1
|
Lerdsittikul V, Apiratwarrasakul S, Atithep T, Withatanung P, Indrawattana N, Pumirat P, Chaiwattanarungruengpaisan S, Thongdee M. Isolation and characterisation of a novel Silviavirus bacteriophage promising antimicrobial agent against methicillin-resistant Staphylococcus aureus infections. Sci Rep 2024; 14:9251. [PMID: 38649443 PMCID: PMC11035597 DOI: 10.1038/s41598-024-59903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
The increasing prevalence of methicillin-resistant Staphylococcus aureus (MRSA) emphasises the urgent need for novel antimicrobial agents as alternatives to antibiotics. Bacteriophage therapy is one of the most promising antimicrobial strategies. Here, we isolated and comprehensively characterized a novel Staphylococcus phage, vB_SauM_VL10 (VL10), from urban sewage. The VL10 genome displays 141,746 bp of linear double-stranded DNA, containing 193 open reading frames and lacking tRNA, virulence, or antibiotic resistance genes. Phylogenetic analysis categorizes VL10 as a novel species within the Silviavirus genus, Twortvirinae subfamily. VL10 exhibits lytic behaviour characterized by efficient adsorption, a short latent period, and substantial burst size, with environmental stability. It demonstrates lytic activity against 79.06% of tested S. aureus strains, highlighting its species specificity. Additionally, VL10 effectively targets MRSA biofilms, reducing biomass and viable cells. In MRSA-infected G. mellonella larvae, VL10 enhances survival rates, supporting its potential for phage therapy applications. Moreover, the emergence of VL10-resistant S. aureus strains associated with fitness trade-offs, including reduced growth, biofilm formation, and virulence. Altogether, these findings emphasize VL10 as a promising candidate for developing therapeutic agents against MRSA infections, providing insights into phage biology and resistance dynamics.
Collapse
Affiliation(s)
- Varintip Lerdsittikul
- Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand.
| | - Sukanya Apiratwarrasakul
- Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Thassanant Atithep
- Frontier Research Center, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand
| | - Patoo Withatanung
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nitaya Indrawattana
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research and Excellence in Allergy and Immunology (SiALL), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Somjit Chaiwattanarungruengpaisan
- The Monitoring Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Metawee Thongdee
- The Monitoring Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
2
|
El Haddad L, Angelidakis G, Clark JR, Mendoza JF, Terwilliger AL, Chaftari CP, Duna M, Yusuf ST, Harb CP, Stibich M, Maresso A, Chemaly RF. Genomic and Functional Characterization of Vancomycin-Resistant Enterococci-Specific Bacteriophages in the Galleria mellonella Wax Moth Larvae Model. Pharmaceutics 2022; 14:1591. [PMID: 36015218 PMCID: PMC9414631 DOI: 10.3390/pharmaceutics14081591] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Phages are naturally occurring viruses that selectively kill bacterial species without disturbing the individual's normal flora, averting the collateral damage of antimicrobial usage. The safety and the effectiveness of phages have been mainly confirmed in the food industry as well as in animal models. In this study, we report on the successful isolation of phages specific to Vancomycin-resistant Enterococci, including Enterococcus faecium (VREfm) and Enterococcus faecalis from sewage samples, and demonstrate their efficacy and safety for VREfm infection in the greater wax moth Galleria mellonella model. No virulence-associated genes, antibiotic resistance genes or integrases were detected in the phages' genomes, rendering them safe to be used in an in vivo model. Phages may be considered as potential agents for therapy for bacterial infections secondary to multidrug-resistant organisms such as VREfm.
Collapse
Affiliation(s)
- Lynn El Haddad
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA; (L.E.H.); (J.F.M.)
| | - Georgios Angelidakis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.A.); (C.P.C.); (M.D.); (S.T.Y.); (C.P.H.); (M.S.)
| | - Justin R. Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (J.R.C.); (A.L.T.); (A.M.)
| | - Jesus F. Mendoza
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA; (L.E.H.); (J.F.M.)
| | - Austen L. Terwilliger
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (J.R.C.); (A.L.T.); (A.M.)
| | - Christopher P. Chaftari
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.A.); (C.P.C.); (M.D.); (S.T.Y.); (C.P.H.); (M.S.)
| | - Mark Duna
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.A.); (C.P.C.); (M.D.); (S.T.Y.); (C.P.H.); (M.S.)
| | - Serena T. Yusuf
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.A.); (C.P.C.); (M.D.); (S.T.Y.); (C.P.H.); (M.S.)
| | - Cynthia P. Harb
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.A.); (C.P.C.); (M.D.); (S.T.Y.); (C.P.H.); (M.S.)
| | - Mark Stibich
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.A.); (C.P.C.); (M.D.); (S.T.Y.); (C.P.H.); (M.S.)
- Xenex Disinfection Services, San Antonio, TX 78216, USA
| | - Anthony Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (J.R.C.); (A.L.T.); (A.M.)
| | - Roy F. Chemaly
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.A.); (C.P.C.); (M.D.); (S.T.Y.); (C.P.H.); (M.S.)
| |
Collapse
|
3
|
Khullar L, Harjai K, Chhibber S. Exploring the therapeutic potential of staphylococcal phage formulations: Current challenges and applications in phage therapy. J Appl Microbiol 2022; 132:3515-3532. [DOI: 10.1111/jam.15462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/21/2021] [Accepted: 01/17/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Lavanya Khullar
- Department of Microbiology Panjab University Chandigarh India
| | - Kusum Harjai
- Department of Microbiology Panjab University Chandigarh India
| | - Sanjay Chhibber
- Department of Microbiology Panjab University Chandigarh India
| |
Collapse
|
4
|
Isolation of a Novel Lytic Bacteriophage against a Nosocomial Methicillin-Resistant Staphylococcus aureus Belonging to ST45. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5463801. [PMID: 33426055 PMCID: PMC7773469 DOI: 10.1155/2020/5463801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/19/2020] [Accepted: 12/09/2020] [Indexed: 01/09/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) can cause a wide range of infections from mild to life-threatening conditions. Its enhanced antibiotic resistance often leads to therapeutic failures and therefore alternative eradication methods must be considered. Potential candidates to control MRSA infections are bacteriophages and their lytic enzymes, lysins. In this study, we isolated a bacteriophage against a nosocomial MRSA strain belonging to the ST45 epidemiologic group. The phage belonging to Caudovirales, Siphoviridae, showed a narrow host range and stable lytic activity without the emergence of resistant MRSA clones. Phylogenetic analysis showed that the newly isolated Staphylococcus phage R4 belongs to the Triavirus genus in Siphoviridae family. Genetic analysis of the 45 kb sequence of R4 revealed 69 ORFs. No remnants of mobile genetic elements and traces of truncated genes were observed. We have localized the lysin (N-acetylmuramoyl-L-alanine amidase) gene of the new phage that was amplified, cloned, expressed, and purified. Its activity was verified by zymogram analysis. Our findings could potentially be used to develop specific anti-MRSA bacteriophage- and phage lysin-based therapeutic strategies against major clonal lineages and serotypes.
Collapse
|
5
|
Kitamura N, Sasabe E, Matsuzaki S, Daibata M, Yamamoto T. Characterization of two newly isolated Staphylococcus aureus bacteriophages from Japan belonging to the genus Silviavirus. Arch Virol 2020; 165:2355-2359. [PMID: 32748178 PMCID: PMC7497331 DOI: 10.1007/s00705-020-04749-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/24/2020] [Indexed: 12/18/2022]
Abstract
Two Staphylococcus aureus bacteriophages, KSAP7 and KSAP11, were isolated from sewage and characterized. Based on morphology and DNA sequences, they were assigned to the genus Silviavirus, subfamily Twortvirinae, family Herelleviridae, whose members are hypothesized to be suitable for bacteriophage therapy. The KSAP7 and KSAP11 genomes were 137,950 and 138,307 bp in size, respectively. Although their DNA sequences were almost identical, evidence of site-specific DNA rearrangements was found in two regions. Changes in the number of PIEPEK amino acid sequence repeats encoded by orf10 and the insertion/deletion of a 541-bp sequence that includes a possible tail-related gene were identified.
Collapse
Affiliation(s)
- Naoya Kitamura
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan.
| | - Eri Sasabe
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Shigenobu Matsuzaki
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan.,Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University, Kochi, Kochi 780-0955, Japan
| | - Masanori Daibata
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Tetsuya Yamamoto
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
6
|
Srinivasan R, Chaitanyakumar A, Subramanian P, Mageswari A, Gomathi A, Aswini V, Sankar AM, Ramya M, Gothandam KM. Recombinant engineered phage-derived enzybiotic in Pichia pastoris X-33 as whole cell biocatalyst for effective biocontrol of Vibrio parahaemolyticus in aquaculture. Int J Biol Macromol 2020; 154:1576-1585. [DOI: 10.1016/j.ijbiomac.2019.11.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/08/2019] [Accepted: 11/06/2019] [Indexed: 10/25/2022]
|
7
|
A Kayvirus Distant Homolog of Staphylococcal Virulence Determinants and VISA Biomarker Is a Phage Lytic Enzyme. Viruses 2020; 12:v12030292. [PMID: 32156046 PMCID: PMC7150955 DOI: 10.3390/v12030292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/07/2023] Open
Abstract
Staphylococcal bacteriophages of the Kayvirus genus are candidates for therapeutic applications. One of their proteins, Tgl, is slightly similar to two staphylococcal virulence factors, secreted autolysins of lytic transglycosylase motifs IsaA and SceD. We show that Tgl is a lytic enzyme secreted by the bacterial transport system and localizes to cell peripheries like IsaA and SceD. It causes lysis of E. coli cells expressing the cloned tgl gene, but could be overproduced when depleted of signal peptide. S. aureus cells producing Tgl lysed in the presence of nisin, which mimics the action of phage holin. In vitro, Tgl protein was able to destroy S. aureus cell walls. The production of Tgl decreased S. aureus tolerance to vancomycin, unlike the production of SceD, which is associated with decreased sensitivity to vancomycin. In the genomes of kayviruses, the tgl gene is located a few genes away from the lysK gene, encoding the major endolysin. While lysK is a late phage gene, tgl can be transcribed by a host RNA polymerase, like phage early genes. Taken together, our data indicate that tgl belongs to the kayvirus lytic module and encodes an additional endolysin that can act in concert with LysK in cell lysis.
Collapse
|
8
|
Draft Genome Sequence of Escherichia Phage PGN829.1, Active against Highly Drug-Resistant Uropathogenic Escherichia coli. Microbiol Resour Announc 2018; 7:MRA01141-18. [PMID: 30533819 PMCID: PMC6256618 DOI: 10.1128/mra.01141-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/25/2018] [Indexed: 12/02/2022] Open
Abstract
The Escherichia phage PGN829.1 was isolated from sewage of a tertiary care referral hospital in North India. It lyses multiple strains of highly drug-resistant uropathogenic E. coli. The Escherichia phage PGN829.1 was isolated from sewage of a tertiary care referral hospital in North India. It lyses multiple strains of highly drug-resistant uropathogenic E. coli. It belongs to the family Podoviridae. Its genome is closest to that of Escherichia phage Vb_EcoP_PhAPEC7.
Collapse
|
9
|
Chang Y, Kim M, Ryu S. Characterization of a novel endolysin LysSA11 and its utility as a potent biocontrol agent against Staphylococcus aureus on food and utensils. Food Microbiol 2017; 68:112-120. [DOI: 10.1016/j.fm.2017.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 01/21/2023]
|
10
|
Cui Z, Feng T, Gu F, Li Q, Dong K, Zhang Y, Zhu Y, Han L, Qin J, Guo X. Characterization and complete genome of the virulent Myoviridae phage JD007 active against a variety of Staphylococcus aureus isolates from different hospitals in Shanghai, China. Virol J 2017; 14:26. [PMID: 28179010 PMCID: PMC5299689 DOI: 10.1186/s12985-017-0701-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/07/2017] [Indexed: 11/25/2022] Open
Abstract
Background The implementation of phage therapy is re-emerging with the increase in widespread antibiotic-resistant bacteria. Methods Staphylococcus phage JD007 was characterized and its complete genome sequence analysed. Results Staphylococcus phage JD007 was classified as belonging to the Myoviridae family based on its morphology, as observed by transmission electron microscopy. Its lytic activity was stable between pH 5–11 and below 42 °C; moreover, an absorbance curve showed that nearly 90% of the viral particles had adsorbed to its host after a 20 min co-incubation. The complete genome size is 141,836 bp, making JD007 one of the largest Staphylococcus phages of Myoviridae. No identifiable resistance or virulence genes were found in the JD007 genome. JD007 was able to lyse 95% of S. aureus isolates, including the prevalent ST239-MRSA and ST59-MRSA strains isolated from different hospitals in Shanghai, China, and inhibition assays showed that JD007 could inhibit S. aureus growth at a multiplicity of infection of 0.1. Conclusions The results suggested that Staphylococcus phage JD007 can potentially be used in phage therapy or for the detection of S. aureus. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0701-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zelin Cui
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China. .,Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Tingting Feng
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Feifei Gu
- Department of Clinical Microbiology, Shanghai Ruijin hospital, Shanghai, 200025, China
| | - Qingtian Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ke Dong
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yan Zhang
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yongzhang Zhu
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Lizhong Han
- Department of Clinical Microbiology, Shanghai Ruijin hospital, Shanghai, 200025, China
| | - Jinhong Qin
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xiaokui Guo
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
11
|
Cui Z, Guo X, Dong K, Zhang Y, Li Q, Zhu Y, Zeng L, Tang R, Li L. Safety assessment of Staphylococcus phages of the family Myoviridae based on complete genome sequences. Sci Rep 2017; 7:41259. [PMID: 28117392 PMCID: PMC5259776 DOI: 10.1038/srep41259] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 12/19/2016] [Indexed: 11/25/2022] Open
Abstract
Staphylococcus phages of the Myoviridae family have a wide host range and potential applications in phage therapy. In this report, safety assessments of these phages were conducted based on their complete genome sequences. The complete genomes of Staphylococcus phages of the Myoviridae family were analyzed, and the Open Reading Frame (ORFs) were compared with a pool of virulence and antibiotic resistance genes using the BLAST algorithm. In addition, the lifestyle of the phages (virulent or temperate) was also confirmed using PHACTS. The results showed that all phages were lytic and did not contain resistance or virulence genes based on bioinformatic analyses, excluding the possibility that they could be vectors for the dissemination of these undesirable genes. These findings suggest that the phages are safe at the genome level. The SceD-like transglycosylase, which is a biomarker for vancomycin-intermediate strains, was widely distributed in the phage genomes. Approximately 70% of the ORFs encoded in the phage genomes have unknown functions; therefore, their roles in the antibiotic resistance and virulence of Staphylococcus aureus are still unknown and require consideration before use in phage therapy.
Collapse
Affiliation(s)
- Zelin Cui
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiaokui Guo
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Ke Dong
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yan Zhang
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Qingtian Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yongzhang Zhu
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Lingbing Zeng
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Rong Tang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Li Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
12
|
Abstract
The genetic manipulation of Staphylococcus aureus for molecular experimentation is a valuable tool for assessing gene function and virulence. Genetic variability between strains coupled with difficult laboratory techniques for strain construction is a frequent roadblock in S. aureus research. Bacteriophage transduction greatly increases the speed and ease of S. aureus studies by allowing movement of chromosomal markers and plasmids between strains. This technique enables the S. aureus research community to focus investigations on clinically relevant isolates.
Collapse
|
13
|
Hsieh SE, Tseng YH, Lo HH, Chen ST, Wu CN. Genomic analysis of Staphylococcus phage Stau2 isolated from medical specimen. Virus Genes 2015; 52:107-16. [PMID: 26706853 DOI: 10.1007/s11262-015-1276-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/10/2015] [Indexed: 11/30/2022]
Abstract
Stau2 is a lytic myophage of Staphylococcus aureus isolated from medical specimen. Exhibiting a broad host range against S. aureus clinical isolates, Stau2 is potentially useful for topical phage therapy or as an additive in food preservation. In this study, Stau2 was firstly revealed to possess a circularly permuted linear genome of 133,798 bp, with low G + C content, containing 146 open reading frames, but encoding no tRNA. The genome is organized into several modules containing genes for packaging, structural proteins, replication/transcription and host-cell-lysis, with the structural proteins and DNA polymerase modules being organized similarly to that in Twort-like phages of Staphylococcus. With the encoded DNA replication genes, Stau2 can possibly use its own system for replication. In addition, analysis in silico found several introns in seven genes, including those involved in DNA metabolism, packaging, and structure, while one of them (helicase gene) is experimentally confirmed to undergo splicing. Furthermore, phylogenetic analysis suggested Stau2 to be most closely related to Staphylococcus phages SA11 and Remus, members of Twort-like phages. The results of sodium dodecyl sulfate polyacrylamide gel electrophoresis showed 14 structural proteins of Stau2 and N-terminal sequencing identified three of them. Importantly, this phage does not encode any proteins which are known or suspected to be involved in toxicity, pathogenicity, or antibiotic resistance. Therefore, further investigations of feasible therapeutic application of Stau2 are needed.
Collapse
Affiliation(s)
- Sue-Er Hsieh
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan
| | - Yi-Hsiung Tseng
- Department of Microbiology, Tzu Chi University, Hualien, 970, Taiwan
| | - Hsueh-Hsia Lo
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan
| | - Shui-Tu Chen
- Pediatrics Department, Nantou Hospital, Department of Health, Nantou, 540, Taiwan
| | - Cheng-Nan Wu
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan.
| |
Collapse
|
14
|
Assessment of synergistic combination potential of probiotic and bacteriophage against antibiotic-resistant Staphylococcus aureus exposed to simulated intestinal conditions. Arch Microbiol 2014; 196:719-27. [DOI: 10.1007/s00203-014-1013-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/16/2014] [Accepted: 07/03/2014] [Indexed: 01/18/2023]
|
15
|
Genomic and phylogenetic traits of Staphylococcus phages S25-3 and S25-4 (family Myoviridae, genus Twort-like viruses). ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0762-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
Abstract
The abundance of group I introns, intragenic RNA sequences capable of self-splicing, in Gram-positive bacteriophage genomes, is illustrated by various new group I introns recently described in Staphylococcus phage genomes. These introns were found to interrupt DNA metabolism genes as well as late genes. These group I introns often code for homing endonucleases, which promote lateral transfer of group I introns, thereby enabling spread through a population. Homing endonucleases encoded by group I introns in Staphylococcus phage genomes were predicted to belong to the GIY-YIG, LAGLIDADG, HNH or EDxHD family of endonucleases. The group I intron distribution in Staphylococcus phage genomes exemplifies the homology between these introns as well as the encoded endonucleases. Despite several suggested functions, the role of group I introns in bacteriophages remains unclear or might be nonexistent. However, transcriptome analysis might provide additional information to elucidate the possible purpose of group I introns in phage genomes.
Collapse
Affiliation(s)
- Rob Lavigne
- Katholieke Universiteit Leuven, Department of Biosystems, Kasteelpark Arenberg 21, Bus 2462, Leuven, Belgium
| | - Katrien Vandersteegen
- Katholieke Universiteit Leuven, Department of Biosystems, Kasteelpark Arenberg 21, Bus 2462, Leuven, Belgium
| |
Collapse
|
17
|
Abstract
Due to their crucial role in pathogenesis and virulence, phages of Staphylococcus aureus have been extensively studied. Most of them encode and disseminate potent staphylococcal virulence factors. In addition, their movements contribute to the extraordinary versatility and adaptability of this prominent pathogen by improving genome plasticity. In addition to S. aureus, phages from coagulase-negative Staphylococci (CoNS) are gaining increasing interest. Some of these species, such as S. epidermidis, cause nosocomial infections and are therefore problematic for public health. This review provides an overview of the staphylococcal phages family extended to CoNS phages. At the morphological level, all these phages characterized so far belong to the Caudovirales order and are mainly temperate Siphoviridae. At the molecular level, comparative genomics revealed an extensive mosaicism, with genes organized into functional modules that are frequently exchanged between phages. Evolutionary relationships within this family, as well as with other families, have been highlighted. All these aspects are of crucial importance for our understanding of evolution and emergence of pathogens among bacterial species such as Staphylococci.
Collapse
Affiliation(s)
- Marie Deghorain
- Author to whom correspondence should be addressed; (L.V.M.); (M.D.); Tel.: +32-2-650-97-76 (M.D.); +32-2-650-97-78 (L.V.M.); Fax: +32-2-650-97-70
| | - Laurence Van Melderen
- Author to whom correspondence should be addressed; (L.V.M.); (M.D.); Tel.: +32-2-650-97-76 (M.D.); +32-2-650-97-78 (L.V.M.); Fax: +32-2-650-97-70
| |
Collapse
|
18
|
Vandersteegen K, Kropinski AM, Nash JHE, Noben JP, Hermans K, Lavigne R. Romulus and Remus, two phage isolates representing a distinct clade within the Twortlikevirus genus, display suitable properties for phage therapy applications. J Virol 2013; 87:3237-47. [PMID: 23302893 PMCID: PMC3592175 DOI: 10.1128/jvi.02763-12] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/07/2012] [Indexed: 11/20/2022] Open
Abstract
The renewed interest in controlling Staphylococcus aureus infections using their natural enemies, bacteriophages, has led to the isolation of a limited number of virulent phages so far. These phages are all members of the Twortlikevirus, displaying little variance. We present two novel closely related (95.9% DNA homology) lytic myoviruses, Romulus and Remus, with double-stranded DNA (dsDNA) genomes of 131,333 bp and 134,643 bp, respectively. Despite their relatedness to Staphylococcus phages K, G1, ISP, and Twort and Listeria phages A511 and P100, Romulus and Remus can be proposed as isolates of a new species within the Twortlikevirus genus. A distinguishing feature for these phage genomes is the unique distribution of group I introns compared to that in other staphylococcal myoviruses. In addition, a hedgehog/intein domain was found within their DNA polymerase genes, and an insertion sequence-encoded transposase exhibits splicing behavior and produces a functional portal protein. From a phage therapy application perspective, Romulus and Remus infected approximately 70% of the tested S. aureus isolates and displayed promising lytic activity against these isolates. Furthermore, both phages showed a rapid initial adsorption and demonstrated biofilm-degrading capacity in a proof-of-concept experiment.
Collapse
Affiliation(s)
- Katrien Vandersteegen
- Laboratory of Gene Technology, Division of Gene Technology, University of Leuven, Heverlee, Belgium
| | - Andrew M. Kropinski
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, Ontario, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - John H. E. Nash
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, Ontario, Canada
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, School of Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Katleen Hermans
- Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, Merelbeke, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Division of Gene Technology, University of Leuven, Heverlee, Belgium
| |
Collapse
|