1
|
Zaccaria M, Genovese L, Lawhorn BE, Dawson W, Joyal AS, Hu J, Autissier P, Nakajima T, Johnson WE, Fofana I, Farzan M, Momeni B. Predicting potential SARS-CoV-2 mutations of concern via full quantum mechanical modelling. J R Soc Interface 2024; 21:20230614. [PMID: 38320601 PMCID: PMC10846948 DOI: 10.1098/rsif.2023.0614] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
Ab initio quantum mechanical models can characterize and predict intermolecular binding, but only recently have models including more than a few hundred atoms gained traction. Here, we simulate the electronic structure for approximately 13 000 atoms to predict and characterize binding of SARS-CoV-2 spike variants to the human ACE2 (hACE2) receptor using the quantum mechanics complexity reduction (QM-CR) approach. We compare four spike variants in our analysis: Wuhan, Omicron, and two Omicron-based variants. To assess binding, we mechanistically characterize the energetic contribution of each amino acid involved, and predict the effect of select single amino acid mutations. We validate our computational predictions experimentally by comparing the efficacy of spike variants binding to cells expressing hACE2. At the time we performed our simulations (December 2021), the mutation A484K which our model predicted to be highly beneficial to ACE2 binding had not been identified in epidemiological surveys; only recently (August 2023) has it appeared in variant BA.2.86. We argue that our computational model, QM-CR, can identify mutations critical for intermolecular interactions and inform the engineering of high-specificity interactors.
Collapse
Affiliation(s)
- Marco Zaccaria
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Luigi Genovese
- Université Grenoble Alpes, CEA, INAC-MEM, L Sim, Grenoble, France
| | | | | | - Andrew S. Joyal
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Jingqing Hu
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | | | | | | | - Ismael Fofana
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Michael Farzan
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Center for Integrated Solutions for Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA
| | - Babak Momeni
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
2
|
Fray EJ, Wu F, Simonetti FR, Zitzmann C, Sambaturu N, Molina-Paris C, Bender AM, Liu PT, Ventura JD, Wiseman RW, O'Connor DH, Geleziunas R, Leitner T, Ribeiro RM, Perelson AS, Barouch DH, Siliciano JD, Siliciano RF. Antiretroviral therapy reveals triphasic decay of intact SIV genomes and persistence of ancestral variants. Cell Host Microbe 2023; 31:356-372.e5. [PMID: 36809762 PMCID: PMC10583177 DOI: 10.1016/j.chom.2023.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/02/2022] [Accepted: 01/24/2023] [Indexed: 02/22/2023]
Abstract
The decay kinetics of HIV-1-infected cells are critical to understand virus persistence. We evaluated the frequency of simian immunodeficiency virus (SIV)-infected cells for 4 years of antiretroviral therapy (ART). The intact proviral DNA assay (IPDA) and an assay for hypermutated proviruses revealed short- and long-term infected cell dynamics in macaques starting ART ∼1 year after infection. Intact SIV genomes in circulating CD4+T cells showed triphasic decay with an initial phase slower than the decay of the plasma virus, a second phase faster than the second phase decay of intact HIV-1, and a stable third phase reached after 1.6-2.9 years. Hypermutated proviruses showed bi- or mono-phasic decay, reflecting different selective pressures. Viruses replicating at ART initiation had mutations conferring antibody escape. With time on ART, viruses with fewer mutations became more prominent, reflecting decay of variants replicating at ART initiation. Collectively, these findings confirm ART efficacy and indicate that cells enter the reservoir throughout untreated infection.
Collapse
Affiliation(s)
- Emily J Fray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Fengting Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | - Alexandra M Bender
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Po-Ting Liu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - John D Ventura
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Roger W Wiseman
- Wisconsin National Primate Research Center, Madison, WI 53715, USA
| | - David H O'Connor
- Wisconsin National Primate Research Center, Madison, WI 53715, USA
| | | | - Thomas Leitner
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ruy M Ribeiro
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
SIV Evolutionary Dynamics in Cynomolgus Macaques during SIV- Mycobacterium tuberculosis Co-Infection. Viruses 2021; 14:v14010048. [PMID: 35062252 PMCID: PMC8778162 DOI: 10.3390/v14010048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
Co-infection with Mycobacterium tuberculosis (Mtb) and human immunodeficiency virus (HIV) is a worldwide public health concern, leading to worse clinical outcomes caused by both pathogens. We used a non-human primate model of simian immunodeficiency virus (SIV)-Mtb co-infection, in which latent Mtb infection was established prior to SIVmac251 infection. The evolutionary dynamics of SIV env was evaluated from samples in plasma, lymph nodes, and lungs (including granulomas) of SIV-Mtb co-infected and SIV only control animals. While the diversity of the challenge virus was low and overall viral diversity remained relatively low over 6–9 weeks, changes in viral diversity and divergence were observed, including evidence for tissue compartmentalization. Overall, viral diversity was highest in SIV-Mtb animals that did not develop clinical Mtb reactivation compared to animals with Mtb reactivation. Among lung granulomas, viral diversity was positively correlated with the frequency of CD4+ T cells and negatively correlated with the frequency of CD8+ T cells. SIV diversity was highest in the thoracic lymph nodes compared to other sites, suggesting that lymphatic drainage from the lungs in co-infected animals provides an advantageous environment for SIV replication. This is the first assessment of SIV diversity across tissue compartments during SIV-Mtb co-infection after established Mtb latency.
Collapse
|
4
|
Silveira ELV, Hong JJ, Amancha PK, Rogers KA, Ansari AA, Byrareddy SN, Villinger F. Viremia controls Env-specific antibody-secreting cell responses in simian immunodeficiency virus infected macaques pre and post-antiretroviral therapy. AIDS 2021; 35:2085-2094. [PMID: 34148985 PMCID: PMC8490307 DOI: 10.1097/qad.0000000000002998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the kinetics of Env (gp140)-specific antibody-secreting cells (ASCs) during acute and early chronic simian immunodeficiency virus (SIV) infection, and prior to and postantiretroviral therapy (ART) in rhesus macaques. DESIGN AND METHODS At week 0, rhesus macaques were inoculated intravenously with SIVmac239 and the viral loads were allowed to develop. Daily ART was initiated at week 5 post infection until week 18, though the animals were monitored until week 28 for the following parameters: enumeration of SIV gp140-specific ASCs by ELISPOT; quantification of viremia and SIV gp140-specific IgG titres through qRT-PCR and ELISA, respectively; estimation of monocytes, follicular helper T cells (Tfh) and memory B cell frequencies using polychromatic flow cytometry. RESULTS Direct correlations were consistently found between blood SIV gp140-specific ASC responses and viremia or SIV Env-specific IgG titres. In contrast, SIV gp140-specific ASC responses showed inverse correlations with the percentage of total memory B cells in the blood. In lymph nodes, the magnitude of the SIV gp140-specific ASC responses also followed the viral load kinetics. In contrast, the number of SIV gp140-specific ASCs presented did not correlate with frequencies of circulating activated monocyte (CD14+CD16+) or Tfh cells. CONCLUSION Blood and/or lymph node viral loads may regulate the onset and magnitude of SIV gp140-specific ASCs during SIV infection and following ART in rhesus macaques.
Collapse
Affiliation(s)
- Eduardo L. V. Silveira
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329 - USA
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329 - USA
| | - Jung Joo Hong
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329 - USA
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329 - USA
| | - Praveen K. Amancha
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329 - USA
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329 - USA
| | - Kenneth A Rogers
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329 - USA
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329 - USA
| | - Aftab A. Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322 – USA
| | - Siddappa N. Byrareddy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322 – USA
| | - Francois Villinger
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329 - USA
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329 - USA
| |
Collapse
|