1
|
Sin SH, Eason AB, Kim Y, Schneider JW, Damania B, Dittmer DP. The complete Kaposi sarcoma-associated herpesvirus genome induces early-onset, metastatic angiosarcoma in transgenic mice. Cell Host Microbe 2024; 32:755-767.e4. [PMID: 38653242 PMCID: PMC11305081 DOI: 10.1016/j.chom.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/16/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
Kaposi sarcoma (KS) is the most common cancer in persons living with HIV. It is caused by KS-associated herpesvirus (KSHV). There exists no animal model for KS. Pronuclear injection of the 170,000-bp viral genome induces early-onset, aggressive angiosarcoma in transgenic mice. The tumors are histopathologically indistinguishable from human KS. As in human KS, all tumor cells express the viral latency-associated nuclear antigen (LANA). The tumors transcribe most viral genes, whereas endothelial cells in other organs only transcribe the viral latent genes. The tumor cells are of endothelial lineage and exhibit the same molecular pattern of pathway activation as KS, namely phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR, interleukin-10 (IL-10), and vascular endothelial growth factor (VEGF). The KSHV-induced tumors are more aggressive than Ha-ras-induced angiosarcomas. Overall survival is increased by prophylactic ganciclovir. Thus, whole-virus KSHV-transgenic mice represent an accurate model for KS and open the door for the genetic dissection of KS pathogenesis and evaluation of therapies, including vaccines.
Collapse
Affiliation(s)
- Sang-Hoon Sin
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anthony B Eason
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yongbaek Kim
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Johann W Schneider
- National Health Laboratory Service, Division of Anatomical Pathology, Faculty of Medicine and Health Sciences, Tygerberg Hospital, Stellenbosch University, Cape Town, South Africa
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Schulz TF, Freise A, Stein SC. Kaposi sarcoma-associated herpesvirus latency-associated nuclear antigen: more than a key mediator of viral persistence. Curr Opin Virol 2023; 61:101336. [PMID: 37331160 DOI: 10.1016/j.coviro.2023.101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV), or human herpesvirus-8, is an oncogenic herpesvirus. Its latency-associated nuclear antigen (LANA) is essential for the persistence of KSHV in latently infected cells. LANA mediates replication of the latent viral genome during the S phase of a dividing cell and partitions episomes to daughter cells by attaching them to mitotic chromosomes. It also mediates the establishment of latency in newly infected cells through epigenetic mechanisms and suppresses the activation of the productive replication cycle. Furthermore, LANA promotes the proliferation of infected cell by acting as a transcriptional regulator and by modulating the cellular proteome through the recruitment of several cellular ubiquitin ligases. Finally, LANA interferes with the innate and adaptive immune system to facilitate the immune escape of infected cells.
Collapse
Affiliation(s)
- Thomas F Schulz
- Institute of Virology, Hannover Medical School, Germany; Cluster of Excellence 2155 RESIST, Germany; German Center for Infection Research, Hannover-Braunschweig Site, Germany.
| | - Anika Freise
- Institute of Virology, Hannover Medical School, Germany
| | - Saskia C Stein
- Institute of Virology, Hannover Medical School, Germany; Cluster of Excellence 2155 RESIST, Germany
| |
Collapse
|
3
|
Vladimirova O, De Leo A, Deng Z, Wiedmer A, Hayden J, Lieberman PM. Phase separation and DAXX redistribution contribute to LANA nuclear body and KSHV genome dynamics during latency and reactivation. PLoS Pathog 2021; 17:e1009231. [PMID: 33471863 PMCID: PMC7943007 DOI: 10.1371/journal.ppat.1009231] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/09/2021] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) can drive formation of diverse and essential macromolecular structures, including those specified by viruses. Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) genomes associate with the viral encoded Latency-Associated Nuclear Antigen (LANA) to form stable nuclear bodies (NBs) during latent infection. Here, we show that LANA-NB formation and KSHV genome conformation involves LLPS. Using LLPS disrupting solvents, we show that LANA-NBs are partially disrupted, while DAXX and PML foci are highly resistant. LLPS disruption altered the LANA-dependent KSHV chromosome conformation but did not stimulate lytic reactivation. We found that LANA-NBs undergo major morphological transformation during KSHV lytic reactivation to form LANA-associated replication compartments encompassing KSHV DNA. DAXX colocalizes with the LANA-NBs during latency but is evicted from the LANA-associated lytic replication compartments. These findings indicate the LANA-NBs are dynamic super-molecular nuclear structures that partly depend on LLPS and undergo morphological transitions corresponding to the different modes of viral replication. During latent infection, gamma-herpesvirus genomes are maintained as extrachromosomal circular DNA, referred to as episomes, by dedicated viral-encoded episome maintenance proteins. KSHV-encoded LANA maintains viral episomes through binding as an oligomeric protein to repetitive DNA elements in the viral terminal repeats (TRs). Viral episomes can be visualized as LANA-associated nuclear bodies (LANA-NBs). Here, we show that LANA-NBs utilize mechanisms of self-assembly through liquid-liquid phase separation (LLPS) to build dynamic structures that change during cell cycle and viral life cycle. We find that DAXX is a component of the latent phase LANA-NBs, but is evicted during the transition to lytic replication where LANA remains associated with KSHV DNA to form a ring-like replication compartment.
Collapse
Affiliation(s)
| | - Alessandra De Leo
- Department of Immunology, H. Lee Moffit Cancer and Research Center, Tampa Florida, United States of America
| | - Zhong Deng
- The Wistar Institute, Philadelphia, United States of America
| | - Andreas Wiedmer
- The Wistar Institute, Philadelphia, United States of America
| | - James Hayden
- The Wistar Institute, Philadelphia, United States of America
| | - Paul M. Lieberman
- The Wistar Institute, Philadelphia, United States of America
- * E-mail:
| |
Collapse
|
4
|
Choi YB, Cousins E, Nicholas J. Novel Functions and Virus-Host Interactions Implicated in Pathogenesis and Replication of Human Herpesvirus 8. Recent Results Cancer Res 2021; 217:245-301. [PMID: 33200369 DOI: 10.1007/978-3-030-57362-1_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human herpesvirus 8 (HHV-8) is classified as a γ2-herpesvirus and is related to Epstein-Barr virus (EBV), a γ1-herpesvirus. One important aspect of the γ-herpesviruses is their association with neoplasia, either naturally or in animal model systems. HHV-8 is associated with B-cell-derived primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD), endothelial-derived Kaposi's sarcoma (KS), and KSHV inflammatory cytokine syndrome (KICS). EBV is also associated with a number of B-cell malignancies, such as Burkitt's lymphoma, Hodgkin's lymphoma, and posttransplant lymphoproliferative disease, in addition to epithelial nasopharyngeal and gastric carcinomas. Despite the similarities between these viruses and their associated malignancies, the particular protein functions and activities involved in key aspects of virus biology and neoplastic transformation appear to be quite distinct. Indeed, HHV-8 specifies a number of proteins for which counterparts had not previously been identified in EBV, other herpesviruses, or even viruses in general, and these proteins are believed to play vital functions in virus biology and to be involved centrally in viral pathogenesis. Additionally, a set of microRNAs encoded by HHV-8 appears to modulate the expression of multiple host proteins to provide conditions conductive to virus persistence within the host and possibly contributing to HHV-8-induced neoplasia. Here, we review the molecular biology underlying these novel virus-host interactions and their potential roles in both virus biology and virus-associated disease.
Collapse
Affiliation(s)
- Young Bong Choi
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA.
| | - Emily Cousins
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA
| | - John Nicholas
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA
| |
Collapse
|
5
|
Lack of CD8 + T-cell co-localization with Kaposi's sarcoma-associated herpesvirus infected cells in Kaposi's sarcoma tumors. Oncotarget 2020; 11:1556-1572. [PMID: 32391124 PMCID: PMC7197452 DOI: 10.18632/oncotarget.27569] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
Despite the close association between Kaposi’s sarcoma (KS) and immune dysfunction, it remains unclear whether tumor infiltrating immune cells (TIIC), by their absence, presence, or dysfunction, are mechanistically correlated with KS pathogenesis. Therefore, their potential capacity to serve as prognostic biomarkers of KS disease progression or control is unclear. Because epidemic-KS (EpKS) occurs with HIV-1 co-infection, it is particularly important to compare TIIC between EpKS and HIV-negative African endemic-KS (EnKS) to dissect the roles of HIV-1 and Kaposi Sarcoma-associated herpesvirus (KSHV) in KS pathogenesis. This cross-sectional study of 13 advanced KS (4 EnKS, 9 EpKS) patients and 3 healthy controls utilized single-color immunohistochemistry and dual-color immunofluorescence assays to characterize and quantify KSHV infected cells in relation to various TIIC in KS biopsies. Analysis of variance (ANOVA) and Mann-Whitney tests were used to assess differences between groups where P-values < 0.05 were considered significant. The abundance of KSHV infected cells was heterogeneous in KS biopsies. Despite the presence of T-cell chemoattractant chemokine CxCL-9 in biopsies, CD8+ T-cells were sparsely distributed in regions with evident KSHV infected cells but were readily detectable in regions devoid of KSHV infected cells (P < 0.0001). CD68+ (M1) macrophages were evenly and diffusely distributed in KS biopsies, whereas, the majority of CD163+ (M2) macrophages were localized in regions devoid of KSHV infected cells (P < 0.0001). Overall, the poor immune cell infiltration or co-localization in KS biopsies independent of HIV-1 co-infection suggests a fundamental tumor immune evasion mechanism that warrants further investigation.
Collapse
|
6
|
De Leo A, Calderon A, Lieberman PM. Control of Viral Latency by Episome Maintenance Proteins. Trends Microbiol 2019; 28:150-162. [PMID: 31624007 DOI: 10.1016/j.tim.2019.09.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022]
Abstract
The human DNA tumor viruses Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), and human papillomavirus (HPV) share the common property of persisting as multicopy episomes in the nuclei of rapidly dividing host cells. These episomes form the molecular basis for viral latency and are etiologically linked to virus-associated cancers. Episome maintenance requires epigenetic programming to ensure the proper control of viral gene expression, DNA replication, and genome copy number. For these viruses, episome maintenance requires a dedicated virus-encoded episome maintenance protein (EMP), namely LANA (KSHV), EBNA1 (EBV), and E2 (HPV). Here, we review common features of these viral EMPs and discuss recent advances in understanding how they contribute to the epigenetic control of viral episome maintenance during latency.
Collapse
|
7
|
Tso FY, West JT, Wood C. Reduction of Kaposi's Sarcoma-Associated Herpesvirus Latency Using CRISPR-Cas9 To Edit the Latency-Associated Nuclear Antigen Gene. J Virol 2019; 93:e02183-18. [PMID: 30651362 PMCID: PMC6430552 DOI: 10.1128/jvi.02183-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/03/2019] [Indexed: 12/18/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS), an AIDS-defining cancer in HIV-1-infected individuals or immune-suppressed transplant patients. The prevalence for both KSHV and KS are highest in sub-Saharan Africa where HIV-1 infection is also epidemic. There is no effective treatment for advanced KS; therefore, the survival rate is low. Similar to other herpesviruses, KSHV's ability to establish latent infection in the host presents a major challenge to KS treatment or prevention. Strategies to reduce KSHV episomal persistence in latently infected cells might lead to approaches to prevent KS development. The CRISPR-Cas9 system is a gene editing technique that has been used to specifically manipulate the HIV-1 genome but also Epstein-Barr virus (EBV) which, similar to KSHV, belongs to the Gammaherpesvirus family. Among KSHV gene products, the latency-associated nuclear antigen (LANA) is absolutely required in the maintenance, replication, and segregation of KSHV episomes during mitosis, which makes LANA an ideal target for CRISPR-Cas9 editing. In this study, we designed a replication-incompetent adenovirus type 5 to deliver a LANA-specific Cas9 system (Ad-CC9-LANA) into various KSHV latent target cells. We showed that KSHV latently infected epithelial and endothelial cells transduced with Ad-CC9-LANA underwent significant reductions in the KSHV episome burden, LANA RNA and protein expression over time, but this effect is less profound in BC3 cells due to the low infection efficiency of adenovirus type 5 for B cells. The use of an adenovirus vector might confer potential in vivo applications of LANA-specific Cas9 against KSHV infection and KS.IMPORTANCE The ability for Kaposi's sarcoma-associated herpesvirus (KSHV), the causative agent of Kaposi's sarcoma (KS), to establish and maintain latency has been a major challenge to clearing infection and preventing KS development. This is the first study to demonstrate the feasibility of using a KSHV LANA-targeted CRISPR-Cas9 and adenoviral delivery system to disrupt KSHV latency in infected epithelial and endothelial cell lines. Our system significantly reduced the KSHV episomal burden over time. Given the safety record of adenovirus as vaccine or delivery vectors, this approach to limit KSHV latency may also represent a viable strategy against other tumorigenic viruses and may have potential benefits in developing countries where the viral cancer burden is high.
Collapse
Affiliation(s)
- For Yue Tso
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - John T West
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Charles Wood
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
8
|
Wei X, Lan K. Activation and counteraction of antiviral innate immunity by KSHV: an Update. Sci Bull (Beijing) 2018; 63:1223-1234. [PMID: 30906617 PMCID: PMC6426151 DOI: 10.1016/j.scib.2018.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The innate immune responses triggering production of type I interferons and inflammatory cytokines constitute a nonspecific innate resistance that eliminates invading pathogens including viruses. The activation of innate immune signaling through pattern recognition receptors (PRRs) is by sensing pathogen-associated molecular patterns derived from viruses. According to their distribution within cells, PRRs are classified into three types of receptors: membrane, cytoplasmic, and nuclear. Kaposi's sarcoma-associated herpesvirus (KSHV), a large DNA virus, replicates in the nucleus. Its genome is protected by capsid proteins during transport in the cytosol. Multiple PRRs are involved in KSHV recognition. To successfully establish latent infection, KSHV has evolved to manipulate different aspects of the host antiviral innate immune responses. This review presents recent advances in our understanding about the activation of the innate immune signaling in response to infection of KSHV. It also reviews the evasion strategies used by KSHV to subvert host innate immune detection for establishing a persistent infection.
Collapse
Affiliation(s)
| | - Ke Lan
- Corresponding author. (K. Lan)
| |
Collapse
|
9
|
Bielefeldt-Ohmann H, Bruce AG, Howard K, Ikoma M, Thouless ME, Rose TM. Macaque homologs of Kaposi's sarcoma-associated herpesvirus (KSHV) infect germinal center lymphoid cells, epithelial cells in skin and gastrointestinal tract and gonadal germ cells in naturally infected macaques. Virology 2018; 519:106-120. [PMID: 29689462 DOI: 10.1016/j.virol.2018.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/12/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
We developed a set of rabbit antisera to characterize infections by the macaque RV2 rhadinovirus homologs of KSHV. We analyzed tissues from rhesus and pig-tailed macaques naturally infected with rhesus rhadinovirus (RRV) or Macaca nemestrina rhadinovirus 2 (MneRV2). Our study demonstrates that RV2 rhadinoviruses have a tropism for epithelial cells, lymphocytes and gonadal germ cells in vivo. We observed latent infections in both undifferentiated and differentiated epithelial cells with expression of the latency marker, LANA. Expression of the early (ORF59) and late (glycoprotein B) lytic markers were detected in highly differentiated cells in epithelial ducts in oral, renal, dermal and gastric mucosal tissue as well as differentiated germ cells in male and female gonads. Our data provides evidence that epithelial and germ cell differentiation in vivo induces rhadinovirus reactivation and suggests that infected epithelial and germ cells play a role in transmission and dissemination of RV2 rhadinovirus infections in vivo.
Collapse
Affiliation(s)
| | - A Gregory Bruce
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pathobiology, University of Washington, Seattle, WA, USA.
| | - Kellie Howard
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pathobiology, University of Washington, Seattle, WA, USA.
| | - Minako Ikoma
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
| | | | - Timothy M Rose
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pathobiology, University of Washington, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|