1
|
Xiao X, Wang J, Ma J, Peng X, Wu S, Chen X, Lu H, Tan C, Fang L, Xiao S. Interferon lambda 4 is a gut antimicrobial protein. Proc Natl Acad Sci U S A 2024; 121:e2409684121. [PMID: 39436662 DOI: 10.1073/pnas.2409684121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/11/2024] [Indexed: 10/23/2024] Open
Abstract
To withstand complex microbial challenges, the mammalian gut largely depends on the secretion of diverse antimicrobial proteins. Type III interferons (IFNλs) are ordinarily considered inducible antiviral cytokines involved in intestinal immunity. Unlike other IFNλs, we found that newly identified IFNλ4 is an intestinal antibacterial protein. Large amounts of natural IFNλ4 are present in the secretory layer of the intestinal tracts of healthy piglets, which suggests that IFNλ4 is in direct physiological contact with microbial pathogens. We also identified two biochemical functions of mammalian IFNλ4, the induction of bacterial agglutination and direct microbial killing, which are not functions of the other IFNλs. Further mechanistic investigations revealed that after binding to the carbohydrate fraction of lipopolysaccharide, mammalian IFNλ4 self-assembles into bacteria-surrounding nanoparticles that agglutinate bacteria, and that its unique cationic amphiphilic molecular structure facilitates the destruction of bacterial membranes. Our data reveal features of IFNλ4 distinct from those of previously reported IFNλs and suggest that noncanonical IFNλ4 is deeply involved in intestinal immunity, beyond simply cytokine signaling.
Collapse
Affiliation(s)
- Xun Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jinting Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jun Ma
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xuan Peng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shengqiang Wu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xiaolei Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Hao Lu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
2
|
Gautam D, Sindhu A, Vats A, Rajput S, Rana C, De S. Evolutionary insights of interferon lambda genes in tetrapods. J Evol Biol 2024; 37:1101-1112. [PMID: 39066611 DOI: 10.1093/jeb/voae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/07/2024] [Accepted: 07/25/2024] [Indexed: 07/28/2024]
Abstract
Type III interferon (IFN), also known as IFN-λ, is an innate antiviral protein. We retrieved the sequences of IFN-λ and their receptors from 42 tetrapod species and conducted a computational evolutionary analysis to understand the diversity of these genes. The copy number variation (CNV) of IFN-λ was determined through qPCR in Indian cattle and buffalo. The tetrapod species feature intron-containing type III IFN genes. Some reptiles and placental mammals have 2 IFN-λ loci, while marsupials, monotremes, and birds have a single IFN-λ locus. Some placental mammals and amphibians exhibit multiple IFN-λ genes, including both intron-less and intron-containing forms. Placental mammals typically possess 3-4 functional IFN-λ genes, some of them lack signal peptides. IFN-λ of these tetrapod species formed 3 major clades. Mammalian IFN-λ4 appears as an ancestral form, with syntenic conservation in most mammalian species. The intron-less IFN-λ1 and both type III IFN receptors have conserved synteny in tetrapod. Purifying selection was noted in their evolutionary analysis that plays a crucial role in minimizing genetic diversity and maintaining the integrity of biological function. This indicates that these proteins have successfully retained their biological function and indispensability, even in the presence of the type I IFNs. The expansion of IFN-λ genes in amphibians and camels have led to the evolution of multiple IFN-λ. The CNV can arise from gene duplication and conversion events. The qPCR-based absolute quantification revealed that IFN-λ3 and IFN-λ4 have more than 1 copy in buffalo (Murrah) and 6 cattle breeds (Sahiwal, Tharparkar, Kankrej, Red Sindhi, Jersey, and Holstein Friesian). Overall, these findings highlight the evolutionary diversity and functional significance of IFN-λ in tetrapod species.
Collapse
Affiliation(s)
- Devika Gautam
- Animal Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (NDRI), Karnal, Haryana, India
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonipat, Haryana, India
| | - Anil Sindhu
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonipat, Haryana, India
| | - Ashutosh Vats
- Animal Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (NDRI), Karnal, Haryana, India
| | - Shiveeli Rajput
- Animal Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (NDRI), Karnal, Haryana, India
| | - Chanchal Rana
- Animal Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (NDRI), Karnal, Haryana, India
| | - Sachinandan De
- Animal Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (NDRI), Karnal, Haryana, India
| |
Collapse
|
3
|
Zhang Q, Kisand K, Feng Y, Rinchai D, Jouanguy E, Cobat A, Casanova JL, Zhang SY. In search of a function for human type III interferons: insights from inherited and acquired deficits. Curr Opin Immunol 2024; 87:102427. [PMID: 38781720 PMCID: PMC11209856 DOI: 10.1016/j.coi.2024.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 03/19/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
The essential and redundant functions of human type I and II interferons (IFNs) have been delineated over the last three decades by studies of patients with inborn errors of immunity or their autoimmune phenocopies, but much less is known about type III IFNs. Patients with cells that do not respond to type III IFNs due to inherited IL10RB deficiency display no overt viral disease, and their inflammatory disease phenotypes can be explained by defective signaling via other interleukine10RB-dependent pathways. Moreover, patients with inherited deficiencies of interferon-stimulated gene factor 3 (ISGF-3) (STAT1, STAT2, IRF9) present viral diseases also seen in patients with inherited deficiencies of the type I IFN receptor (IFNAR1/2). Finally, patients with autoantibodies neutralizing type III IFNs have no obvious predisposition to viral disease. Current findings thus suggest that type III IFNs are largely redundant in humans. The essential functions of human type III IFNs, particularly in antiviral defenses, remain to be discovered.
Collapse
Affiliation(s)
- Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France.
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Yi Feng
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France; Howard Hughes Medical Institute, New York, USA
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
4
|
He M, Liu M, Geng J, Liu L, Huang P, Yue M, Xia X, Zhang AM. Polymorphisms of the MxA and MxB genes are associated with biochemical indices and viral subtypes in Yunnan HCV patients. Front Cell Infect Microbiol 2023; 13:1119805. [PMID: 36743306 PMCID: PMC9892934 DOI: 10.3389/fcimb.2023.1119805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Introduction Hepatitis C virus (HCV) infection was the primary reason causing critical hepatic Q7 diseases. Although direct-acting antiviral agents (DAA) were widely used in clinics, anti-drug mutation, the outcome of patients with different viral subtypes, and recurrence suggested that HCV pathogenic mechanism should be studied further. HCV infection, replication, and outcome were influenced by the IFNL4 and itsdownstream genes (MxA and MxB). However, whether genetic polymorphisms of these genes played necessary roles required verification in the Yunnan population. Methods and Results After analyzing the genotypes and allele frequencies of seven single nucleotide polymorphisms (SNP), we found the association between the genotype and allele frequencies of rs11322783 in the IFNL4 gene and HCV infection in Yunnan population. Furthermore, the genetic polymorphisms of the MxA and MxB genescould influence liver function of HCV patients. The indirect bilirubin (IBIL) and albumin (ALB) levels showed significant differences among HCV patients, who carried various genotypes. The IBIL levels were associated with genotypes of rs17000900 (P= 0.025) and rs2071430 (P= 0.037) in the MxA gene, and ALB levels were associated with genotypes of rs2838029 (P= 0.010) in the MxB gene. Similarly, the genotypes of SNPs also showed significant difference in patients infected with subtype 3a (P=0.035) and 2a (P=0.034). However, no association was identified between expression level and SNPs of the MxA and MxB genes. Furthermore, HCV subtype 3b was found to be the predominantly epidemic strain in Yunnan Province. Conclusion In conclusion, the association between biochemical indices/HCV subtypes and SNPs in the MxA and MxB genes was identified in Yunnan HCV population.
Collapse
Affiliation(s)
- Mengzhu He
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Min Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Infectious Diseases, The First People's Hospital of Yunnan Province, Yunnan, China
| | - Jiawei Geng
- Department of Infectious Diseases, The First People's Hospital of Yunnan Province, Yunnan, China
| | - Li Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Peng Huang
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ming Yue
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Kunming Medical University, Yunnan, China
- *Correspondence: A-Mei Zhang, ; Xueshan Xia,
| | - A-Mei Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- *Correspondence: A-Mei Zhang, ; Xueshan Xia,
| |
Collapse
|
5
|
De M, Bhushan A, Grubbe WS, Roy S, Mendoza JL, Chinnaswamy S. Distinct molecular phenotypes involving several human diseases are induced by IFN-λ3 and IFN-λ4 in monocyte-derived macrophages. Genes Immun 2022; 23:73-84. [PMID: 35115664 PMCID: PMC9042695 DOI: 10.1038/s41435-022-00164-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/23/2022]
Abstract
Human Interferon (IFN) lambda 3 (IFN-λ3) and IFN-λ4 are closely linked at the IFNL locus and show association with several diseases in genetic studies. Since they are only ~30% identical to each other, to better understand their roles in disease phenotypes, comparative studies are needed. Monocytes are precursors to macrophages (monocyte-derived macrophages; MDMs) that get differentiated under the influence of various immune factors, including IFNs. In a recent study, we characterized lipopolysaccharide-activated M1 and M2-MDMs that were differentiated in presence of IFN-λ3 or IFN-λ4. In this study, we performed transcriptomics on these M1 and M2-MDMs to further understand their molecular phenotypes. We identified over 760 genes that were reciprocally regulated by IFN-λ3 and IFN-λ4, additionally we identified over 240 genes that are significantly affected by IFN-λ4 but not IFN-λ3. We observed that IFN-λ3 was more active in M2-MDMs while IFN-λ4 showed superior response in M1-MDMs. Providing a structural explanation for these functional differences, molecular modeling showed differences in expected interactions of IFN-λ3 and IFN-λ4 with the extracellular domain of IFN-λR1. Further, pathway analysis showed several human infectious diseases and even cancer-related pathways being significantly affected by IFN-λ3 and/or IFN-λ4 in both M1 and M2-MDMs.
Collapse
Affiliation(s)
- Manjarika De
- National Institute of Biomedical Genomics, Kalyani, West Bengal, 741251, India
| | - Anand Bhushan
- National Institute of Biomedical Genomics, Kalyani, West Bengal, 741251, India
- Cleveland Clinic Cole Eye Institute & Lerner Research Institute, Cleveland, OH, 44195, USA
| | - William S Grubbe
- Pritzker School of Molecular Engineering and Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Subhajit Roy
- National Institute of Biomedical Genomics, Kalyani, West Bengal, 741251, India
| | - Juan L Mendoza
- Pritzker School of Molecular Engineering and Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
6
|
Dowling JW, Forero A. Beyond Good and Evil: Molecular Mechanisms of Type I and III IFN Functions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:247-256. [PMID: 35017214 DOI: 10.4049/jimmunol.2100707] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022]
Abstract
IFNs are comprised of three families of cytokines that confer protection against pathogen infection and uncontrolled cellular proliferation. The broad role IFNs play in innate and adaptive immune regulation has placed them under heavy scrutiny to position them as "friend" or "foe" across pathologies. Genetic lesions in genes involving IFN synthesis and signaling underscore the disparate outcomes of aberrant IFN signaling. Abrogation of the response leads to susceptibility to microbial infections whereas unabated IFN induction underlies a variety of inflammatory diseases and tumor immune evasion. Type I and III IFNs have overlapping roles in antiviral protection, yet the mechanisms by which they are induced and promote the expression of IFN-stimulated genes and inflammation can distinguish their biological functions. In this review, we examine the molecular factors that shape the shared and distinct roles of type I and III IFNs in immunity.
Collapse
Affiliation(s)
- Jack W Dowling
- Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210; and.,Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Adriana Forero
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
7
|
Guo C, Reuss D, Coey JD, Sukumar S, Lang B, McLauchlan J, Boulant S, Stanifer ML, Bamford CGG. Conserved Induction of Distinct Antiviral Signalling Kinetics by Primate Interferon Lambda 4 Proteins. Front Immunol 2021; 12:772588. [PMID: 34868037 PMCID: PMC8636442 DOI: 10.3389/fimmu.2021.772588] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/18/2021] [Indexed: 11/23/2022] Open
Abstract
Interferon lambdas (IFNλ) (also known as type III IFNs) are critical cytokines that combat infection predominantly at barrier tissues, such as the lung, liver, and gastrointestinal tract. Humans have four IFNλs (1–4), where IFNλ1–3 show ~80%–95% homology, and IFNλ4 is the most divergent displaying only ~30% sequence identity. Variants in IFNλ4 in humans are associated with the outcome of infection, such as with hepatitis C virus. However, how IFNλ4 variants impact cytokine signalling in other tissues and how well this is conserved is largely unknown. In this study, we address whether differences in antiviral signalling exist between IFNλ4 variants in human hepatocyte and intestinal cells, comparing them to IFNλ3. We demonstrate that compared to IFNλ3, wild-type human IFNλ4 induces a signalling response with distinct magnitudes and kinetics, which is modified by naturally occurring variants P70S and K154E in both cell types. IFNλ4’s distinct antiviral response was more rapid yet transient compared to IFNλ1 and 3. Additionally, divergent antiviral kinetics were also observed using non-human primate IFNλs and cell lines. Furthermore, an IFNλ4-like receptor-interacting interface failed to alter IFNλ1’s kinetics. Together, our data provide further evidence that major functional differences exist within the IFNλ gene family. These results highlight the possible tissue specialisation of IFNλs and encourage further investigation of the divergent, non-redundant activities of IFNλ4 and other IFNλs.
Collapse
Affiliation(s)
- Cuncai Guo
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Dorothee Reuss
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jonathon D Coey
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Swathi Sukumar
- Institute of Virology, University of Münster, Münster, Germany
| | - Benjamin Lang
- Exzellenzcluster Science of Intelligence, Technische Universität Berlin, Berlin, Germany
| | - John McLauchlan
- Medical Research Council University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Steeve Boulant
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany.,Research Group "Cellular Polarity and Viral Infection", German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Megan L Stanifer
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States.,Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Connor G G Bamford
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
8
|
Wallace JW, Constant DA, Nice TJ. Interferon Lambda in the Pathogenesis of Inflammatory Bowel Diseases. Front Immunol 2021; 12:767505. [PMID: 34712246 PMCID: PMC8547615 DOI: 10.3389/fimmu.2021.767505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Interferon λ (IFN-λ) is critical for host viral defense at mucosal surfaces and stimulates immunomodulatory signals, acting on epithelial cells and few other cell types due to restricted IFN-λ receptor expression. Epithelial cells of the intestine play a critical role in the pathogenesis of Inflammatory Bowel Disease (IBD), and the related type II interferons (IFN-γ) have been extensively studied in the context of IBD. However, a role for IFN-λ in IBD onset and progression remains unclear. Recent investigations of IFN-λ in IBD are beginning to uncover complex and sometimes opposing actions, including pro-healing roles in colonic epithelial tissues and potentiation of epithelial cell death in the small intestine. Additionally, IFN-λ has been shown to act through non-epithelial cell types, such as neutrophils, to protect against excessive inflammation. In most cases IFN-λ demonstrates an ability to coordinate the host antiviral response without inducing collateral hyperinflammation, suggesting that IFN-λ signaling pathways could be a therapeutic target in IBD. This mini review discusses existing data on the role of IFN-λ in the pathogenesis of inflammatory bowel disease, current gaps in the research, and therapeutic potential of modulating the IFN-λ-stimulated response.
Collapse
Affiliation(s)
- Jonathan W Wallace
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | - David A Constant
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | - Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
9
|
Chen Q, Coto-Llerena M, Suslov A, Teixeira RD, Fofana I, Nuciforo S, Hofmann M, Thimme R, Hensel N, Lohmann V, Ng CKY, Rosenberger G, Wieland S, Heim MH. Interferon lambda 4 impairs hepatitis C viral antigen presentation and attenuates T cell responses. Nat Commun 2021; 12:4882. [PMID: 34385466 PMCID: PMC8360984 DOI: 10.1038/s41467-021-25218-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
Genetic variants of the interferon lambda (IFNL) gene locus are strongly associated with spontaneous and IFN treatment-induced clearance of hepatitis C virus (HCV) infections. Individuals with the ancestral IFNL4-dG allele are not able to clear HCV in the acute phase and have more than a 90% probability to develop chronic hepatitis C (CHC). Paradoxically, the IFNL4-dG allele encodes a fully functional IFNλ4 protein with antiviral activity against HCV. Here we describe an effect of IFNλ4 on HCV antigen presentation. Only minor amounts of IFNλ4 are secreted, because the protein is largely retained in the endoplasmic reticulum (ER) where it induces ER stress. Stressed cells are significantly weaker activators of HCV specific CD8+ T cells than unstressed cells. This is not due to reduced MHC I surface presentation or extracellular IFNλ4 effects, since T cell responses are restored by exogenous loading of MHC with HCV antigens. Rather, IFNλ4 induced ER stress impairs HCV antigen processing and/or loading onto the MHC I complex. Our results provide a potential explanation for the IFNλ4-HCV paradox.
Collapse
Affiliation(s)
- Qian Chen
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Aleksei Suslov
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Isabel Fofana
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Sandro Nuciforo
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Maike Hofmann
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany
| | - Nina Hensel
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, Centre for Integrative Infectious Disease Research (CIID), University of Heidelberg, Heidelberg, Germany
| | - Charlotte K Y Ng
- Department for BioMedical Research (DBMR), Oncogenomics Lab, University of Bern, Bern, Switzerland
| | | | - Stefan Wieland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Markus H Heim
- Department of Biomedicine, University of Basel, Basel, Switzerland. .,Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland.
| |
Collapse
|
10
|
De M, Bhushan A, Chinnaswamy S. Monocytes differentiated into macrophages and dendritic cells in the presence of human IFN-λ3 or IFN-λ4 show distinct phenotypes. J Leukoc Biol 2021; 110:357-374. [PMID: 33205487 PMCID: PMC7611425 DOI: 10.1002/jlb.3a0120-001rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022] Open
Abstract
Human IFN-λ4 is expressed by only a subset of individuals who possess the ΔG variant allele at the dinucleotide polymorphism rs368234815. Recent genetic studies have shown an association between rs368234815 and different infectious and inflammatory disorders. It is not known if IFN-λ4 has immunomodulatory activity. The expression of another type III IFN, IFN-λ3, is also controlled by genetic polymorphisms that are strongly linked to rs368234815. Therefore, it is of interest to compare these two IFNs for their effects on immune cells. Herein, using THP-1 cells, it was confirmed that IFN-λ4 could affect the differentiation status of macrophage-like cells and dendritic cells (DCs). The global gene expression changes induced by IFN-λ4 were also characterized in in vitro generated primary macrophages. Next, human PBMC-derived CD14+ monocytes were used to obtain M1 and M2 macrophages and DCs in the presence of IFN-λ3 or IFN-λ4. These DCs were cocultured with CD4+ Th cells derived from allogenic donors and their in vitro cytokine responses were measured. The specific activity of recombinant IFN-λ4 was much lower than that of IFN-λ3, as shown by induction of IFN-stimulated genes. M1 macrophages differentiated in the presence of IFN-λ4 showed higher IL-10 secretion than those differentiated in IFN-λ3. Coculture experiments suggested that IFN-λ4 could confer a Th2-biased phenotype to allogenic Th cells, wherein IFN-λ3, under similar circumstances, did not induce a significant bias toward either a Th1 or Th2 phenotype. This study shows for the first time that IFN-λ4 may influence immune responses by immunomodulation.
Collapse
Affiliation(s)
- Manjarika De
- National Institute of Biomedical GenomicsKalyaniWest BengalIndia
| | - Anand Bhushan
- National Institute of Biomedical GenomicsKalyaniWest BengalIndia
| | | |
Collapse
|
11
|
Zhai H, Shi J, Sun R, Tan Z, Swaiba UE, Li W, Zhang L, Zhang L, Guo Y, Huang J. The superposition anti-viral activity of porcine tri-subtype interferon expressed by Saccharomyces cerevisiae. Vet Microbiol 2021; 259:109150. [PMID: 34144506 DOI: 10.1016/j.vetmic.2021.109150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/06/2021] [Indexed: 11/29/2022]
Abstract
Interferon (IFN)-mediated antiviral responses are central to host defense against viral infection. Porcine viral infection has emerged as a serious hazard for the pig industry. The construction of an engineered Saccharomyces cerevisiae strain that efficiently produces porcine IFN has demonstrated several advantages. It can be easily fed to pigs, which helps in reducing antibiotic residues in pork and improve meat quality. In this study, the stable expression of several porcine IFN molecules (pIFN-α1, pIFN-β, pIFN-λ1, pIFN-λ1-β, pIFN-λ1-β-α1) were determined using an engineered S. cerevisiae system. With the YeastFab assembly method, the complete transcriptional units containing promoter (GPD), secretory peptide (α-mating factor), target gene (IFN) and terminator (ADH1) were successfully constructed using the characteristics of type II restriction endonuclease, and then integrated into the chromosomes Ⅳ and XVI of ST1814 yeast host strain, respectively. The expression kinetics of recombinant pIFNs were further analyzed. Synergism in the expression level of IFN receptor, antiviral protein, and viral loading was observed in viral-cell infection model treated with different porcine IFN subtypes. The porcine reproductive and respiratory syndrome viral load and antibody titer in serum decreased significantly after oral administration of IFN expression yeast fermentation broth. These findings indicate the potential efficacy of multi-valent pIFNs expressing S. cerevisiae as a potent feed material to prevent viral infections of pigs.
Collapse
Affiliation(s)
- Hui Zhai
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Jingxuan Shi
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Ruiqi Sun
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Zheng Tan
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Umm E Swaiba
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Wanqing Li
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Lilin Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Lei Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Yanyu Guo
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
12
|
Lunova M, Kubovciak J, Smolková B, Uzhytchak M, Michalova K, Dejneka A, Strnad P, Lunov O, Jirsa M. Expression of Interferons Lambda 3 and 4 Induces Identical Response in Human Liver Cell Lines Depending Exclusively on Canonical Signaling. Int J Mol Sci 2021; 22:2560. [PMID: 33806448 PMCID: PMC7961969 DOI: 10.3390/ijms22052560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022] Open
Abstract
Lambda interferons mediate antiviral immunity by inducing interferon-stimulated genes (ISGs) in epithelial tissues. A common variant rs368234815TT/∆G creating functional gene from an IFNL4 pseudogene is associated with the expression of major ISGs in the liver but impaired clearance of hepatitis C. To explain this, we compared Halo-tagged and non-tagged IFNL3 and IFNL4 signaling in liver-derived cell lines. Transfection with non-tagged IFNL3, non-tagged IFNL4 and Halo-tagged IFNL4 led to a similar degree of JAK-STAT activation and ISG induction; however, the response to transfection with Halo-tagged IFNL3 was lower and delayed. Transfection with non-tagged IFNL3 or IFNL4 induced no transcriptome change in the cells lacking either IL10R2 or IFNLR1 receptor subunits. Cytosolic overexpression of signal peptide-lacking IFNL3 or IFNL4 in wild type cells did not interfere with JAK-STAT signaling triggered by interferons in the medium. Finally, expression profile changes induced by transfection with non-tagged IFNL3 and IFNL4 were highly similar. These data do not support the hypothesis about IFNL4-specific non-canonical signaling and point out that functional studies conducted with tagged interferons should be interpreted with caution.
Collapse
Affiliation(s)
- Mariia Lunova
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic;
| | - Jan Kubovciak
- Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Barbora Smolková
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (M.U.); (A.D.); (O.L.)
| | - Mariia Uzhytchak
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (M.U.); (A.D.); (O.L.)
| | - Kyra Michalova
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University, 12808 Prague, Czech Republic;
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (M.U.); (A.D.); (O.L.)
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital RWTH (Rheinisch-Westfälisch Technische Hochschule) Aachen, 52062 Aachen, Germany;
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (M.U.); (A.D.); (O.L.)
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic;
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University, 12808 Prague, Czech Republic;
| |
Collapse
|
13
|
Huijser E, Versnel MA. Making Sense of Intracellular Nucleic Acid Sensing in Type I Interferon Activation in Sjögren's Syndrome. J Clin Med 2021; 10:532. [PMID: 33540529 PMCID: PMC7867173 DOI: 10.3390/jcm10030532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a systemic autoimmune rheumatic disease characterized by dryness of the eyes and mucous membranes, which can be accompanied by various extraglandular autoimmune manifestations. The majority of patients exhibit persistent systemic activation of the type I interferon (IFN) system, a feature that is shared with other systemic autoimmune diseases. Type I IFNs are integral to anti-viral immunity and are produced in response to stimulation of pattern recognition receptors, among which nucleic acid (NA) receptors. Dysregulated detection of endogenous NAs has been widely implicated in the pathogenesis of systemic autoimmune diseases. Stimulation of endosomal Toll-like receptors by NA-containing immune complexes are considered to contribute to the systemic type I IFN activation. Accumulating evidence suggest additional roles for cytosolic NA-sensing pathways in the pathogenesis of systemic autoimmune rheumatic diseases. In this review, we will provide an overview of the functions and signaling of intracellular RNA- and DNA-sensing receptors and summarize the evidence for a potential role of these receptors in the pathogenesis of pSS and the sustained systemic type I IFN activation.
Collapse
Affiliation(s)
| | - Marjan A. Versnel
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| |
Collapse
|
14
|
Premzl M. Comparative genomic analysis of eutherian interferon genes. Genomics 2020; 112:4749-4759. [DOI: 10.1016/j.ygeno.2020.08.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 01/23/2023]
|