1
|
Zubković A, Gomes C, Parchure A, Cesarec M, Ferenčić A, Rokić F, Jakovac H, Whitford AL, Dochnal SA, Cliffe AR, Cuculić D, Gallo A, Vugrek O, Hackenberg M, Jurak I. HSV-1 miRNAs are post-transcriptionally edited in latently infected human ganglia. J Virol 2023; 97:e0073023. [PMID: 37712701 PMCID: PMC10617394 DOI: 10.1128/jvi.00730-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/10/2023] [Indexed: 09/16/2023] Open
Abstract
IMPORTANCE Herpes simplex virus 1 is an important human pathogen that has been intensively studied for many decades. Nevertheless, the molecular mechanisms regulating its establishment, maintenance, and reactivation from latency are poorly understood. Here, we show that HSV-1-encoded miR-H2 is post-transcriptionally edited in latently infected human tissues. Hyperediting of viral miRNAs increases the targeting potential of these miRNAs and may play an important role in regulating latency. We show that the edited miR-H2 can target ICP4, an essential viral protein. Interestingly, we found no evidence of hyperediting of its homolog, miR-H2, which is expressed by the closely related virus HSV-2. The discovery of post-translational modifications of viral miRNA in the latency phase suggests that these processes may also be important for other non-coding viral RNA in the latency phase, including the intron LAT, which in turn may be crucial for understanding the biology of this virus.
Collapse
Affiliation(s)
- Andreja Zubković
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Cristina Gomes
- Genetics Department and Biotechnology Institute, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Adwait Parchure
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Mia Cesarec
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Antun Ferenčić
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Filip Rokić
- Laboratory for Advanced Genomics, Institute Ruđer Bošković, Zagreb, Croatia
| | - Hrvoje Jakovac
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Abigail L. Whitford
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Sara A. Dochnal
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Anna R. Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Dražen Cuculić
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Angela Gallo
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Oliver Vugrek
- Laboratory for Advanced Genomics, Institute Ruđer Bošković, Zagreb, Croatia
| | - Michael Hackenberg
- Genetics Department and Biotechnology Institute, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Igor Jurak
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
2
|
Ivanišević V, Žilić L, Čunko M, Fadiga H, Munitić I, Jurak I. RNA Editing-Dependent and -Independent Roles of Adenosine Deaminases Acting on RNA Proteins in Herpesvirus Infection-Hints on Another Layer of Complexity. Viruses 2023; 15:2007. [PMID: 37896783 PMCID: PMC10611208 DOI: 10.3390/v15102007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The Adenosine Deaminases Acting on RNA (ADAR) catalyze the posttranscriptional deamination of adenosine residues to inosine in double-stranded RNAs (dsRNAs, A-to-I editing), preventing the overactivation of dsRNA sensor molecules and interferons. RNA editing is the cornerstone of innate immunity that distinguishes between self and non-self (virus), and it is essential for normal regulation of cellular homeostasis. Although much is already known about the role of ADAR proteins in RNA virus infection, the role of ADAR proteins in herpesvirus infection remains largely unexplored. In this review, we provide several lines of evidence from studies of different herpesviruses for another level of complexity in regulating the already intricate biphasic life cycle of herpesviruses.
Collapse
Affiliation(s)
| | | | | | | | | | - Igor Jurak
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia (L.Ž.)
| |
Collapse
|
3
|
Zhang H, Sandhu PK, Damania B. The Role of RNA Sensors in Regulating Innate Immunity to Gammaherpesviral Infections. Cells 2023; 12:1650. [PMID: 37371120 PMCID: PMC10297173 DOI: 10.3390/cells12121650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) and the Epstein-Barr virus (EBV) are double-stranded DNA oncogenic gammaherpesviruses. These two viruses are associated with multiple human malignancies, including both B and T cell lymphomas, as well as epithelial- and endothelial-derived cancers. KSHV and EBV establish a life-long latent infection in the human host with intermittent periods of lytic replication. Infection with these viruses induce the expression of both viral and host RNA transcripts and activates several RNA sensors including RIG-I-like receptors (RLRs), Toll-like receptors (TLRs), protein kinase R (PKR) and adenosine deaminases acting on RNA (ADAR1). Activation of these RNA sensors induces the innate immune response to antagonize the virus. To counteract this, KSHV and EBV utilize both viral and cellular proteins to block the innate immune pathways and facilitate their own infection. In this review, we summarize how gammaherpesviral infections activate RNA sensors and induce their downstream signaling cascade, as well as how these viruses evade the antiviral signaling pathways to successfully establish latent infection and undergo lytic reactivation.
Collapse
|
4
|
Rajendren S, Ye X, Dunker W, Richardson A, Karijolich J. The cellular and KSHV A-to-I RNA editome in primary effusion lymphoma and its role in the viral lifecycle. Nat Commun 2023; 14:1367. [PMID: 36914661 PMCID: PMC10011561 DOI: 10.1038/s41467-023-37105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Adenosine-to-inosine RNA editing is a major contributor to transcriptome diversity in animals with far-reaching biological consequences. Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of several human malignancies including primary effusion lymphoma (PEL). The extent of RNA editing within the KSHV transcriptome is unclear as is its contribution to the viral lifecycle. Here, we leverage a combination of biochemical and genomic approaches to determine the RNA editing landscape in host- and KSHV transcriptomes during both latent and lytic replication in PEL. Analysis of RNA editomes reveals it is dynamic, with increased editing upon reactivation and the potential to deregulate pathways critical for latency and tumorigenesis. In addition, we identify conserved RNA editing events within a viral microRNA and discover their role in miRNA biogenesis as well as viral infection. Together, these results describe the editome of PEL cells as well as a critical role for A-to-I editing in the KSHV lifecycle.
Collapse
Affiliation(s)
- Suba Rajendren
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232-2363, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, 37232-2363, USA
- Vanderbilt Center for Immunobiology, Nashville, TN, 37232-2363, USA
| | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232-2363, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, 37232-2363, USA
- Vanderbilt Center for Immunobiology, Nashville, TN, 37232-2363, USA
| | - William Dunker
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232-2363, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, 37232-2363, USA
- Vanderbilt Center for Immunobiology, Nashville, TN, 37232-2363, USA
| | - Antiana Richardson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232-2363, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, 37232-2363, USA
- Vanderbilt Center for Immunobiology, Nashville, TN, 37232-2363, USA
| | - John Karijolich
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232-2363, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, 37232-2363, USA.
- Vanderbilt Center for Immunobiology, Nashville, TN, 37232-2363, USA.
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-2363, USA.
- Vanderbilt-Ingram Cancer Center, Nashville, TN, 37232-2363, USA.
| |
Collapse
|
5
|
Santiago JC, Adams SV, Towlerton A, Okuku F, Phipps W, Mullins JI. Genomic changes in Kaposi Sarcoma-associated Herpesvirus and their clinical correlates. PLoS Pathog 2022; 18:e1010524. [PMID: 36441790 PMCID: PMC9731496 DOI: 10.1371/journal.ppat.1010524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 12/08/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
Kaposi sarcoma (KS), a common HIV-associated malignancy, presents a range of clinicopathological features. Kaposi sarcoma-associated herpesvirus (KSHV) is its etiologic agent, but the contribution of viral genomic variation to KS development is poorly understood. To identify potentially influential viral polymorphisms, we characterized KSHV genetic variation in 67 tumors from 1-4 distinct sites from 29 adults with advanced KS in Kampala, Uganda. Whole KSHV genomes were sequenced from 20 tumors with the highest viral load, whereas only polymorphic genes were screened by PCR and sequenced from 47 other tumors. Nine individuals harbored ≥1 tumors with a median 6-fold over-coverage of a region centering on K5 and K6 genes. K8.1 gene was inactivated in 8 individuals, while 5 had mutations in the miR-K10 microRNA coding sequence. Recurring inter-host polymorphisms were detected in K4.2 and K11.2. The K5-K6 region rearrangement breakpoints and K8.1 mutations were all unique, indicating that they arise frequently de novo. Rearrangement breakpoints were associated with potential G-quadruplex and Z-DNA forming sequences. Exploratory evaluations of viral mutations with clinical and tumor traits were conducted by logistic regression without multiple test corrections. K5-K6 over-coverage and K8.1 inactivation were tentatively correlated (p<0.001 and p = 0.005, respectively) with nodular rather than macular tumors, and with individuals that had lesions in ≤4 anatomic areas (both p≤0.01). Additionally, a trend was noted for miR-K10 point mutations and lower survival rates (HR = 4.11, p = 0.053). Two instances were found of distinct tumors within an individual sharing the same viral mutation, suggesting metastases or transmission of the aberrant viruses within the host. To summarize, KSHV genomes in tumors frequently have over-representation of the K5-K6 region, as well as K8.1 and miR-K10 mutations, and each might be associated with clinical phenotypes. Studying their possible effects may be useful for understanding KS tumorigenesis and disease progression.
Collapse
Affiliation(s)
- Jan Clement Santiago
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Scott V. Adams
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Andrea Towlerton
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Fred Okuku
- Uganda Cancer Institute, Kampala, Uganda
| | - Warren Phipps
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
6
|
Rajendren S, Karijolich J. The Impact of RNA modifications on the Biology of DNA Virus Infection. Eur J Cell Biol 2022; 101:151239. [PMID: 35623231 PMCID: PMC9549750 DOI: 10.1016/j.ejcb.2022.151239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022] Open
Abstract
Approximately 170 RNA modifications have been identified and these are critical for determining the fate and function of cellular RNAs. Similar to human transcripts, viral RNAs possess an extensive RNA modification landscape. While initial efforts largely focused on investigating the RNA modification landscape in the context of RNA virus infection, a growing body of work has explored the impact of RNA modifications on DNA virus biology. These studies have revealed roles for RNA modifications in DNA virus infection, including gene regulation and viral pathogenesis. In this review, we will discuss the current knowledge on how RNA modifications impact DNA virus biology.
Collapse
|
7
|
Abstract
C6 deamination of adenosine (A) to inosine (I) in double-stranded RNA (dsRNA) is catalyzed by a family of enzymes known as ADARs (adenosine deaminases acting on RNA) encoded by three genes in mammals. Alternative promoters and splicing produce two ADAR1 proteins, an interferon-inducible cytoplasmic p150 and a constitutively expressed p110 that like ADAR2 is a nuclear enzyme. ADAR3 lacks deaminase activity. A-to-I editing occurs with both viral and cellular RNAs. Deamination activity is dependent on dsRNA substrate structure and regulatory RNA-binding proteins and ranges from highly site selective with hepatitis D RNA and glutamate receptor precursor messenger RNA (pre-mRNA) to hyperediting of measles virus and polyomavirus transcripts and cellular inverted Alu elements. Because I base-pairs as guanosine instead of A, editing can alter mRNA decoding, pre-mRNA splicing, and microRNA silencing. Editing also alters dsRNA structure, thereby suppressing innate immune responses including interferon production and action. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Christian K Pfaller
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen 63225, Germany
| | - Cyril X George
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA;
| | - Charles E Samuel
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA;
| |
Collapse
|
8
|
Abstract
Chemical modifications of viral RNA are an integral part of the viral life cycle and are present in most classes of viruses. To date, more than 170 RNA modifications have been discovered in all types of cellular RNA. Only a few, however, have been found in viral RNA, and the function of most of these has yet to be elucidated. Those few we have discovered and whose functions we understand have a varied effect on each virus. They facilitate RNA export from the nucleus, aid in viral protein synthesis, recruit host enzymes, and even interact with the host immune machinery. The most common methods for their study are mass spectrometry and antibody assays linked to next-generation sequencing. However, given that the actual amount of modified RNA can be very small, it is important to pair meticulous scientific methodology with the appropriate detection methods and to interpret the results with a grain of salt. Once discovered, RNA modifications enhance our understanding of viruses and present a potential target in combating them. This review provides a summary of the currently known chemical modifications of viral RNA, the effects they have on viral machinery, and the methods used to detect them.
Collapse
Affiliation(s)
- Jiří František Potužník
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Cahová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
9
|
Zhang H, Ni G, Damania B. ADAR1 Facilitates KSHV Lytic Reactivation by Modulating the RLR-Dependent Signaling Pathway. Cell Rep 2020; 31:107564. [PMID: 32348766 PMCID: PMC7319254 DOI: 10.1016/j.celrep.2020.107564] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/17/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus that exhibits two alternative life cycles: latency and lytic reactivation. During lytic reactivation, host innate immune responses are activated to restrict viral replication. Here, we report that adenosine deaminase acting on RNA 1 (ADAR1) is required for optimal KSHV lytic reactivation from latency. Knockdown of ADAR1 in KSHV latently infected cells inhibits viral gene transcription and viral replication during KSHV lytic reactivation. ADAR1 deficiency also significantly increases type I interferon production during KSHV reactivation. This increased interferon response is dependent on activation of the RIG-I-like receptor (RLR) pathway. Depletion of ADAR1 together with either RIG-I, MDA5, or MAVS reverses the increased IFNβ production and rescues KSHV lytic replication. These data suggest that ADAR1 serves as a proviral factor for KSHV lytic reactivation and facilitates DNA virus reactivation by dampening the RLR pathway-mediated innate immune response.
Collapse
Affiliation(s)
- Huirong Zhang
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, and Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Guoxin Ni
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, and Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Blossom Damania
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, and Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
10
|
ADAR1p150 regulates the biosynthesis and function of miRNA-149* in human melanoma. Biochem Biophys Res Commun 2020; 523:900-907. [PMID: 31959472 DOI: 10.1016/j.bbrc.2019.12.110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/17/2019] [Indexed: 11/20/2022]
Abstract
Melanoma is an aggressive malignant skin tumor. Study found that miR-149* was abnormally expressed in melanoma. Adenosine deaminases acting on the RNA1 (ADAR1) is an RNA editing enzyme. It can change the structure and function of miRNA. In this study, we investigate the role of ADAR1 in regulation of miRNA-149* in melanoma. Western-blot analysis was used to analyze the expression of ADAR1p150, ADAR1p110 and GSK3α at protein level. The expression of ADAR1p150, miR-149* and GSK3α at mRNA level were detected using qRT-PCR. Co-immunoprecipitation test was then performed to determine the interaction between ADAR1 and Dicer. Target verification of miRNA-149*/GSK3α was carried out using luciferase reporter assay. CCK-8 was used to detect cell proliferation. Cell apoptosis was tested using Tunel assays. The expression level of ADAR1p150 was found to be increased in human melanoma tissues, but not ADAR1p110. There was a direct interaction between ADAR1p150 and Dicer in melanoma cells. MiRNA-149* was significantly up-regulated in melanoma tissues and melanoma cells. Luciferase reporter assay suggested that GSK3α was a directly target of miR-149*. The expression level of miR-149* showed a positive correlation with ADAR1p150. At the same time, ADAR1p150 expression was negatively correlated with the expression of GSK3α. ADAR1p150 promoted proliferation of melanoma cells and inhibited cell apoptosis. ADAR1p150 can promote the biosynthesis and function of miRNA-149* in melanoma cells which makes it be considered as both a bio-marker and a therapeutic target for treatment of melanoma.
Collapse
|
11
|
Goncharov AO, Kliuchnikova AA, Nasaev SS, Moshkovskii SA. RNA Editing by ADAR Adenosine Deaminases: From Molecular Plasticity of Neural Proteins to the Mechanisms of Human Cancer. BIOCHEMISTRY (MOSCOW) 2019; 84:896-904. [PMID: 31522671 DOI: 10.1134/s0006297919080054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RNA editing by adenosine deaminases of the ADAR family attracts a growing interest of researchers, both zoologists studying ecological and evolutionary plasticity of invertebrates and medical biochemists focusing on the mechanisms of cancer and other human diseases. These enzymes deaminate adenosine residues in the double-stranded (ds) regions of RNA with the formation of inosine. As a result, some RNAs change their three-dimensional structure and functions. Adenosine-to-inosine editing in the mRNA coding sequences may cause amino acid substitutions in the encoded proteins. Here, we reviewed current concepts on the functions of two active ADAR isoforms identified in mammals (including humans). The ADAR1 protein, which acts non-specifically on extended dsRNA regions, is capable of immunosuppression via inactivation of the dsRNA interactions with specific sensors inducing the cell immunity. Expression of a specific ADAR1 splicing variant is regulated by the type I interferons by the negative feedback mechanism. It was shown that immunosuppressing effects of ADAR1 facilitate progression of some types of cancer. On the other hand, changes in the amino acid sequences resulting from the mRNA editing by the ADAR enzymes can result in the formation of neoantigens that can activate the antitumor immunity. The ADAR2 isoform acts on RNA more selectively; its function is associated with the editing of mRNA coding regions and can lead to the amino acid substitutions, in particular, those essential for the proper functioning of some neurotransmitter receptors in the central nervous system.
Collapse
Affiliation(s)
- A O Goncharov
- Institute of Biomedical Chemistry, Moscow, 119121, Russia.
| | - A A Kliuchnikova
- Institute of Biomedical Chemistry, Moscow, 119121, Russia.,Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - S S Nasaev
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - S A Moshkovskii
- Institute of Biomedical Chemistry, Moscow, 119121, Russia. .,Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| |
Collapse
|
12
|
Adenosine Deaminase Acting on RNA 1 Associates with Orf Virus OV20.0 and Enhances Viral Replication. J Virol 2019; 93:JVI.01912-18. [PMID: 30651363 DOI: 10.1128/jvi.01912-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/21/2018] [Indexed: 01/08/2023] Open
Abstract
Orf virus (ORFV) infects sheep and goats and is also an important zoonotic pathogen. The viral protein OV20.0 has been shown to suppress innate immunity by targeting the double-stranded RNA (dsRNA)-activated protein kinase (PKR) by multiple mechanisms. These mechanisms include a direct interaction with PKR and binding with two PKR activators, dsRNA and the cellular PKR activator (PACT), which ultimately leads to the inhibition of PKR activation. In the present study, we identified a novel association between OV20.0 and adenosine deaminase acting on RNA 1 (ADAR1). OV20.0 bound directly to the dsRNA binding domains (RBDs) of ADAR1 in the absence of dsRNA. Additionally, OV20.0 preferentially interacted with RBD1 of ADAR1, which was essential for its dsRNA binding ability and for the homodimerization that is critical for intact adenosine-to-inosine (A-to-I)-editing activity. Finally, the association with OV20.0 suppressed the A-to-I-editing ability of ADAR1, while ADAR1 played a proviral role during ORFV infection by inhibiting PKR phosphorylation. These observations revealed a new strategy used by OV20.0 to evade antiviral responses via PKR.IMPORTANCE Viruses evolve specific strategies to counteract host innate immunity. ORFV, an important zoonotic pathogen, encodes OV20.0 to suppress PKR activation via multiple mechanisms, including interactions with PKR and two PKR activators. In this study, we demonstrated that OV20.0 interacts with ADAR1, a cellular enzyme responsible for converting adenosine (A) to inosine (I) in RNA. The RNA binding domains, but not the catalytic domain, of ADAR1 are required for this interaction. The OV20.0-ADAR1 association affects the functions of both proteins; OV20.0 suppressed the A-to-I editing of ADAR1, while ADAR1 elevated OV20.0 expression. The proviral role of ADAR1 is likely due to the inhibition of PKR phosphorylation. As RNA editing by ADAR1 contributes to the stability of the genetic code and the structure of RNA, these observations suggest that in addition to serving as a PKR inhibitor, OV20.0 might modulate ADAR1-dependent gene expression to combat antiviral responses or achieve efficient viral infection.
Collapse
|
13
|
Zhang X, Gao X, Hu J, Xie Y, Zuo Y, Xu H, Zhu S. ADAR1p150 Forms a Complex with Dicer to Promote miRNA-222 Activity and Regulate PTEN Expression in CVB3-Induced Viral Myocarditis. Int J Mol Sci 2019; 20:ijms20020407. [PMID: 30669342 PMCID: PMC6359435 DOI: 10.3390/ijms20020407] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
Adenosine deaminases acting on RNA (ADAR) are enzymes that regulate RNA metabolism through post-transcriptional mechanisms. ADAR1 is involved in a variety of pathological conditions including inflammation, cancer, and the host defense against viral infections. However, the role of ADAR1p150 in vascular disease remains unclear. In this study, we examined the expression of ADAR1p150 and its role in viral myocarditis (VMC) in a mouse model. VMC mouse cardiomyocytes showed significantly higher expression of ADAR1p150 compared to the control samples. Coimmunoprecipitation verified that ADAR1p150 forms a complex with Dicer in VMC. miRNA-222, which is involved in many cardiac diseases, is highly expressed in cardiomyocytes in VMC. In addition, the expression of miRNA-222 was promoted by ADAR1p150/Dicer. Among the target genes of miRNA-222, the expression of phosphatase-and-tensin (PTEN) protein was significantly reduced in VMC. By using a bioinformatics tool, we found a potential binding site of miRNA-222 on the PTEN gene’s 3′-UTR, suggesting that miRNA-222 might play a regulatory role. In cultured cells, miR-222 suppressed PTEN expression. Our findings suggest that ADAR1p150 plays a key role in complexing with Dicer and promoting the expression of miRNA-222, the latter of which suppresses the expression of the target gene PTEN during VMC. Our work reveals a previously unknown role of ADAR1p150 in gene expression in VMC.
Collapse
Affiliation(s)
- Xincai Zhang
- Institute of Forensic Medicine, Soochow University, Suzhou 215021, China.
| | - Xiangting Gao
- Department of Pathology, School of Medicine, Shihezi University, Shihezi 215021, China.
| | - Jun Hu
- Institute of Forensic Medicine, Soochow University, Suzhou 215021, China.
| | - Yuxin Xie
- Institute of Forensic Medicine, Soochow University, Suzhou 215021, China.
| | - Yuanyi Zuo
- Institute of Forensic Medicine, Soochow University, Suzhou 215021, China.
| | - Hongfei Xu
- Institute of Forensic Medicine, Soochow University, Suzhou 215021, China.
| | - Shaohua Zhu
- Institute of Forensic Medicine, Soochow University, Suzhou 215021, China.
| |
Collapse
|
14
|
Quantitative RNAseq analysis of Ugandan KS tumors reveals KSHV gene expression dominated by transcription from the LTd downstream latency promoter. PLoS Pathog 2018; 14:e1007441. [PMID: 30557332 PMCID: PMC6312348 DOI: 10.1371/journal.ppat.1007441] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/31/2018] [Accepted: 10/29/2018] [Indexed: 11/19/2022] Open
Abstract
KSHV is endemic in Uganda and the HIV epidemic has dramatically increased the incidence of Kaposi sarcoma (KS). To investigate the role of KSHV in the development of KS, we obtained KS biopsies from ART-naïve, HIV-positive individuals in Uganda and analyzed the tumors using RNAseq to globally characterize the KSHV transcriptome. Phylogenetic analysis of ORF75 sequences from 23 tumors revealed 6 distinct genetic clusters with KSHV strains exhibiting M, N or P alleles. RNA reads mapping to specific unique coding sequence (UCDS) features were quantitated using a gene feature file previously developed to globally analyze and quantitate KSHV transcription in infected endothelial cells. A pattern of high level expression was detected in the KSHV latency region that was common to all KS tumors. The clear majority of transcription was derived from the downstream latency transcript promoter P3(LTd) flanking ORF72, with little evidence of transcription from the P1(LTc) latency promoter, which is constitutive in KSHV-infected lymphomas and tissue-culture cells. RNAseq data provided evidence of alternate P3(LTd) transcript editing, splicing and termination resulting in multiple gene products, with 90% of the P3(LTd) transcripts spliced to release the intronic source of the microRNAs K1-9 and 11. The spliced transcripts encode a regulatory uORF upstream of Kaposin A with alterations in intervening repeat sequences yielding novel or deleted Kaposin B/C-like sequences. Hierarchical clustering and PCA analysis of KSHV transcripts revealed three clusters of tumors with different latent and lytic gene expression profiles. Paradoxically, tumors with a latent phenotype had high levels of total KSHV transcription, while tumors with a lytic phenotype had low levels of total KSHV transcription. Morphologically distinct KS tumors from the same individual showed similar KSHV gene expression profiles suggesting that the tumor microenvironment and host response play important roles in the activation level of KSHV within the infected tumor cells. Kaposi’s sarcoma (KS) is among the world’s most common AIDS-associated malignancies. The Kaposi sarcoma-associated herpesvirus (KSHV) was first identified in KS tumors and is now known to be the causative agent of all forms of KS, including classical, endemic, iatrogenic and HIV-associated. KSHV is endemic to sub-Saharan Africa with high infection rates in children and adults. Compounded with the high rate of HIV and AIDS in this area, pediatric and adult KS are some of the most common malignancies with the highest fatality rates. We used RNA deep sequencing to characterize KSHV expression in a large collection of KS biopsies from HIV-infected Ugandans. Using a novel approach to quantitate expression in complex genomes like KSHV, we found that RNA from a single KSHV promoter within the latency region constituted the majority of KSHV transcripts in the KS tumors. Alternate RNA processing produced different spliced and un-spliced transcripts with different coding potentials. Differential expression of other KSHV genes was detected which segregated the tumors into three different types depending on their expression of lytic or latency genes. Quantitative analysis of KSHV expression in KS tumors provides an important basis for future studies on the role of KSHV in the development of KS.
Collapse
|
15
|
Jiang Y, Wang Z, Chen X, Wang W, Wang X. ADAR1 silencing-induced HUVEC apoptosis is mediated by FGFR2 under hypoxia stress. Drug Des Devel Ther 2018; 12:4181-4189. [PMID: 30573948 PMCID: PMC6292393 DOI: 10.2147/dddt.s181312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The adenosine deaminase acting on RNA 1 (ADAR1) specifically deaminates adenosine to inosine in double-stranded RNA (dsRNA). Emerging evidence indicated that under hypoxia condition, such as tumor microenvironment, ADAR1 level was increased. Interestingly, we found FGFR2 was also increased under hypoxia stress. The purpose of this study was to investigate the regulation mechanism of ADAR1 and the potential role of ADAR1–FGFR2 axis in cell proliferation and apoptosis. Methods Using human umbilical vein endothelial cells as cellular model, we explored the function of ADAR1 in regulating cell survival. Results We found manipulation of FGFR2 activity could override the cellular effect of ADAR1, suggesting FGFR2 could be a potential effector of ADAR1. Moreover, our results revealed that PI3K-Akt pathway was involved in ADAR1–FGFR2 axis-induced cell proliferation. Conclusion In summary, this study supported the notion that ADAR1 could play a role in tumor cell proliferation, which was mediated by FGFR2.
Collapse
Affiliation(s)
- Yun Jiang
- Department of Cardiology, The Eighth People's Hospital of Shanghai, Shanghai 200233, China,
| | - Zhancheng Wang
- Department of Cardiology, The Eighth People's Hospital of Shanghai, Shanghai 200233, China,
| | - Xu Chen
- Department of Cardiology, The Eighth People's Hospital of Shanghai, Shanghai 200233, China,
| | - Wei Wang
- Department of Cardiology, The Eighth People's Hospital of Shanghai, Shanghai 200233, China,
| | - Xiaowei Wang
- Shanghai Weiang Info Tech Ltd., Shanghai 200233, China
| |
Collapse
|
16
|
Long-read sequencing uncovers a complex transcriptome topology in varicella zoster virus. BMC Genomics 2018; 19:873. [PMID: 30514211 DOI: 10.1186/s12864-018-5267-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Varicella zoster virus (VZV) is a human pathogenic alphaherpesvirus harboring a relatively large DNA molecule. The VZV transcriptome has already been analyzed by microarray and short-read sequencing analyses. However, both approaches have substantial limitations when used for structural characterization of transcript isoforms, even if supplemented with primer extension or other techniques. Among others, they are inefficient in distinguishing between embedded RNA molecules, transcript isoforms, including splice and length variants, as well as between alternative polycistronic transcripts. It has been demonstrated in several studies that long-read sequencing is able to circumvent these problems. RESULTS In this work, we report the analysis of the VZV lytic transcriptome using the Oxford Nanopore Technologies sequencing platform. These investigations have led to the identification of 114 novel transcripts, including mRNAs, non-coding RNAs, polycistronic RNAs and complex transcripts, as well as 10 novel spliced transcripts and 25 novel transcription start site isoforms and transcription end site isoforms. A novel class of transcripts, the nroRNAs are described in this study. These transcripts are encoded by the genomic region located in close vicinity to the viral replication origin. We also show that the ORF63 exhibits a complex structural variation encompassing the splice sites of VZV latency transcripts. Additionally, we have detected RNA editing in a novel non-coding RNA molecule. CONCLUSIONS Our investigations disclosed a composite transcriptomic architecture of VZV, including the discovery of novel RNA molecules and transcript isoforms, as well as a complex meshwork of transcriptional read-throughs and overlaps. The results represent a substantial advance in the annotation of the VZV transcriptome and in understanding the molecular biology of the herpesviruses in general.
Collapse
|
17
|
Gilani U, Shaukat M, Rasheed A, Shahid M, Tasneem F, Arshad M, Rashid N, Shahzad N. The implication of CRISPR/Cas9 genome editing technology in combating human oncoviruses. J Med Virol 2018; 91:1-13. [PMID: 30133783 DOI: 10.1002/jmv.25292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/31/2018] [Indexed: 12/23/2022]
Abstract
It is evidenced that 20% of all tumors in humans are caused by oncoviruses, including human papilloma viruses, Epstein-Barr virus, Kaposi sarcoma virus, human polyomaviruses, human T-lymphotrophic virus-1, and hepatitis B and C viruses. Human immunodeficiency virus is also involved in carcinogenesis, although not directly, but by facilitating the infection of many oncoviruses through compromising the immune system. Being intracellular parasites with the property of establishing latency and integrating into the host genome, these viruses are a therapeutic challenge for biomedical researchers. Therefore, strategies able to target nucleotide sequences within episomal or integrated viral genomes are of prime importance in antiviral or anticancerous armamentarium. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has emerged as a powerful genome editing tool. Standing out as a precise and efficient oncoviruses method, it has been extensively applied in recent experimental ventures in the field of molecular medicine, particularly in combating infections including tumor inducing viruses. This review is aimed at collating the experimental and clinical advances in CRISPR/Cas9 technology in terms of its applications against oncoviruses. Primarily, it will focus on the application of CRISPR/Cas9 in combating tumor viruses, types of mechanisms targeted, and the significant outcomes till date. The technical pitfalls of the CRISPR/Cas9 and the comparative approaches in evaluating this technique with respect to other available alternatives are also described briefly. Furthermore, the review also discussed the clinical aspects and the ethical, legal, and social issues associated with the use of CRISPR/Cas9.
Collapse
Affiliation(s)
- Usman Gilani
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Memoona Shaukat
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Arisha Rasheed
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Mehak Shahid
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Fareeda Tasneem
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Arshad
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Naveed Shahzad
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
18
|
Shevchenko G, Morris KV. All I's on the RADAR: role of ADAR in gene regulation. FEBS Lett 2018; 592:2860-2873. [PMID: 29770436 DOI: 10.1002/1873-3468.13093] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/26/2018] [Accepted: 05/05/2018] [Indexed: 12/12/2022]
Abstract
Adenosine to inosine (A-to-I) editing is the most abundant form of RNA modification in mammalian cells, which is catalyzed by adenosine deaminase acting on the double-stranded RNA (ADAR) protein family. A-to-I editing is currently known to be involved in the regulation of the immune system, RNA splicing, protein recoding, microRNA biogenesis, and formation of heterochromatin. Editing occurs within regions of double-stranded RNA, particularly within inverted Alu repeats, and is associated with many diseases including cancer, neurological disorders, and metabolic syndromes. However, the significance of RNA editing in a large portion of the transcriptome remains unknown. Here, we review the current knowledge about the prevalence and function of A-to-I editing by the ADAR protein family, focusing on its role in the regulation of gene expression. Furthermore, RNA editing-independent regulation of cellular processes by ADAR and the putative role(s) of this process in gene regulation will be discussed.
Collapse
Affiliation(s)
- Galina Shevchenko
- Hematological Malignancy and Stem Cell Transplantation Institute, Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA, USA
| | - Kevin V Morris
- Hematological Malignancy and Stem Cell Transplantation Institute, Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA, USA
| |
Collapse
|
19
|
Dou N, Yu S, Ye X, Yang D, Li Y, Gao Y. Aberrant overexpression of ADAR1 promotes gastric cancer progression by activating mTOR/p70S6K signaling. Oncotarget 2018; 7:86161-86173. [PMID: 27863387 PMCID: PMC5349904 DOI: 10.18632/oncotarget.13354] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/08/2016] [Indexed: 12/24/2022] Open
Abstract
ADAR1, one of adenosine deaminases acting on RNA, modulates RNA transcripts through converting adenosine (A) to inosine (I) by deamination. Emerging evidence has implicated that ADAR1 plays an important role in a few of human cancers, however, its expression and physiological significance in gastric cancer remain undefined. In the present study, we demonstrated that ADAR1 was frequently overexpressed in gastric cancer samples by quantitative real-time PCR analysis. In a gastric cancer tissue microarray, ADAR1 staining was closely correlated with tumor stage (P < 0.001) and N classification (P < 0.001). Functional analysis indicated that ADAR1 overexpression promoted cell proliferation and migration in vitro, whereas ADAR1 knockdown resulted in an opposite phenotypes. Furthermore, ADAR1 knockdown also inhibited tumorigenicity and lung metastasis potential of gastric cancer cells in nude mice models. Mechanistically, ADAR1 expression had a significant effect on phosphorylation level of mTOR, p70S kinase, and S6 ribosomal protein, implying its involvement in the regulation of mTOR signaling pathway. We conclude that ADAR1 contributes to gastric cancer development and progression via activating mTOR/p70S6K/S6 ribosomal protein signaling axis. Our findings suggest that ADAR1 may be a valuable biomarker for GC diagnosis and prognosis and may represent a new novel therapeutic opportunities.
Collapse
Affiliation(s)
- Ning Dou
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Shijun Yu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiaojuan Ye
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Dong Yang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yandong Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
20
|
Abstract
Pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are recognized by different cellular pathogen recognition receptors (PRRs), which are expressed on cell membrane or in the cytoplasm of cells of the innate immune system. Nucleic acids derived from pathogens or from certain cellular conditions represent a large category of PAMPs/DAMPs that trigger production of type I interferons (IFN-I) in addition to pro-inflammatory cytokines, by specifically binding to intracellular Toll-like receptors or cytosolic receptors. These cytosolic receptors, which are not related to TLRs and we call them “Toll-free” receptors, include the RNA-sensing RIG-I like receptors (RLRs), the DNA-sensing HIN200 family, and cGAS, amongst others. Viruses have evolved myriad strategies to evoke both host cellular and viral factors to evade IFN-I-mediated innate immune responses, to facilitate their infection, replication, and establishment of latency. This review outlines these “Toll-free” innate immune pathways and recent updates on their regulation, with focus on cellular and viral factors with enzyme activities.
Collapse
Affiliation(s)
- Ling Wang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.,Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Shunbin Ning
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.,Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
21
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
22
|
Figueroa T, Boumart I, Coupeau D, Rasschaert D. Hyperediting by ADAR1 of a new herpesvirus lncRNA during the lytic phase of the oncogenic Marek's disease virus. J Gen Virol 2016; 97:2973-2988. [PMID: 27655063 DOI: 10.1099/jgv.0.000606] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Marek's disease virus, or Gallid herpesvirus 2 (GaHV-2), is an avian alphaherpesvirus that induces T-cell lymphoma in chickens. During transcriptomic studies of the RL region of the genome, we characterized the 7.5 kbp gene of the ERL lncRNA (edited repeat-long, long non-coding RNA), which may act as a natural antisense transcript (NAT) of the major GaHV-2 oncogene meq and of two of the three miRNA clusters. During infections in vivo and in vitro, we detected hyperediting of the ERL lncRNA that appeared to be directly correlated with ADAR1 expression levels. The ERL lncRNA was expressed equally during the lytic and latent phases of infection and during viral reactivation, but its hyperediting increased only during the lytic infection of chicken embryo fibroblasts. We also showed that chicken ADAR1 expression was controlled by the JAK/STAT IFN-response pathway, through an inducible promoter containing IFN-stimulated response elements that were functional during stimulation with IFN-α or poly(I:C). Like the human and murine miR-155-5p, the chicken gga-miR-155-5p and the GaHV-2 analogue mdv1-miR-M4-5p deregulated this pathway by targeting and repressing expression of suppressor of cytokine signalling 1, leading to the upregulation of ADAR1. Finally, we hypothesized that the natural antisense transcript role of the ERL lncRNA could be disrupted by its hyperediting, particularly during viral lytic replication, and that the observed deregulation of the innate immune system by mdv1-miR-M4-5p might contribute to the viral cycle.
Collapse
Affiliation(s)
- Thomas Figueroa
- Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS/Université François Rabelais de Tours, Tours, France
| | - Imane Boumart
- Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS/Université François Rabelais de Tours, Tours, France
| | - Damien Coupeau
- Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS/Université François Rabelais de Tours, Tours, France
| | - Denis Rasschaert
- Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS/Université François Rabelais de Tours, Tours, France
| |
Collapse
|
23
|
Stellos K, Gatsiou A, Stamatelopoulos K, Perisic Matic L, John D, Lunella FF, Jaé N, Rossbach O, Amrhein C, Sigala F, Boon RA, Fürtig B, Manavski Y, You X, Uchida S, Keller T, Boeckel JN, Franco-Cereceda A, Maegdefessel L, Chen W, Schwalbe H, Bindereif A, Eriksson P, Hedin U, Zeiher AM, Dimmeler S. Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation. Nat Med 2016; 22:1140-1150. [PMID: 27595325 DOI: 10.1038/nm.4172] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/20/2016] [Indexed: 12/14/2022]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing, which is catalyzed by a family of adenosine deaminase acting on RNA (ADAR) enzymes, is important in the epitranscriptomic regulation of RNA metabolism. However, the role of A-to-I RNA editing in vascular disease is unknown. Here we show that cathepsin S mRNA (CTSS), which encodes a cysteine protease associated with angiogenesis and atherosclerosis, is highly edited in human endothelial cells. The 3' untranslated region (3' UTR) of the CTSS transcript contains two inverted repeats, the AluJo and AluSx+ regions, which form a long stem-loop structure that is recognized by ADAR1 as a substrate for editing. RNA editing enables the recruitment of the stabilizing RNA-binding protein human antigen R (HuR; encoded by ELAVL1) to the 3' UTR of the CTSS transcript, thereby controlling CTSS mRNA stability and expression. In endothelial cells, ADAR1 overexpression or treatment of cells with hypoxia or with the inflammatory cytokines interferon-γ and tumor-necrosis-factor-α induces CTSS RNA editing and consequently increases cathepsin S expression. ADAR1 levels and the extent of CTSS RNA editing are associated with changes in cathepsin S levels in patients with atherosclerotic vascular diseases, including subclinical atherosclerosis, coronary artery disease, aortic aneurysms and advanced carotid atherosclerotic disease. These results reveal a previously unrecognized role of RNA editing in gene expression in human atherosclerotic vascular diseases.
Collapse
Affiliation(s)
- Konstantinos Stellos
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.,Department of Cardiology, Center of Internal Medicine, Goethe University Frankfurt, Frankfurt, Germany.,German Center of Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung; DZHK), Rhein-Main Partner Site, Frankfurt, Germany
| | - Aikaterini Gatsiou
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.,German Center of Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung; DZHK), Rhein-Main Partner Site, Frankfurt, Germany
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ljubica Perisic Matic
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - David John
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.,German Center of Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung; DZHK), Rhein-Main Partner Site, Frankfurt, Germany
| | - Federica Francesca Lunella
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.,German Center of Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung; DZHK), Rhein-Main Partner Site, Frankfurt, Germany
| | - Nicolas Jaé
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.,German Center of Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung; DZHK), Rhein-Main Partner Site, Frankfurt, Germany
| | - Oliver Rossbach
- Institute of Biochemistry, University of Giessen, Giessen, Germany
| | - Carolin Amrhein
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Frangiska Sigala
- Department of Vascular Surgery, 1st Propaedeutic Department of Surgery, Hippocratio General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Reinier A Boon
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.,German Center of Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung; DZHK), Rhein-Main Partner Site, Frankfurt, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt, Germany
| | - Yosif Manavski
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.,German Center of Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung; DZHK), Rhein-Main Partner Site, Frankfurt, Germany
| | - Xintian You
- Laboratory of Functional Genomics and Systems Biology, Max Delbrück Center for Molecular Medicine Berlin-Buch, Berlin, Germany
| | - Shizuka Uchida
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.,German Center of Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung; DZHK), Rhein-Main Partner Site, Frankfurt, Germany
| | - Till Keller
- Department of Cardiology, Center of Internal Medicine, Goethe University Frankfurt, Frankfurt, Germany.,German Center of Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung; DZHK), Rhein-Main Partner Site, Frankfurt, Germany
| | - Jes-Niels Boeckel
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.,German Center of Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung; DZHK), Rhein-Main Partner Site, Frankfurt, Germany
| | - Anders Franco-Cereceda
- Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Lars Maegdefessel
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden.,Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany
| | - Wei Chen
- Laboratory of Functional Genomics and Systems Biology, Max Delbrück Center for Molecular Medicine Berlin-Buch, Berlin, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Per Eriksson
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Andreas M Zeiher
- Department of Cardiology, Center of Internal Medicine, Goethe University Frankfurt, Frankfurt, Germany.,German Center of Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung; DZHK), Rhein-Main Partner Site, Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.,German Center of Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung; DZHK), Rhein-Main Partner Site, Frankfurt, Germany
| |
Collapse
|
24
|
A Toolbox for Herpesvirus miRNA Research: Construction of a Complete Set of KSHV miRNA Deletion Mutants. Viruses 2016; 8:v8020054. [PMID: 26907327 PMCID: PMC4776209 DOI: 10.3390/v8020054] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/04/2016] [Accepted: 02/14/2016] [Indexed: 12/11/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) encodes 12 viral microRNAs (miRNAs) that are expressed during latency. Research into KSHV miRNA function has suffered from a lack of genetic systems to study viral miRNA mutations in the context of the viral genome. We used the Escherichia coli Red recombination system together with a new bacmid background, BAC16, to create mutants for all known KSHV miRNAs. The specific miRNA deletions or mutations and the integrity of the bacmids have been strictly quality controlled using PCR, restriction digestion, and sequencing. In addition, stable viral producer cell lines based on iSLK cells have been created for wildtype KSHV, for 12 individual miRNA knock-out mutants (ΔmiR-K12-1 through -12), and for mutants deleted for 10 of 12 (ΔmiR-cluster) or all 12 miRNAs (ΔmiR-all). NGS, in combination with SureSelect technology, was employed to sequence the entire latent genome within all producer cell lines. qPCR assays were used to verify the expression of the remaining viral miRNAs in a subset of mutants. Induction of the lytic cycle leads to efficient production of progeny viruses that have been used to infect endothelial cells. Wt BAC16 and miR mutant iSLK producer cell lines are now available to the research community.
Collapse
|
25
|
MicroRNA-mediated transformation by the Kaposi's sarcoma-associated herpesvirus Kaposin locus. J Virol 2014; 89:2333-41. [PMID: 25505059 DOI: 10.1128/jvi.03317-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The human oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV) expresses a set of ∼20 viral microRNAs (miRNAs). miR-K10a stands out among these miRNAs because its entire stem-loop precursor overlaps the coding sequence for the Kaposin (Kap) A/C proteins. The ectopic expression of KapA has been reported to lead to transformation of rodent fibroblasts. However, these experiments inadvertently also introduced miR-K10a, which raises the question whether the transforming activity of the locus could in fact be due to miR-K10a expression. To answer this question, we have uncoupled miR-K10a and KapA expression. Our experiments revealed that miR-K10a alone transformed cells with an efficiency similar to that when it was coexpressed with KapA. Maintenance of the transformed phenotype was conditional upon continued miR-K10a but not KapA protein expression, consistent with its dependence on miRNA-mediated changes in gene expression. Importantly, miR-K10a taps into an evolutionarily conserved network of miR-142-3p targets, several of which are expressed in 3T3 cells and are also known inhibitors of cellular transformation. In summary, our studies of miR-K10a serve as an example of an unsuspected function of an mRNA whose precursor is embedded within a coding transcript. In addition, our identification of conserved miR-K10a targets that limit transformation will point the way to a better understanding of the role of this miRNA in KSHV-associated tumors. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumor virus. The viral Kaposin locus has known oncogenic potential, which has previously been attributed to the encoded KapA protein. Here we show that the virally encoded miR-K10a miRNA, whose precursor overlaps the KapA-coding region, may account for the oncogenic properties of this locus. Our data suggest that miR-K10a mimics the cellular miRNA miR-142-3p and thereby represses several known inhibitors of oncogenic transformation. Our work demonstrates that functional properties attributed to a coding region may in fact be carried out by an embedded noncoding element and sheds light on the functions of viral miR-K10a.
Collapse
|
26
|
Cachat A, Alais S, Chevalier SA, Journo C, Fusil F, Dutartre H, Boniface A, Ko NL, Gessain A, Cosset FL, Suspène R, Vartanian JP, Mahieux R. ADAR1 enhances HTLV-1 and HTLV-2 replication through inhibition of PKR activity. Retrovirology 2014; 11:93. [PMID: 25389016 PMCID: PMC4245799 DOI: 10.1186/s12977-014-0093-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 10/16/2014] [Indexed: 11/25/2022] Open
Abstract
Background The role of innate immunity in general and of type I interferon
(IFN-I) in particular in HTLV-1 pathogenesis is still a matter of debate.
ADAR1-p150 is an Interferon Stimulated Gene (ISG) induced by IFN-I that can edit
viral RNAs. We therefore investigated whether it could play the role of an
anti-HTLV factor. Results We demonstrate here that ADAR1 is also expressed in the absence of
IFN stimulation in activated primary T-lymphocytes that are the natural target of
this virus and in HTLV-1 or HTLV-2 chronically infected T-cells. ADAR1 expression
is also increased in primary lymphocytes obtained from HTLV-1 infected
individuals. We show that ADAR1 enhances HTLV-1 and HTLV-2 infection in
T-lymphocytes and that this proviral effect is independent from its editing
activity. ADAR1 expression suppresses IFN-α inhibitory effect on HTLV-1 and HTLV-2
and acts through the repression of PKR phosphorylation. Discussion This study demonstrates that two interferon stimulated genes, i.e.
PKR and ADAR1 have opposite effects on HTLV replication in
vivo. The balanced expression of those proteins could determine the
fate of the viral cycle in the course of infection. Electronic supplementary material The online version of this article (doi:10.1186/s12977-014-0093-9) contains supplementary material, which is available to authorized
users.
Collapse
Affiliation(s)
- Anne Cachat
- Equipe Oncogenèse Rétrovirale, Lyon, Cedex 07, France. .,Equipe labellisée "Ligue Nationale Contre le Cancer", Lyon, Cedex 07, France. .,Centre international de recherche en infectiologie, INSERM U1111 - CNRS UMR5308, Lyon, Cedex 07, France. .,Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364, Lyon, Cedex 07, France. .,Université Lyon 1, LabEx ECOFECT - Eco-evolutionary dynamics of infectious diseases, 69364, Lyon, Cedex 07, France.
| | - Sandrine Alais
- Equipe Oncogenèse Rétrovirale, Lyon, Cedex 07, France. .,Equipe labellisée "Ligue Nationale Contre le Cancer", Lyon, Cedex 07, France. .,Centre international de recherche en infectiologie, INSERM U1111 - CNRS UMR5308, Lyon, Cedex 07, France. .,Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364, Lyon, Cedex 07, France. .,Université Lyon 1, LabEx ECOFECT - Eco-evolutionary dynamics of infectious diseases, 69364, Lyon, Cedex 07, France.
| | - Sébastien Alain Chevalier
- Equipe Oncogenèse Rétrovirale, Lyon, Cedex 07, France. .,Equipe labellisée "Ligue Nationale Contre le Cancer", Lyon, Cedex 07, France. .,Centre international de recherche en infectiologie, INSERM U1111 - CNRS UMR5308, Lyon, Cedex 07, France. .,Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364, Lyon, Cedex 07, France. .,Université Lyon 1, LabEx ECOFECT - Eco-evolutionary dynamics of infectious diseases, 69364, Lyon, Cedex 07, France.
| | - Chloé Journo
- Equipe Oncogenèse Rétrovirale, Lyon, Cedex 07, France. .,Equipe labellisée "Ligue Nationale Contre le Cancer", Lyon, Cedex 07, France. .,Centre international de recherche en infectiologie, INSERM U1111 - CNRS UMR5308, Lyon, Cedex 07, France. .,Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364, Lyon, Cedex 07, France. .,Université Lyon 1, LabEx ECOFECT - Eco-evolutionary dynamics of infectious diseases, 69364, Lyon, Cedex 07, France.
| | - Floriane Fusil
- Centre international de recherche en infectiologie, INSERM U1111 - CNRS UMR5308, Lyon, Cedex 07, France. .,Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364, Lyon, Cedex 07, France. .,Université Lyon 1, LabEx ECOFECT - Eco-evolutionary dynamics of infectious diseases, 69364, Lyon, Cedex 07, France. .,Equipe virus enveloppés, Lyon, Cedex 07, France.
| | - Hélène Dutartre
- Equipe Oncogenèse Rétrovirale, Lyon, Cedex 07, France. .,Equipe labellisée "Ligue Nationale Contre le Cancer", Lyon, Cedex 07, France. .,Centre international de recherche en infectiologie, INSERM U1111 - CNRS UMR5308, Lyon, Cedex 07, France. .,Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364, Lyon, Cedex 07, France. .,Université Lyon 1, LabEx ECOFECT - Eco-evolutionary dynamics of infectious diseases, 69364, Lyon, Cedex 07, France.
| | - Adrien Boniface
- Equipe Oncogenèse Rétrovirale, Lyon, Cedex 07, France. .,Equipe labellisée "Ligue Nationale Contre le Cancer", Lyon, Cedex 07, France. .,Centre international de recherche en infectiologie, INSERM U1111 - CNRS UMR5308, Lyon, Cedex 07, France. .,Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364, Lyon, Cedex 07, France. .,Université Lyon 1, LabEx ECOFECT - Eco-evolutionary dynamics of infectious diseases, 69364, Lyon, Cedex 07, France. .,Biology Department, Master Biosciences, Lyon, Cedex 07, France.
| | - Nga Ling Ko
- Unité d'épidémiologie et physiopathoglogie des virus oncogènes, Institut Pasteur, Paris, 75015, France.
| | - Antoine Gessain
- Unité d'épidémiologie et physiopathoglogie des virus oncogènes, Institut Pasteur, Paris, 75015, France.
| | - François-Loïc Cosset
- Centre international de recherche en infectiologie, INSERM U1111 - CNRS UMR5308, Lyon, Cedex 07, France. .,Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364, Lyon, Cedex 07, France. .,Université Lyon 1, LabEx ECOFECT - Eco-evolutionary dynamics of infectious diseases, 69364, Lyon, Cedex 07, France. .,Equipe virus enveloppés, Lyon, Cedex 07, France.
| | - Rodolphe Suspène
- Unité de rétrovirologie moléculaire, Institut Pasteur, Paris, 75015, France.
| | | | - Renaud Mahieux
- Equipe Oncogenèse Rétrovirale, Lyon, Cedex 07, France. .,Equipe labellisée "Ligue Nationale Contre le Cancer", Lyon, Cedex 07, France. .,Centre international de recherche en infectiologie, INSERM U1111 - CNRS UMR5308, Lyon, Cedex 07, France. .,Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364, Lyon, Cedex 07, France. .,Université Lyon 1, LabEx ECOFECT - Eco-evolutionary dynamics of infectious diseases, 69364, Lyon, Cedex 07, France.
| |
Collapse
|
27
|
Cesarman E. Gammaherpesviruses and Lymphoproliferative Disorders. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2014; 9:349-72. [DOI: 10.1146/annurev-pathol-012513-104656] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065;
| |
Collapse
|
28
|
Arias C, Weisburd B, Stern-Ginossar N, Mercier A, Madrid AS, Bellare P, Holdorf M, Weissman JS, Ganem D. KSHV 2.0: a comprehensive annotation of the Kaposi's sarcoma-associated herpesvirus genome using next-generation sequencing reveals novel genomic and functional features. PLoS Pathog 2014; 10:e1003847. [PMID: 24453964 PMCID: PMC3894221 DOI: 10.1371/journal.ppat.1003847] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/20/2013] [Indexed: 01/08/2023] Open
Abstract
Productive herpesvirus infection requires a profound, time-controlled remodeling of the viral transcriptome and proteome. To gain insights into the genomic architecture and gene expression control in Kaposi's sarcoma-associated herpesvirus (KSHV), we performed a systematic genome-wide survey of viral transcriptional and translational activity throughout the lytic cycle. Using mRNA-sequencing and ribosome profiling, we found that transcripts encoding lytic genes are promptly bound by ribosomes upon lytic reactivation, suggesting their regulation is mainly transcriptional. Our approach also uncovered new genomic features such as ribosome occupancy of viral non-coding RNAs, numerous upstream and small open reading frames (ORFs), and unusual strategies to expand the virus coding repertoire that include alternative splicing, dynamic viral mRNA editing, and the use of alternative translation initiation codons. Furthermore, we provide a refined and expanded annotation of transcription start sites, polyadenylation sites, splice junctions, and initiation/termination codons of known and new viral features in the KSHV genomic space which we have termed KSHV 2.0. Our results represent a comprehensive genome-scale image of gene regulation during lytic KSHV infection that substantially expands our understanding of the genomic architecture and coding capacity of the virus. Kaposi's sarcoma-associated herpesvirus (KSHV) is a cancer-causing agent in immunocompromised patients that establishes long-lasting infections in its hosts. Initially described in 1994 and extensively studied ever since, KSHV molecular biology is understood in broad outline, but many detailed questions are still to be resolved. After almost two decades, specific aspects pertaining to the organization of the KSHV genome as well as the fate of the viral transcripts during the productive stages of infection remain unexplored. Here we use a systematic genome-wide approach to investigate changes in gene and protein expression during the productive stage of infection known as the lytic cycle. We found that the viral genome has a large coding capacity, capable of generating at least 45% more products than initially anticipated by bioinformatic analyses alone, and that it uses multiple strategies to expand its coding capacity well beyond what is determined solely by the DNA sequence of its genome. We also provide an expanded and highly detailed annotation of known and new genomic features in KSHV. We have termed this new architectural and functional annotation KSHV 2.0. Our results indicate that viral genomes are more complex than anticipated, and that they are subject to tight mechanisms of regulation to ensure correct gene expression.
Collapse
Affiliation(s)
- Carolina Arias
- Novartis Institute for Biomedical Research, Department of Infectious Diseases, Emeryville, California, United States of America
- * E-mail:
| | - Ben Weisburd
- Novartis Vaccines and Diagnostics, Bioinformatics, Emeryville, California, United States of America
| | - Noam Stern-Ginossar
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Alexandre Mercier
- Novartis Institute for Biomedical Research, Department of Infectious Diseases, Emeryville, California, United States of America
| | - Alexis S. Madrid
- Novartis Institute for Biomedical Research, Department of Infectious Diseases, Emeryville, California, United States of America
| | - Priya Bellare
- Novartis Institute for Biomedical Research, Department of Infectious Diseases, Emeryville, California, United States of America
| | - Meghan Holdorf
- Novartis Institute for Biomedical Research, Department of Infectious Diseases, Emeryville, California, United States of America
| | - Jonathan S. Weissman
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Don Ganem
- Novartis Institute for Biomedical Research, Department of Infectious Diseases, Emeryville, California, United States of America
| |
Collapse
|
29
|
ADAR enzyme and miRNA story: a nucleotide that can make the difference. Int J Mol Sci 2013; 14:22796-816. [PMID: 24256817 PMCID: PMC3856091 DOI: 10.3390/ijms141122796] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 12/21/2022] Open
Abstract
Adenosine deaminase acting on RNA (ADAR) enzymes convert adenosine (A) to inosine (I) in double-stranded (ds) RNAs. Since Inosine is read as Guanosine, the biological consequence of ADAR enzyme activity is an A/G conversion within RNA molecules. A-to-I editing events can occur on both coding and non-coding RNAs, including microRNAs (miRNAs), which are small regulatory RNAs of ~20–23 nucleotides that regulate several cell processes by annealing to target mRNAs and inhibiting their translation. Both miRNA precursors and mature miRNAs undergo A-to-I RNA editing, affecting the miRNA maturation process and activity. ADARs can also edit 3′ UTR of mRNAs, further increasing the interplay between mRNA targets and miRNAs. In this review, we provide a general overview of the ADAR enzymes and their mechanisms of action as well as miRNA processing and function. We then review the more recent findings about the impact of ADAR-mediated activity on the miRNA pathway in terms of biogenesis, target recognition, and gene expression regulation.
Collapse
|
30
|
Genomewide mapping and screening of Kaposi's sarcoma-associated herpesvirus (KSHV) 3' untranslated regions identify bicistronic and polycistronic viral transcripts as frequent targets of KSHV microRNAs. J Virol 2013; 88:377-92. [PMID: 24155407 DOI: 10.1128/jvi.02689-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) encodes over 90 genes and 25 microRNAs (miRNAs). The KSHV life cycle is tightly regulated to ensure persistent infection in the host. In particular, miRNAs, which primarily exert their effects by binding to the 3' untranslated regions (3'UTRs) of target transcripts, have recently emerged as key regulators of KSHV life cycle. Although studies with RNA cross-linking immunoprecipitation approach have identified numerous targets of KSHV miRNAs, few of these targets are of viral origin because most KSHV 3'UTRs have not been characterized. Thus, the extents of viral genes targeted by KSHV miRNAs remain elusive. Here, we report the mapping of the 3'UTRs of 74 KSHV genes and the effects of KSHV miRNAs on the control of these 3'UTR-mediated gene expressions. This analysis reveals new bicistronic and polycistronic transcripts of KSHV genes. Due to the 5'-distal open reading frames (ORFs), KSHV bicistronic or polycistronic transcripts have significantly longer 3'UTRs than do KSHV monocistronic transcripts. Furthermore, screening of the 3'UTR reporters has identified 28 potential new targets of KSHV miRNAs, of which 11 (39%) are bicistronic or polycistronic transcripts. Reporter mutagenesis demonstrates that miR-K3 specifically targets ORF31-33 transcripts at the lytic locus via two binding sites in the ORF33 coding region, whereas miR-K10a-3p and miR-K10b-3p and their variants target ORF71-73 transcripts at the latent locus through distinct binding sites in both 5'-distal ORFs and intergenic regions. Our results indicate that KSHV miRNAs frequently target the 5'-distal coding regions of bicistronic or polycistronic transcripts and highlight the unique features of KSHV miRNAs in regulating gene expression and life cycle.
Collapse
|
31
|
Lei T, Yuen KS, Tsao SW, Chen H, Kok KH, Jin DY. Perturbation of biogenesis and targeting of Epstein-Barr virus-encoded miR-BART3 microRNA by adenosine-to-inosine editing. J Gen Virol 2013; 94:2739-2744. [PMID: 24045110 DOI: 10.1099/vir.0.056226-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Epstein-Barr virus (EBV) encodes at least 44 mature microRNAs (miRNAs), some of which are abundantly expressed in nasopharyngeal carcinoma cells. EBV-encoded miR-BART6 miRNA is known to undergo adenosine-to-inosine (A-to-I) RNA editing, which impacts on processing and function. Whether additional EBV miRNAs might be A-to-I edited remains to be determined. In this study, we have reported on A-to-I editing of EBV miR-BART3. The A-to-I editing enzyme was expressed abundantly in EBV-infected epithelial carcinoma cells. pri-miR-BART3 was found to be edited at four sites in these cells and in nasopharyngeal carcinoma samples. Whereas editing of the second site located within the seed region prevented the targeting of DICE1 mRNA, editing of the third site effectively crippled the biogenesis of mature miR-BART3. Thus, A-to-I editing perturbs biogenesis and targeting of miR-BART3 and may contribute to its differential expression and function in EBV-infected epithelial cells.
Collapse
Affiliation(s)
- Ting Lei
- Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong SAR, PR China.,Department of Pathology, School of Medicine, Xi'an Jiaotong University, Xi'an, PR China
| | - Kit-San Yuen
- Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong SAR, PR China
| | - Sai Wah Tsao
- Department of Anatomy, University of Hong Kong, Pokfulam, Hong Kong SAR, PR China
| | - Honglin Chen
- Department of Microbiology, University of Hong Kong, Pokfulam, Hong Kong SAR, PR China
| | - Kin-Hang Kok
- Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong SAR, PR China
| | - Dong-Yan Jin
- Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong SAR, PR China
| |
Collapse
|
32
|
Arginine-rich motifs are not required for hepatitis delta virus RNA binding activity of the hepatitis delta antigen. J Virol 2013; 87:8665-74. [PMID: 23740973 DOI: 10.1128/jvi.00929-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta virus (HDV) replication and packaging require interactions between the unbranched rodlike structure of HDV RNA and hepatitis delta antigen (HDAg), a basic, disordered, oligomeric protein. The tendency of the protein to bind nonspecifically to nucleic acids has impeded analysis of HDV RNA protein complexes and conclusive determination of the regions of HDAg involved in RNA binding. The most widely cited model suggests that RNA binding involves two proposed arginine-rich motifs (ARMs I and II) in the middle of HDAg. However, other studies have questioned the roles of the ARMs. Here, binding activity was analyzed in vitro using HDAg-160, a C-terminal truncation that binds with high affinity and specificity to HDV RNA segments in vitro. Mutation of the core arginines of ARM I or ARM II in HDAg-160 did not diminish binding to HDV unbranched rodlike RNA. These same mutations did not abolish the ability of full-length HDAg to inhibit HDV RNA editing in cells, an activity that involves RNA binding. Moreover, only the N-terminal region of the protein, which does not contain the ARMs, was cross-linked to a bound HDV RNA segment in vitro. These results indicate that the amino-terminal region of HDAg is in close contact with the RNA and that the proposed ARMs are not required for binding HDV RNA. Binding was not reduced by mutation of additional clusters of basic amino acids. This result is consistent with an RNA-protein complex that is formed via numerous contacts between the RNA and each HDAg monomer.
Collapse
|
33
|
Li Y, Chen L, Chan THM, Guan XY. Hepatocellular carcinoma: transcriptome diversity regulated by RNA editing. Int J Biochem Cell Biol 2013; 45:1843-8. [PMID: 23748106 DOI: 10.1016/j.biocel.2013.05.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 01/29/2023]
Abstract
Hepatocellular carcinoma (HCC) can be envisioned as a prolonged multi-stage process accumulating genetic and epigenetic changes. In the past years, DNA alterations lent us important clues to the comprehension of molecular pathways involved in HCC. However, as an increasing number of RNAs were identified to be subject to A-to-I modifications, it has become apparent that RNA editing might be the causal basis of various human diseases. Recent evidence has strengthened this notion by correlating hyper-edited AZIN1 (antizyme inhibitor 1) protein with HCC onset and the mechanisms that regulate cell transformation. As we continue to demystify it, RNA editing astonishes us with its diverse substrates, esoteric functions, elaborate machinery and complex interaction with HBV/HCV viral infection. In this review, we examine the contribution of A-to-I RNA editing to caner onset/progression and explore its potential implications for cancer treatment advances.
Collapse
Affiliation(s)
- Yan Li
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
34
|
Krug LT. Complexities of gammaherpesvirus transcription revealed by microarrays and RNAseq. Curr Opin Virol 2013; 3:276-84. [PMID: 23684513 DOI: 10.1016/j.coviro.2013.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/18/2013] [Indexed: 11/16/2022]
Abstract
Technological advances in genome-wide transcript analysis, referred to as the transcriptome, using microarrays and deep RNA sequencing methodologies are rapidly extending our understanding of the genetic content of the gammaherpesviruses (γHVs). These vast transcript analyses continue to uncover the complexity of coding transcripts due to alternative splicing, translation initiation and termination, as well as regulatory RNAs of the γHVs. A full assessment of the transcriptome requires that our analysis be extended to the virion and exosomes of infected cells since viral and host mRNAs, miRNAs, and other noncoding RNAs seem purposefully incorporated to exert function upon delivery to naïve cells. Understanding the regulation, biogenesis and function of the recently discovered transcripts will extend beyond pathogenesis and oncogenic events to offer key insights for basic RNA processes of the cell.
Collapse
Affiliation(s)
- Laurie T Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, United States.
| |
Collapse
|
35
|
Steinman RA, Yang Q, Gasparetto M, Robinson LJ, Liu X, Lenzner DE, Hou J, Smith C, Wang Q. Deletion of the RNA-editing enzyme ADAR1 causes regression of established chronic myelogenous leukemia in mice. Int J Cancer 2012; 132:1741-50. [PMID: 22987615 DOI: 10.1002/ijc.27851] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/24/2012] [Indexed: 01/26/2023]
Abstract
Patients with chronic myelogenous leukemia (CML) respond well to tyrosine kinase inhibitors (TKIs) of the Bcr-Abl oncoprotein. However, intolerance and resistance to these agents remains a challenge, and TKIs are unable to eradicate rare leukemia-initiating cells. Leukemia treatment would benefit from a better understanding of molecular signals that are necessary for the survival of leukemia-initiating cells but dispensable for normal hematopoietic stem cells. Leukemia-initiating cells in CML can arise from myeloid progenitor cells, a population that we have reported in normal hematopoiesis to depend on the RNA-editing enzyme adenosine deaminase acting on RNA-1 (ADAR1). We now report that Bcr-Abl transformed leukemic cells were ADAR1-dependent in a conditional ADAR1 knockout mouse model. ADAR1 deletion reversed leukocytosis and splenomegaly, and preferentially depleted primitive Lin-Sca+Kit+ (LSK) leukemic cells but not LSK cells lacking the leukemic oncoprotein. ADAR1 deletion ultimately normalized the peripheral white blood count, eliminating leukemic cells as assessed by PCR. These results uncover a novel requirement for ADAR1 in myeloid leukemic cells and indicate that ADAR1 may comprise a new molecular target for CML-directed therapeutics.
Collapse
Affiliation(s)
- Richard A Steinman
- Department of Medicine, Division of Hematology and Oncology, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ago HITS-CLIP expands understanding of Kaposi's sarcoma-associated herpesvirus miRNA function in primary effusion lymphomas. PLoS Pathog 2012; 8:e1002884. [PMID: 22927820 PMCID: PMC3426530 DOI: 10.1371/journal.ppat.1002884] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 07/13/2012] [Indexed: 12/27/2022] Open
Abstract
KSHV is the etiological agent of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and a subset of multicentricCastleman's disease (MCD). The fact that KSHV-encoded miRNAs are readily detectable in all KSHV-associated tumors suggests a potential role in viral pathogenesis and tumorigenesis. MiRNA-mediated regulation of gene expression is a complex network with each miRNA having many potential targets, and to date only few KSHV miRNA targets have been experimentally determined. A detailed understanding of KSHV miRNA functions requires high-through putribonomics to globally analyze putative miRNA targets in a cell type-specific manner. We performed Ago HITS-CLIP to identify viral and cellular miRNAs and their cognate targets in two latently KSHV-infected PEL cell lines. Ago HITS-CLIP recovered 1170 and 950 cellular KSHVmiRNA targets from BCBL-1 and BC-3, respectively. Importantly, enriched clusters contained KSHV miRNA seed matches in the 3′UTRs of numerous well characterized targets, among them THBS1, BACH1, and C/EBPβ. KSHV miRNA targets were strongly enriched for genes involved in multiple pathways central for KSHV biology, such as apoptosis, cell cycle regulation, lymphocyte proliferation, and immune evasion, thus further supporting a role in KSHV pathogenesis and potentially tumorigenesis. A limited number of viral transcripts were also enriched by HITS-CLIP including vIL-6 expressed only in a subset of PEL cells during latency. Interestingly, Ago HITS-CLIP revealed extremely high levels of Ago-associated KSHV miRNAs especially in BC-3 cells where more than 70% of all miRNAs are of viral origin. This suggests that in addition to seed match-specific targeting of cellular genes, KSHV miRNAs may also function by hijacking RISCs, thereby contributing to a global de-repression of cellular gene expression due to the loss of regulation by human miRNAs. In summary, we provide an extensive list of cellular and viral miRNA targets representing an important resource to decipher KSHV miRNA function. Kaposi's sarcoma-associated herpesvirus is the etiological agent of KS and two lymphoproliferative diseases: multicentricCastleman's disease and primary effusion lymphomas (PEL). KSHV tumors are the most prevalent AIDS malignancies and within Sub-Saharan Africa KS is the most common cancer in males, both in the presence and absence of HIV infection. KSHV encodes 12 miRNA genes whose function is largely unknown. Viral miRNAs are incorporated into RISCs, which regulate gene expression mostly by binding to 3′UTRs of mRNAs to inhibit their translation and/or induce degradation. The small subset of viral miRNA targets identified to date suggests that these small posttranscriptional regulators target important cellular pathways involved in pathogenesis and tumorgenesis. Using Ago HITS-CLIP, a technique which combines UV cross-linking, immunoprecipitation of Ago-miRNA-mRNA complexes, and high throughput sequencing, we performed a detailed analysis of the KSHV miRNA targetome in two commonly studied PEL cell lines, BCBL-1 and BC-3 and identified 1170 and 950 putative miRNA targets, respectively. This data set provides a valuable resource to decipher how KSHV miRNAs contribute to viral biology and pathogenesis.
Collapse
|
37
|
Gottwein E. Kaposi's Sarcoma-Associated Herpesvirus microRNAs. Front Microbiol 2012; 3:165. [PMID: 22563327 PMCID: PMC3342587 DOI: 10.3389/fmicb.2012.00165] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/13/2012] [Indexed: 12/17/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is a human pathogenic γ-herpesvirus strongly associated with the development of Kaposi’s Sarcoma and B cell proliferative disorders, including primary effusion lymphoma (PEL). The identification and functional investigation of non-coding RNAs expressed by KSHV is a topic with rapidly emerging importance. KSHV miRNAs derived from 12 stem-loops located in the major latency locus have been the focus of particular attention. Recent studies describing the transcriptome-wide identification of mRNA targets of the KSHV miRNAs suggest that these miRNAs have evolved a highly complex network of interactions with the cellular and viral transcriptomes. Relatively few KSHV miRNA targets, however, have been characterized at a functional level. Here, our current understanding of KSHV miRNA expression, targets, and function will be reviewed.
Collapse
Affiliation(s)
- Eva Gottwein
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| |
Collapse
|
38
|
Abstract
Hepatitis delta virus (HDV) uses ADAR1 editing of the viral antigenome RNA to switch from viral RNA replication to packaging. At early times in the replication cycle, the virus produces the protein HDAg-S, which is required for RNA synthesis; at later times, as result of editing at the amber/W site, the virus produces HDAg-L, which is required for packaging, but inhibits further RNA synthesis as levels increase. Control of editing during the replication cycle is essential for the virus and is multifaceted. Both the rate at which amber/W site editing occurs and the ultimate amount of editing are restricted; moreover, despite the nearly double stranded character of the viral RNA, efficient editing is restricted to the amber/W site. The mechanisms used by the virus for controlling editing operate at several levels, and range from molecular interactions to procedural. They include the placement of editing in the HDV replication cycle, RNA structural dynamics, and interactions of both ADAR1 and HDAg with specific structural features of the RNA. That HDV genotypes 1 and 3 use different RNA structural features for editing and control the process in ways related to these features underscores the critical roles of editing and its control in HDV replication. This review will cover the mechanisms of editing at the amber/W site and the means by which the virus controls it in these two genotypes.
Collapse
Affiliation(s)
- John L Casey
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
39
|
Wang Q. RNA editing catalyzed by ADAR1 and its function in mammalian cells. BIOCHEMISTRY (MOSCOW) 2012; 76:900-11. [PMID: 22022963 DOI: 10.1134/s0006297911080050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In mammalian cells two active enzymes, ADAR1 and ADAR2, carry out A-to-I RNA editing. These two editases share many common features in their protein structures, catalytic activities, and substrate requirements. However, the phenotypes of the knockout animals are remarkably different, which indicate the distinct functions they play. The most striking effect of ADAR1 knockout is cell death and interruption of embryonic development that are not observed in ADAR2 knockout. Evidences have shown that ADAR1 plays critical roles in the differentiating cells in embryo and adult tissues to support the cell's survival and permit their further differentiation and maturation. However, our knowledge in understanding of the mechanism by which ADAR1 exerts its unique effects is very limited. Many efforts had been made trying to understand why ADAR1 is so important that it is indispensible for animal survival, including studies that identify the RNA editing substrates and studies on non-editing mechanisms. The interest of this review is focused on the question why ADAR1 and not ADAR2 is required for cell survival. Therefore, only the data, published and unpublished, potentially connecting ADAR1 to its cell death effect is selectively cited and discussed here. The features of cell death caused by ADAR1 deletion are summarized. Potential involvement of interferon and protein kinase RNA-activated (PKR) pathways is proposed, but obviously more experimental evaluations are needed.
Collapse
Affiliation(s)
- Qingde Wang
- University of Pittsburgh, Department of Medicine, Division of Hematology and Oncology, University of Pittsburgh Cancer Institute, PA 15232, USA.
| |
Collapse
|
40
|
Abstract
Double-stranded RNA (dsRNA) functions both as a substrate of ADARs and also as a molecular trigger of innate immune responses. ADARs, adenosine deaminases that act on RNA, catalyze the deamination of adenosine (A) to produce inosine (I) in dsRNA. ADARs thereby can destablize RNA structures, because the generated I:U mismatch pairs are less stable than A:U base pairs. Additionally, I is read as G instead of A by ribosomes during translation and by viral RNA-dependent RNA polymerases during RNA replication. Members of several virus families have the capacity to produce dsRNA during viral genome transcription and replication. Sequence changes (A-G, and U-C) characteristic of A-I editing can occur during virus growth and persistence. Foreign viral dsRNA also mediates both the induction and the action of interferons. In this chapter our current understanding of the role and significance of ADARs in the context of innate immunity, and as determinants of the outcome of viral infection, will be considered.
Collapse
Affiliation(s)
- Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
41
|
Zalpha-domains: at the intersection between RNA editing and innate immunity. Semin Cell Dev Biol 2011; 23:275-80. [PMID: 22085847 DOI: 10.1016/j.semcdb.2011.11.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 10/24/2011] [Accepted: 11/01/2011] [Indexed: 11/21/2022]
Abstract
The involvement of A to I RNA editing in antiviral responses was first indicated by the observation of genomic hyper-mutation for several RNA viruses in the course of persistent infections. However, in only a few cases an antiviral role was ever demonstrated and surprisingly, it turns out that ADARs - the RNA editing enzymes - may have a prominent pro-viral role through the modulation/down-regulation of the interferon response. A key role in this regulatory function of RNA editing is played by ADAR1, an interferon inducible RNA editing enzyme. A distinguishing feature of ADAR1, when compared with other ADARs, is the presence of a Z-DNA binding domain, Zalpha. Since the initial discovery of the specific and high affinity binding of Zalpha to CpG repeats in a left-handed helical conformation, other proteins, all related to the interferon response pathway, were shown to have similar domains throughout the vertebrate lineage. What is the biological function of this domain family remains unclear but a significant body of work provides pieces of a puzzle that points to an important role of Zalpha domains in the recognition of foreign nucleic acids in the cytoplasm by the innate immune system. Here we will provide an overview of our knowledge on ADAR1 function in interferon response with emphasis on Zalpha domains.
Collapse
|
42
|
Galeano F, Tomaselli S, Locatelli F, Gallo A. A-to-I RNA editing: the "ADAR" side of human cancer. Semin Cell Dev Biol 2011; 23:244-50. [PMID: 21930228 DOI: 10.1016/j.semcdb.2011.09.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 12/14/2022]
Abstract
Carcinogenesis is a complex, multi-stage process depending on both endogenous and exogenous factors. In the past years, DNA mutations provided important clues to the comprehension of the molecular pathways involved in numerous cancers. Recently, post-transcriptional modification events, such as RNA editing, are emerging as new players in several human diseases, including tumours. A-to-I RNA editing changes the nucleotide sequence of target RNAs, introducing A-to-I/G "mutations". Since ADAR enzymes catalyse this nucleotide conversion, their expression/activity is essential and finely regulated in normal cells. This review summarizes the available knowledge on A-to-I RNA editing in the cancer field, giving a new view on how ADARs may play a role in carcinogenesis.
Collapse
Affiliation(s)
- Federica Galeano
- RNA Editing Laboratory, Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | | | | | | |
Collapse
|
43
|
Dominissini D, Moshitch-Moshkovitz S, Amariglio N, Rechavi G. Adenosine-to-inosine RNA editing meets cancer. Carcinogenesis 2011; 32:1569-77. [PMID: 21715563 DOI: 10.1093/carcin/bgr124] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The role of epigenetics in tumor onset and progression has been extensively addressed. Discoveries in the last decade completely changed our view on RNA. We now realize that its diversity lies at the base of biological complexity. Adenosine-to-inosine (A-to-I) RNA editing emerges a central generator of transcriptome diversity and regulation in higher eukaryotes. It is the posttranscriptional deamination of adenosine to inosine in double-stranded RNA catalyzed by enzymes of the adenosine deaminase acting on RNA (ADAR) family. Thought at first to be restricted to coding regions of only a few genes, recent bioinformatic analyses fueled by high-throughput sequencing revealed that it is a widespread modification affecting mostly non-coding repetitive elements in thousands of genes. The rise in scope is accompanied by discovery of a growing repertoire of functions based on differential decoding of inosine by the various cellular machineries: when recognized as guanosine, it can lead to protein recoding, alternative splicing or altered microRNA specificity; when recognized by inosine-binding proteins, it can result in nuclear retention of the transcript or its degradation. An imbalance in expression of ADAR enzymes with consequent editing dysregulation is a characteristic of human cancers. These alterations may be responsible for activating proto-oncogenes or inactivating tumor suppressors. While unlikely to be an early initiating 'hit', editing dysregulation seems to contribute to tumor progression and thus should be considered a 'driver mutation'. In this review, we examine the contribution of A-to-I RNA editing to carcinogenesis.
Collapse
Affiliation(s)
- Dan Dominissini
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | | | | | | |
Collapse
|
44
|
Cesarman E. Gammaherpesvirus and lymphoproliferative disorders in immunocompromised patients. Cancer Lett 2011; 305:163-74. [PMID: 21493001 PMCID: PMC3742547 DOI: 10.1016/j.canlet.2011.03.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 03/04/2011] [Accepted: 03/08/2011] [Indexed: 12/12/2022]
Abstract
Two lymphotropic human gamma herpesviruses can cause lymphoproliferative disorders: Epstein Barr virus (EBV, formally designated as human herpesvirus 4) and Kaposi sarcoma herpesvirus (KSHV, also called human herpesvirus 8). Individuals with inherited or acquired immunodeficiency have a greatly increased risk of developing a malignancy caused by one of these two viruses. Specific types of lymphoproliferations, including malignant lymphomas, occur in individuals with HIV infection, transplant recipients and children with primary immunodeficiency. Some of these diseases, such as Hodgkin's and non-Hodgkin lymphoma resemble those occurring in immunocompetent patients, but the proportion of tumors in which EBV is present is increased. Others, like primary effusion lymphoma and polymorphic post-transplant lymphoproliferative disorder are rarely seen outside the context of a specific immunodeficient state. Understanding the specific viral associations in selected lymphoproliferative disorders, and the insights into the molecular mechanisms of viral oncogenesis, will lead to better treatments for these frequently devastating diseases.
Collapse
Affiliation(s)
- Ethel Cesarman
- Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
45
|
Zamyatnin AA, Lyamzaev KG, Zinovkin RA. A-to-I RNA editing: a contribution to diversity of the transcriptome and an organism's development. BIOCHEMISTRY (MOSCOW) 2011; 75:1316-23. [PMID: 21314598 DOI: 10.1134/s0006297910110027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The complexity of multicellular organisms requires both an increase in genetic information and fine tuning in regulation of gene expression. One of the mechanisms responsible for these functions is RNA editing. RNA editing is a complex process affecting the mechanism of changes in transcriptome sequences. The best studied example of this process is A-to-I RNA editing. On the organism's level, RNA editing plays a key role during ontogenesis and in the defense against pathogens. Disorders in A-to-I RNA editing lead to serious abnormalities. The importance of RNA editing increases with an increase in the organism's complexity. Correct RNA editing is an indispensable factor of an organism's development and probably determines the lifespan of higher eukaryotes.
Collapse
Affiliation(s)
- A A Zamyatnin
- Institute of Mitoengineering and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| | | | | |
Collapse
|
46
|
Enhancement of replication of RNA viruses by ADAR1 via RNA editing and inhibition of RNA-activated protein kinase. J Virol 2011; 85:8460-6. [PMID: 21490091 DOI: 10.1128/jvi.00240-11] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1) is a double-stranded RNA binding protein and RNA-editing enzyme that modifies cellular and viral RNAs, including coding and noncoding RNAs. This interferon (IFN)-induced protein was expected to have an antiviral role, but recent studies have demonstrated that it promotes the replication of many RNA viruses. The data from these experiments show that ADAR1 directly enhances replication of hepatitis delta virus, human immunodeficiency virus type 1, vesicular stomatitis virus, and measles virus. The proviral activity of ADAR1 occurs through two mechanisms: RNA editing and inhibition of RNA-activated protein kinase (PKR). While these pathways have been found independently, the two mechanisms can act in concert to increase viral replication and contribute to viral pathogenesis. This novel type of proviral regulation by an IFN-induced protein, combined with some antiviral effects of hyperediting, sheds new light on the importance of ADAR1 during viral infection and transforms our overall understanding of the innate immune response.
Collapse
|
47
|
Samuel CE. Adenosine deaminases acting on RNA (ADARs) are both antiviral and proviral. Virology 2011; 411:180-93. [PMID: 21211811 DOI: 10.1016/j.virol.2010.12.004] [Citation(s) in RCA: 240] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 12/04/2010] [Indexed: 12/18/2022]
Abstract
A-to-I RNA editing, the deamination of adenosine (A) to inosine (I) that occurs in regions of RNA with double-stranded character, is catalyzed by a family of Adenosine Deaminases Acting on RNA (ADARs). In mammals there are three ADAR genes. Two encode proteins that possess demonstrated deaminase activity: ADAR1, which is interferon-inducible, and ADAR2 which is constitutively expressed. ADAR3, by contrast, has not yet been shown to be an active enzyme. The specificity of the ADAR1 and ADAR2 deaminases ranges from highly site-selective to non-selective, dependent on the duplex structure of the substrate RNA. A-to-I editing is a form of nucleotide substitution editing, because I is decoded as guanosine (G) instead of A by ribosomes during translation and by polymerases during RNA-dependent RNA replication. Additionally, A-to-I editing can alter RNA structure stability as I:U mismatches are less stable than A:U base pairs. Both viral and cellular RNAs are edited by ADARs. A-to-I editing is of broad physiologic significance. Among the outcomes of A-to-I editing are biochemical changes that affect how viruses interact with their hosts, changes that can lead to either enhanced or reduced virus growth and persistence depending upon the specific virus.
Collapse
Affiliation(s)
- Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
48
|
George CX, Gan Z, Liu Y, Samuel CE. Adenosine deaminases acting on RNA, RNA editing, and interferon action. J Interferon Cytokine Res 2010; 31:99-117. [PMID: 21182352 DOI: 10.1089/jir.2010.0097] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) catalyze adenosine (A) to inosine (I) editing of RNA that possesses double-stranded (ds) structure. A-to-I RNA editing results in nucleotide substitution, because I is recognized as G instead of A both by ribosomes and by RNA polymerases. A-to-I substitution can also cause dsRNA destabilization, as I:U mismatch base pairs are less stable than A:U base pairs. Three mammalian ADAR genes are known, of which two encode active deaminases (ADAR1 and ADAR2). Alternative promoters together with alternative splicing give rise to two protein size forms of ADAR1: an interferon-inducible ADAR1-p150 deaminase that binds dsRNA and Z-DNA, and a constitutively expressed ADAR1-p110 deaminase. ADAR2, like ADAR1-p110, is constitutively expressed and binds dsRNA. A-to-I editing occurs with both viral and cellular RNAs, and affects a broad range of biological processes. These include virus growth and persistence, apoptosis and embryogenesis, neurotransmitter receptor and ion channel function, pancreatic cell function, and post-transcriptional gene regulation by microRNAs. Biochemical processes that provide a framework for understanding the physiologic changes following ADAR-catalyzed A-to-I ( = G) editing events include mRNA translation by changing codons and hence the amino acid sequence of proteins; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA-structure-dependent activities such as microRNA production or targeting or protein-RNA interactions.
Collapse
Affiliation(s)
- Cyril X George
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | | | | | |
Collapse
|
49
|
Abstract
One of the most significant recent advances in biomedical research has been the discovery of the approximately 22-nt-long class of noncoding RNAs designated microRNAs (miRNAs). These regulatory RNAs provide a unique level of posttranscriptional gene regulation that modulates a range of fundamental cellular processes. Several viruses, especially herpesviruses, also encode miRNAs, and over 200 viral miRNAs have now been identified. Current evidence indicates that viruses use these miRNAs to manipulate both cellular and viral gene expression. Furthermore, viral infection can exert a profound impact on the cellular miRNA expression profile, and several RNA viruses have been reported to interact directly with cellular miRNAs and/or to use these miRNAs to augment their replication potential. Here we discuss our current knowledge of viral miRNAs and virally influenced cellular miRNAs and their relationship to viral infection.
Collapse
Affiliation(s)
- Rebecca L Skalsky
- Department of Molecular Genetics and Microbiology and Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
50
|
Abstract
One of the most significant recent advances in biomedical research has been the discovery of the approximately 22-nt-long class of noncoding RNAs designated microRNAs (miRNAs). These regulatory RNAs provide a unique level of posttranscriptional gene regulation that modulates a range of fundamental cellular processes. Several viruses, especially herpesviruses, also encode miRNAs, and over 200 viral miRNAs have now been identified. Current evidence indicates that viruses use these miRNAs to manipulate both cellular and viral gene expression. Furthermore, viral infection can exert a profound impact on the cellular miRNA expression profile, and several RNA viruses have been reported to interact directly with cellular miRNAs and/or to use these miRNAs to augment their replication potential. Here we discuss our current knowledge of viral miRNAs and virally influenced cellular miRNAs and their relationship to viral infection.
Collapse
Affiliation(s)
- Rebecca L Skalsky
- Department of Molecular Genetics and Microbiology and Center for Virology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|