1
|
Wang C, Liu D, Zuo T, Hora B, Cai F, Ding H, Kappes J, Ochsenbauer C, Kong W, Yu X, Bhattacharya T, Perelson AS, Gao F. Accumulated mutations by 6 months of infection collectively render transmitted/founder HIV-1 significantly less fit. J Infect 2019; 80:210-218. [PMID: 31812703 DOI: 10.1016/j.jinf.2019.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/22/2019] [Accepted: 12/01/2019] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Viral fitness plays an important role in HIV-1 evolution, transmission and pathogenesis. However, how mutations accumulated during early infection affect viral fitness has not been well studied. METHODS Paired infectious molecular clones (IMCs) for transmitted/founder (T/F) and 6-month (6-mo) viruses post infection were generated from 10 infected individuals to investigate the impact of accumulated mutations on viral fitness by comparing 6-mo viruses to their cognate T/F viruses. RESULTS All ten 6-mo viruses were less fit than their cognate T/F viruses. Moreover, the fitness losses of the 6-mo viruses correlated with the decrease in viral loads from the peak of viremia. CONCLUSION These results show that the mutations accumulated during half a year post infection collectively reduce viral fitness and thereby contribute to lowering viral loads.
Collapse
Affiliation(s)
- Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China; Department of Medicine and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Donglai Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China; Department of Medicine and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA; Division of the Second in Vitro Diagnostic, National Institute for Food and Drug Control, Beijing 100050, China
| | - Tao Zuo
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China; Department of Medicine and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Bhavna Hora
- Department of Medicine and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Fangping Cai
- Department of Medicine and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| | - Tanmoy Bhattacharya
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Alan S Perelson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China; Department of Medicine and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
2
|
Liu D, Wang C, Hora B, Zuo T, Goonetilleke N, Liu MKP, Berrong M, Ferrari G, McMichael AJ, Bhattacharya T, Perelson AS, Gao F. A strongly selected mutation in the HIV-1 genome is independent of T cell responses and neutralizing antibodies. Retrovirology 2017; 14:46. [PMID: 29017536 PMCID: PMC5634943 DOI: 10.1186/s12977-017-0371-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/03/2017] [Indexed: 01/19/2023] Open
Abstract
Background Mutations rapidly accumulate in the HIV-1 genome after infection. Some of those mutations are selected by host immune responses and often cause viral fitness losses. This study is to investigate whether strongly selected mutations that are not associated with immune responses result in fitness losses. Results Strongly selected mutations were identified by analyzing 5′-half HIV-1 genome (gag/pol) sequences from longitudinal samples of subject CH0131. The K43R mutation in the gag gene was first detected at day 91 post screening and was fixed in the viral population at day 273 while the synonymous N323tc mutation was first detected at day 177 and fixed at day 670. No conventional or cryptic T cell responses were detected against either mutation sites by ELISpot analysis. However, when fitness costs of both mutations were measured by introducing each mutation into their cognate transmitted/founder (T/F) viral genome, the K43R mutation caused a significant fitness loss while the N323tc mutation had little impact on viral fitness. Conclusions The rapid fixation, the lack of detectable immune responses and the significant fitness cost of the K43R mutation suggests that it was strongly selected by host factors other than T cell responses and neutralizing antibodies.
Collapse
Affiliation(s)
- Donglai Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China.,Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, 303 Research Dr., 244 Sands Building, DUMC 102359, Durham, NC, 27710, USA.,Division II of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing, China
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China.,Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, 303 Research Dr., 244 Sands Building, DUMC 102359, Durham, NC, 27710, USA
| | - Bhavna Hora
- Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, 303 Research Dr., 244 Sands Building, DUMC 102359, Durham, NC, 27710, USA
| | - Tao Zuo
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China.,Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, 303 Research Dr., 244 Sands Building, DUMC 102359, Durham, NC, 27710, USA
| | - Nilu Goonetilleke
- Department of Microbiology, Immunology and Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael K P Liu
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, UK
| | - Mark Berrong
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Andrew J McMichael
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, UK
| | | | - Alan S Perelson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China. .,Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, 303 Research Dr., 244 Sands Building, DUMC 102359, Durham, NC, 27710, USA.
| |
Collapse
|
3
|
Emergence of CD4 independence envelopes and astrocyte infection in R5 simian-human immunodeficiency virus model of encephalitis. J Virol 2014; 88:8407-20. [PMID: 24829360 DOI: 10.1128/jvi.01237-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Human immunodeficiency virus type 1 (HIV-1) infection in the central nervous system (CNS) is characterized by replication in macrophages or brain microglia that express low levels of the CD4 receptor and is the cause of HIV-associated dementia and related cognitive and motor disorders that affect 20 to 30% of treatment-naive patients with AIDS. Independent viral envelope evolution in the brain has been reported, with the need for robust replication in resident CD4(low) cells, as well as CD4-negative cells, such as astrocytes, proposed as a major selective pressure. We previously reported giant-cell encephalitis in subtype B and C R5 simian-human immunodeficiency virus (SHIV)-infected macaques (SHIV-induced encephalitis [SHIVE]) that experienced very high chronic viral loads and progressed rapidly to AIDS, with varying degrees of macrophage or microglia infection and activation of these immune cells, as well as astrocytes, in the CNS. In this study, we characterized envelopes (Env) amplified from the brains of subtype B and C R5 SHIVE macaques. We obtained data in support of an association between severe neuropathological changes, robust macrophage and microglia infection, and evolution to CD4 independence. Moreover, the degree of Env CD4 independence appeared to correlate with the extent of astrocyte infection in vivo. These findings further our knowledge of the CNS viral population phenotypes that are associated with the severity of HIV/SHIV-induced neurological injury and improve our understanding of the mechanism of HIV-1 cellular tropism and persistence in the brain. IMPORTANCE Human immunodeficiency virus type 1 (HIV-1) infection of astrocytes in the brain has been suggested to be important in HIV persistence and neuropathogenesis but has not been definitively demonstrated in an animal model of HIV-induced encephalitis (HIVE). Here, we describe a new nonhuman primate (NHP) model of R5 simian-human immunodeficiency virus (SHIV)-induced encephalitis (SHIVE) with several classical HIVE features that include astrocyte infection. We further show an association between severe neuropathological changes, robust resident microglia infection, and evolution to CD4 independence of viruses in the central nervous system (CNS), with expansion to infection of truly CD4-negative cells in vivo. These findings support the use of the R5 SHIVE models to study the contribution of the HIV envelope and viral clades to neurovirulence and residual virus replication in the CNS, providing information that should guide efforts to eradicate HIV from the body.
Collapse
|
4
|
Generation of lineage-related, mucosally transmissible subtype C R5 simian-human immunodeficiency viruses capable of AIDS development, induction of neurological disease, and coreceptor switching in rhesus macaques. J Virol 2013; 87:6137-49. [PMID: 23514895 DOI: 10.1128/jvi.00178-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most human immunodeficiency virus (HIV) transmissions are initiated with CCR5 (R5)-using viruses across mucosal surfaces, with the majority in regions where HIV type 1 (HIV-1) clade C predominates. Mucosally transmissible, highly replication competent, pathogenic R5 simian-human immunodeficiency viruses (SHIVs) encoding biologically relevant clade C envelopes are therefore needed as challenge viruses in vaccine efficacy studies with nonhuman primates. Here we describe the generation of three lineage-related subtype C SHIVs through four successive rapid transfers in rhesus macaques of SHIVC109F.PB4, a molecular clone expressing the soluble-CD4 (sCD4)-sensitive CCR5-tropic clade C envelope of a recently infected subject in Zambia. The viruses differed in their monkey passage histories and neutralization sensitivities but remained R5 tropic. SHIVC109P3 and SHIVC109P3N were recovered from a passage-3 rapid-progressor animal during chronic infection (24 weeks postinfection [wpi]) and at end-stage disease (34 wpi), respectively, and are classified as tier 1B strains, whereas SHIVC109P4 was recovered from a passage-4 normal-progressor macaque at 22 wpi and is a tier 2 virus, more difficult to neutralize. All three viruses were transmitted efficiently via intrarectal inoculation, reaching peak viral loads of 10(7) to 10(9) RNA copies/ml plasma and establishing viremia at various set points. Notably, one of seven (GC98) and two of six (CL31, FI08) SHIVC109P3- and SHIVC109P3N-infected macaques, respectively, progressed to AIDS, with neuropathologies observed in GC98 and FI08, as well as coreceptor switching in the latter. These findings support the use of these new SHIVC109F.PB4-derived viruses to study the immunopathology of HIV-1 clade C infection and to evaluate envelope-based AIDS vaccines in nonhuman primates.
Collapse
|
5
|
Ren W, Mumbauer A, Zhuang K, Harbison C, Knight H, Westmoreland S, Gettie A, Blanchard J, Cheng-Mayer C. Mucosal transmissibility, disease induction and coreceptor switching of R5 SHIVSF162P3N molecular clones in rhesus macaques. Retrovirology 2013; 10:9. [PMID: 23369442 PMCID: PMC3571932 DOI: 10.1186/1742-4690-10-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 01/25/2013] [Indexed: 11/18/2022] Open
Abstract
Background Mucosally transmissible and pathogenic CCR5 (R5)-tropic simian-human immunodeficiency virus (SHIV) molecular clones are useful reagents to identity neutralization escape in HIV-1 vaccine experiments and to study the envelope evolutionary process and mechanistic basis for coreceptor switch during the course of natural infection. Results We observed progression to AIDS in rhesus macaques infected intrarectally with molecular clones of the pathogenic R5 SHIVSF162P3N isolate. Expansion to CXCR4 usage was documented in one diseased macaque that mounted a neutralizing antibody response and in another that failed to do so, with the latter displaying a rapid progressor phenotype. V3 loop envelop glycoprotein gp120 sequence changes that are predictive of a CXCR4 (X4)-using phenotype in HIV-1 subtype B primary isolates, specifically basic amino acid substations at positions 11 (S11R), 24 (G24R) and 25 (D25K) of the loop were detected in the two infected macaques. Functional assays showed that envelopes with V3 S11R or D25K mutation were dual-tropic, infecting CD4+ target cells that expressed either the CCR5 or CXCR4 coreceptor. And, consistent with findings of coreceptor switching in macaques infected with the pathogenic isolate, CXCR4-using variant was first detected in the lymph node of the chronically infected rhesus monkey several weeks prior to its presence in peripheral blood. Moreover, X4 emergence in this macaque coincided with persistent peripheral CD4+ T cell loss and a decline in neutralizing antibody titer that are suggestive of immune deterioration, with macrophages as the major virus-producing cells at the end-stage of disease. Conclusions The data showed that molecular clones derived from the R5 SHIVSF162P3N isolate are mucosally transmissible and induced disease in a manner similar to that observed in HIV-1 infected individuals, providing a relevant and useful animal infection model for in-depth analyses of host selection pressures and the env evolutionary changes that influence disease outcome, coreceptor switching and vaccine escape.
Collapse
Affiliation(s)
- Wuze Ren
- Aaron Diamond AIDS Research Center, 455 First Ave,, 7th Floor, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Zhuang K, Finzi A, Toma J, Frantzell A, Huang W, Sodroski J, Cheng-Mayer C. Identification of interdependent variables that influence coreceptor switch in R5 SHIV(SF162P3N)-infected macaques. Retrovirology 2012; 9:106. [PMID: 23237529 PMCID: PMC3528637 DOI: 10.1186/1742-4690-9-106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/05/2012] [Indexed: 11/18/2022] Open
Abstract
Background We previously reported that adoption of an “open” envelope glycoprotein (Env) to expose the CD4 binding site for efficient receptor binding and infection of cell targets such as macrophages that express low levels of the receptor represents an early event in the process of coreceptor switch in two rapidly progressing (RP) R5 SHIVSF162P3N-infected rhesus macaques, releasing or reducing Env structural constraints that have been suggested to limit the pathways available for a change in coreceptor preference. Here we extended these studies to two additional RP monkeys with coreceptor switch and three without to confirm and identify additional factors that facilitated the process of phenotypic conversion. Results We found that regardless of coreceptor switching, R5 viruses in SHIVSF162P3N-infected RP macaques evolved over time to infect macrophages more efficiently; this was accompanied by increased sCD4 sensitivity, with structural changes in the CD4 binding site, the V3 loop and/or the fusion domain of their Envs that are suggestive of better CD4 contact, CCR5 usage and/or virus fusion. However, sCD4-sensitive variants with improved CD4 binding were observed only in RPs with coreceptor switch. Furthermore, cumulative viral load was higher in RPs with than in those without phenotypic switch, with the latter maintaining a longer period of seroconversion. Conclusions Our data suggest that the increased virus replication in the RPs with R5-to-X4 conversion increased the rate of virus evolution and reduction in the availability of target cells with optimal CD4 expression heightened the competition for binding to the receptor. In the absence of immunological restrictions, variants that adopt an “open” Env to expose the CD4 binding site for better CD4 use are selected, allowing structural changes that confer CXCR4-use to be manifested. Viral load, change in target cell population during the course of infection and host immune response therefore are interdependent variables that influence R5 virus evolution and coreceptor switch in SHIVSF162P3N-infected rhesus macaques. Because an "open" Env conformation also renders the virus more susceptible to antibody neutralization, our findings help to explain the infrequent and late appearance of X4 virus in HIV-1 infection when the immune system deteriorates.
Collapse
Affiliation(s)
- Ke Zhuang
- Aaron Diamond AIDS Research Center, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Song H, Pavlicek JW, Cai F, Bhattacharya T, Li H, Iyer SS, Bar KJ, Decker JM, Goonetilleke N, Liu MKP, Berg A, Hora B, Drinker MS, Eudailey J, Pickeral J, Moody MA, Ferrari G, McMichael A, Perelson AS, Shaw GM, Hahn BH, Haynes BF, Gao F. Impact of immune escape mutations on HIV-1 fitness in the context of the cognate transmitted/founder genome. Retrovirology 2012; 9:89. [PMID: 23110705 PMCID: PMC3496648 DOI: 10.1186/1742-4690-9-89] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 10/07/2012] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND A modest change in HIV-1 fitness can have a significant impact on viral quasispecies evolution and viral pathogenesis, transmission and disease progression. To determine the impact of immune escape mutations selected by cytotoxic T lymphocytes (CTL) on viral fitness in the context of the cognate transmitted/founder (T/F) genome, we developed a new competitive fitness assay using molecular clones of T/F genomes lacking exogenous genetic markers and a highly sensitive and precise parallel allele-specific sequencing (PASS) method. RESULTS The T/F and mutant viruses were competed in CD4+ T-cell enriched cultures, relative proportions of viruses were assayed after repeated cell-free passage, and fitness costs were estimated by mathematical modeling. Naturally occurring HLA B57-restricted mutations involving the TW10 epitope in Gag and two epitopes in Tat/Rev and Env were assessed independently and together. Compensatory mutations which restored viral replication fitness were also assessed. A principal TW10 escape mutation, T242N, led to a 42% reduction in replication fitness but V247I and G248A mutations in the same epitope restored fitness to wild-type levels. No fitness difference was observed between the T/F and a naturally selected variant carrying the early CTL escape mutation (R355K) in Env and a reversion mutation in the Tat/Rev overlapping region. CONCLUSIONS These findings reveal a broad spectrum of fitness costs to CTL escape mutations in T/F viral genomes, similar to recent findings reported for neutralizing antibody escape mutations, and highlight the extraordinary plasticity and adaptive potential of the HIV-1 genome. Analysis of T/F genomes and their evolved progeny is a powerful approach for assessing the impact of composite mutational events on viral fitness.
Collapse
Affiliation(s)
- Hongshuo Song
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Jeffrey W Pavlicek
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Fangping Cai
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Tanmoy Bhattacharya
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- The Santa Fe Institute, Santa Fe, NM, 87501, USA
| | - Hui Li
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shilpa S Iyer
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Katharine J Bar
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julie M Decker
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Nilu Goonetilleke
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, OX3 9DS, UK
| | - Michael KP Liu
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, OX3 9DS, UK
| | - Anna Berg
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Bhavna Hora
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Mark S Drinker
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Josh Eudailey
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Joy Pickeral
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Andrew McMichael
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, OX3 9DS, UK
| | - Alan S Perelson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Feng Gao
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
8
|
Savkovic B, Symonds G, Murray JM. Stochastic model of in-vivo X4 emergence during HIV infection: implications for the CCR5 inhibitor maraviroc. PLoS One 2012; 7:e38755. [PMID: 22866173 PMCID: PMC3398969 DOI: 10.1371/journal.pone.0038755] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/11/2012] [Indexed: 12/30/2022] Open
Abstract
The emergence of X4 tropic viral strains throughout the course of HIV infection is associated with poorer prognostic outcomes and faster progressions to AIDS than for patients in whom R5 viral strains predominate. Here we investigate a stochastic model to account for the emergence of X4 virus via mutational intermediates of lower fitness that exhibit dual/mixed (D/M) tropism, and employ the model to investigate whether the administration of CCR5 blockers in-vivo is likely to promote a shift towards X4 tropism. We show that the proposed stochastic model can account for X4 emergence with a median time of approximately 4 years post-infection as a result of: 1.) random stochastic mutations in the V3 region of env during the reverse transcription step of infection; 2.) increasing numbers of CXCR4-expressing activated naive CD4+ T cells with declining total CD4+ T cell counts, thereby providing increased numbers of activated target cells for productive infection by X4 virus. Our model indicates that administration of the CCR5 blocker maraviroc does not promote a shift towards X4 tropism, assuming sufficient efficacy of background therapy (BT). However our modelling also indicates that administration of maraviroc as a monotherapy or with BT of suboptimal efficacy can promote emergence of X4 tropic virus, resulting in accelerated progression to AIDS. Taken together, our results demonstrate that maraviroc is safe and effective if co-administered with sufficiently potent BT, but that suboptimal BT may promote X4 emergence and accelerated progression to AIDS. These results underscore the clinical importance for careful selection of BT when CCR5 blockers are administered in-vivo.
Collapse
Affiliation(s)
- Borislav Savkovic
- School of Mathematics and Statistics, University of New South Wales, Sydney, Australia.
| | | | | |
Collapse
|
9
|
Pathogenic consequences of vaginal infection with CCR5-tropic simian-human immunodeficiency virus SHIVSF162P3N. J Virol 2012; 86:9432-42. [PMID: 22740397 DOI: 10.1128/jvi.00852-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We previously reported efficient transmission of the pathogenic R5 simian-human immunodeficiency virus SHIV(SF162P3N) isolate in Indian rhesus macaques by intravenous and intrarectal inoculations, with a switch to CXCR4 coreceptor usage in ∼50% of infected animals that progressed rapidly to disease. Since women continue to be disproportionately affected by HIV, we developed an animal model based on the intravaginal challenge of female rhesus monkeys with SHIV(SF162P3N) and sought to validate the utility of this model to study relevant aspects of HIV transmission and pathogenesis. The effect of viral dose on infection outcome was evaluated to determine the optimal conditions for the evaluation of HIV-1 preventive and therapeutic strategies. We found that the virus can successfully cross the vaginal mucosal surface to establish infection and induce disease with coreceptor switch, but with lower efficiencies compared to intravenous and rectal transmissions. In contrast to intrarectal infection, peak and cumulative viral load over a 1 year-infection period were significantly greater in macaques exposed intravaginally to lower rather than higher inoculum doses. Moreover, low and transient viremia was observed only in macaques that were challenged intravaginally twice within the same day with a high dose of virus, which can be seen as doubling the dose. Taken together, these results show that SHIV(SF162P3N) can successfully transmit across the genital mucosa, undergo coreceptor switch, and induce disease. However, the administered dose appears to impact SHIV(SF162P3N) vaginal infection outcome in an unexpected manner.
Collapse
|
10
|
Zhuang K, Finzi A, Tasca S, Shakirzyanova M, Knight H, Westmoreland S, Sodroski J, Cheng-Mayer C. Adoption of an "open" envelope conformation facilitating CD4 binding and structural remodeling precedes coreceptor switch in R5 SHIV-infected macaques. PLoS One 2011; 6:e21350. [PMID: 21760891 PMCID: PMC3132741 DOI: 10.1371/journal.pone.0021350] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/25/2011] [Indexed: 11/18/2022] Open
Abstract
A change in coreceptor preference from CCR5 to CXCR4 towards the end stage disease in some HIV-1 infected individuals has been well documented, but the reasons and mechanisms for this tropism switch remain elusive. It has been suggested that envelope structural constraints in accommodating amino acid changes required for CXCR4 usage is an obstacle to tropism switch, limiting the rate and pathways available for HIV-1 coreceptor switching. The present study was initiated in two R5 SHIV(SF162P3N)-infected rapid progressor macaques with coreceptor switch to test the hypothesis that an early step in the evolution of tropism switch is the adoption of a less constrained and more "open" envelope conformation for better CD4 usage, allowing greater structural flexibility to accommodate further mutational changes that confer CXCR4 utilization. We show that, prior to the time of coreceptor switch, R5 viruses in both macaques evolved to become increasingly sCD4-sensitive, suggestive of enhanced exposure of the CD4 binding site and an "open" envelope conformation, and this correlated with better gp120 binding to CD4 and with more efficient infection of CD4(low) cells such as primary macrophages. Moreover, significant changes in neutralization sensitivity to agents and antibodies directed against functional domains of gp120 and gp41 were seen for R5 viruses close to the time of X4 emergence, consistent with global changes in envelope configuration and structural plasticity. These observations in a simian model of R5-to-X4 evolution provide a mechanistic basis for the HIV-1 coreceptor switch.
Collapse
Affiliation(s)
- Ke Zhuang
- Aaron Diamond AIDS Research Center, New York, New York, United States of America
| | - Andres Finzi
- Division of AIDS, Department of Cancer Immunology and AIDS, Department of Pathology, Dana-Faber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Silvana Tasca
- Aaron Diamond AIDS Research Center, New York, New York, United States of America
| | - Madina Shakirzyanova
- Aaron Diamond AIDS Research Center, New York, New York, United States of America
| | - Heather Knight
- Division of Comparative Pathology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Susan Westmoreland
- Division of Comparative Pathology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Joseph Sodroski
- Division of AIDS, Department of Cancer Immunology and AIDS, Department of Pathology, Dana-Faber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Cecilia Cheng-Mayer
- Aaron Diamond AIDS Research Center, New York, New York, United States of America
| |
Collapse
|
11
|
Abstract
SIV or SHIV infection of nonhuman primates (NHP) has been used to investigate the impact of coreceptor usage on the composition and dynamics of the CD4+ T cell compartment, mechanisms of disease induction and development of clinical syndrome. As the entire course of infection can be followed, with frequent access to tissue compartments, infection of rhesus macaques with CCR5-tropic SHIVs further allows for study of HIV-1 coreceptor switch after intravenous and mucosal inoculation, with longitudinal and systemic analysis to determine the timing, anatomical sites and cause for the change in envelope glycoprotein and coreceptor preference. Here, we review our current understanding of coreceptor use in NHPs and their impact on the pathobiological characteristics of the infection, and discuss recent advances in NHP studies to uncover the underlying selective pressures for the change in coreceptor preference in vivo.
Collapse
Affiliation(s)
- Silvana Tasca Sina
- Aaron Diamond AIDS Research Center, 455 First Ave, 7th Floor, New York, New York, USA
| | | | | |
Collapse
|