. Virus production by this core mutant could be rescued by compensatory mutations located immediately upstream and downstream of the original G33A mutation. The examination of the helix-loop-helix motif observed in the core protein structure (residues 15 to 41; Protein Data Bank entry 1CWX) indicated that the residues G33 and F24 are in close contact with each other, and that the G33A mutation induces a steric clash with F24. Molecular simulations revealed that the compensatory mutations increase the helix-loop-helix flexibility, allowing rescue of the core active conformation required for efficient virus production. Taken together, these data highlight the plasticity of core domain 1 conformation and illustrate the relationship between its structural tolerance to mutations and virus infectivity.
Collapse
|
27
|
Caval V, Piver E, Ivanyi-Nagy R, Darlix JL, Pagès JC. Packaging of HCV-RNA into lentiviral vector. Biochem Biophys Res Commun 2011; 414:808-13. [PMID: 22008549 DOI: 10.1016/j.bbrc.2011.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 10/04/2011] [Indexed: 12/16/2022]
Abstract
The advent of infectious molecular clones of Hepatitis C virus (HCV) has unlocked the understanding of HCV life cycle. However, packaging of the genomic RNA, which is crucial to generate infectious viral particles, remains poorly understood. Molecular interactions of the domain 1 (D1) of HCV Core protein and HCV RNA have been described in vitro. Since compaction of genetic information within HCV genome has hampered conventional mutational approach to study packaging in vivo, we developed a novel heterologous system to evaluate the interactions between HCV RNA and CoreD1. For this, we took advantage of the recruitment of Vpr fusion-proteins into HIV-1 particles. By fusing HCV Core D1 to Vpr we were able to package and transfer a HCV subgenomic replicon into a HIV-1 based lentiviral vector. We next examined how deletion mutants of basic sub-domains of Core D1 influenced HCV RNA recruitment. The results emphasized the crucial role of the first and third basic regions of D1 in packaging. Interestingly, the system described here allowed us to mobilise full-length JFH1 genome in CD81 defective cells, which are normally refractory to HCV infection. This finding paves the way to an evaluation of the replication capability of HCV in various cell types.
Collapse
Affiliation(s)
- Vincent Caval
- INSERM U966, Université François Rabelais de Tours, Faculté de Médecine, 10 Bd. Tonnellé, 37000 Tours, France
| | | | | | | | | |
Collapse
|
28
|
A genetic interaction between the core and NS3 proteins of hepatitis C virus is essential for production of infectious virus. J Virol 2011; 85:12351-61. [PMID: 21957313 DOI: 10.1128/jvi.05313-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
By analogy to other members of the Flaviviridae family, the hepatitis C virus (HCV) core protein is presumed to oligomerize to form the viral nucleocapsid, which encloses the single-stranded RNA genome. Core protein is directed to lipid droplets (LDs) by domain 2 (D2) of the protein, and this process is critical for virus production. Domain 1 (D1) of core is also important for infectious particle morphogenesis, although its precise contribution to this process is poorly understood. In this study, we mutated amino acids 64 to 75 within D1 of core and examined the ability of these mutants to produce infectious virus. We found that residues 64 to 66 are critical for generation of infectious progeny, whereas 67 to 75 were dispensable for this process. Further investigation of the defective 64 to 66 mutant (termed JFH1(T)-64-66) revealed it to be incapable of producing infectious intracellular virions, suggesting a fault during HCV assembly. Furthermore, isopycnic gradient analyses revealed that JFH1(T)-64-66 assembled dense intracellular species of core, presumably representing nucleocapsids. Thus, amino acids 64 to 66 are seemingly not involved in core oligomerization/nucleocapsid assembly. Passaging of JFH1(T)-64-66 led to the emergence of a single compensatory mutation (K1302R) within the helicase domain of NS3 that completely rescued its ability to produce infectious virus. Importantly, the same NS3 mutation abrogated virus production in the context of wild-type core protein. Together, our results suggest that residues 64 to 66 of core D1 form a highly specific interaction with the NS3 helicase that is essential for the generation of infectious HCV particles at a stage downstream of nucleocapsid assembly.
Collapse
|
29
|
Abstract
HCV represents a serious public health problem worldwide. The current therapy for this virus is only partially effective and new antiviral therapies are urgently needed. Therefore, HCV assembly emerges as a potential therapeutic target. The HCV morphogenesis process presents the peculiarity of the double role of the nonstructural proteins in both the replication and assembly processes. Recently, the cross-talk between structural and nonstructural proteins for virion morphogenesis has been under investigation. We aim to review genetic, cell biology and biochemical data in order to reach a working model for the collaboration of all HCV proteins in the assembly process.
Collapse
Affiliation(s)
- Costin-Ioan Popescu
- Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031 Bucharest 17, Romania
| | - Yves Rouillé
- Molecular & Cellular Virology of Hepatitis C, Center for Infection & Immunity, Inserm (U1019) & CNRS (UMR8204), University Lille Nord de France, Institut Pasteur de Lille, 1 rue Calmette, P447, 59021 Lille cedex, France
| | - Jean Dubuisson
- Molecular & Cellular Virology of Hepatitis C, Center for Infection & Immunity, Inserm (U1019) & CNRS (UMR8204), University Lille Nord de France, Institut Pasteur de Lille, 1 rue Calmette, P447, 59021 Lille cedex, France
| |
Collapse
|
30
|
Sequence variability of HCV Core region: Important predictors of HCV induced pathogenesis and viral production. INFECTION GENETICS AND EVOLUTION 2011; 11:543-56. [DOI: 10.1016/j.meegid.2011.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 01/17/2011] [Accepted: 01/21/2011] [Indexed: 02/07/2023]
|