1
|
Arshad H, Eid S, Mehra S, Williams D, Kaczmarczyk L, Stuart E, Jackson WS, Schmitt-Ulms G, Watts JC. The brain interactome of a permissive prion replication substrate. Neurobiol Dis 2025; 206:106802. [PMID: 39800229 DOI: 10.1016/j.nbd.2025.106802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/10/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025] Open
Abstract
Bank voles are susceptible to prion strains from many different species, yet the molecular mechanisms underlying the ability of bank vole prion protein (BVPrP) to function as a universal prion acceptor remain unclear. Potential differences in molecular environments and protein interaction networks on the cell surface of brain cells may contribute to BVPrP's unusual behavior. To test this hypothesis, we generated knock-in mice that express physiological levels of BVPrP (M109 isoform) and employed mass spectrometry to compare the interactomes of mouse (Mo) PrP and BVPrP following mild in vivo crosslinking of brain tissue. Substantial overlap was observed between the top interactors for BVPrP and MoPrP, with established PrP-interactors such as neural cell adhesion molecules, subunits of Na+/K+-ATPases, and contactin-1 being equally present in the two interactomes. We conclude that the molecular environments of BVPrP and MoPrP in the brains of mice are very similar. This suggests that the unorthodox properties of BVPrP are unlikely to be mediated by differential interactions with other proteins.
Collapse
Affiliation(s)
- Hamza Arshad
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Shehab Eid
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Surabhi Mehra
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Lech Kaczmarczyk
- Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Erica Stuart
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Walker S Jackson
- Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Arshad H, Patel Z, Al-Azzawi ZAM, Amano G, Li L, Mehra S, Eid S, Schmitt-Ulms G, Watts JC. The molecular determinants of a universal prion acceptor. PLoS Pathog 2024; 20:e1012538. [PMID: 39255320 DOI: 10.1371/journal.ppat.1012538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/20/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
In prion diseases, the species barrier limits the transmission of prions from one species to another. However, cross-species prion transmission is remarkably efficient in bank voles, and this phenomenon is mediated by the bank vole prion protein (BVPrP). The molecular determinants of BVPrP's ability to function as a universal prion acceptor remain incompletely defined. Building on our finding that cultured cells expressing BVPrP can replicate both mouse and hamster prion strains, we systematically identified key residues in BVPrP that permit cross-species prion replication. We found that residues N155 and N170 of BVPrP, which are absent in mouse PrP but present in hamster PrP, are critical for cross-species prion replication. Additionally, BVPrP residues V112, I139, and M205, which are absent in hamster PrP but present in mouse PrP, are also required to enable replication of both mouse and hamster prions. Unexpectedly, we found that residues E227 and S230 near the C-terminus of BVPrP severely restrict prion accumulation following cross-species prion challenge, suggesting that they may have evolved to counteract the inherent propensity of BVPrP to misfold. PrP variants with an enhanced ability to replicate both mouse and hamster prions displayed accelerated spontaneous aggregation kinetics in vitro. These findings suggest that BVPrP's unusual properties are governed by a key set of amino acids and that the enhanced misfolding propensity of BVPrP may enable cross-species prion replication.
Collapse
Affiliation(s)
- Hamza Arshad
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Zeel Patel
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Zaid A M Al-Azzawi
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Genki Amano
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Leyao Li
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Surabhi Mehra
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Shehab Eid
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Mehra S, Bourkas ME, Kaczmarczyk L, Stuart E, Arshad H, Griffin JK, Frost KL, Walsh DJ, Supattapone S, Booth SA, Jackson WS, Watts JC. Convergent generation of atypical prions in knockin mouse models of genetic prion disease. J Clin Invest 2024; 134:e176344. [PMID: 39087478 PMCID: PMC11291267 DOI: 10.1172/jci176344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 06/11/2024] [Indexed: 08/02/2024] Open
Abstract
Most cases of human prion disease arise due to spontaneous misfolding of WT or mutant prion protein, yet recapitulating this event in animal models has proven challenging. It remains unclear whether spontaneous prion generation can occur within the mouse lifespan in the absence of protein overexpression and how disease-causing mutations affect prion strain properties. To address these issues, we generated knockin mice that express the misfolding-prone bank vole prion protein (BVPrP). While mice expressing WT BVPrP (I109 variant) remained free from neurological disease, a subset of mice expressing BVPrP with mutations (D178N or E200K) causing genetic prion disease developed progressive neurological illness. Brains from spontaneously ill knockin mice contained prion disease-specific neuropathological changes as well as atypical protease-resistant BVPrP. Moreover, brain extracts from spontaneously ill D178N- or E200K-mutant BVPrP-knockin mice exhibited prion seeding activity and transmitted disease to mice expressing WT BVPrP. Surprisingly, the properties of the D178N- and E200K-mutant prions appeared identical before and after transmission, suggesting that both mutations guide the formation of a similar atypical prion strain. These findings imply that knockin mice expressing mutant BVPrP spontaneously develop a bona fide prion disease and that mutations causing prion diseases may share a uniform initial mechanism of action.
Collapse
Affiliation(s)
- Surabhi Mehra
- Tanz Centre for Research in Neurodegenerative Diseases and
| | - Matthew E.C. Bourkas
- Tanz Centre for Research in Neurodegenerative Diseases and
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Lech Kaczmarczyk
- Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Erica Stuart
- Tanz Centre for Research in Neurodegenerative Diseases and
| | - Hamza Arshad
- Tanz Centre for Research in Neurodegenerative Diseases and
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Kathy L. Frost
- One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | | | - Surachai Supattapone
- Department of Biochemistry and Cell Biology and
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Stephanie A. Booth
- One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Walker S. Jackson
- Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Joel C. Watts
- Tanz Centre for Research in Neurodegenerative Diseases and
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Marín-Moreno A, Benestad SL, Barrio T, Pirisinu L, Espinosa JC, Tran L, Huor A, Di Bari MA, Eraña H, Maddison BC, D'Agostino C, Fernández-Borges N, Canoyra S, Jerez-Garrido N, Castilla J, Spiropoulos J, Bishop K, Gough KC, Nonno R, Våge J, Andréoletti O, Torres JM. Classical BSE dismissed as the cause of CWD in Norwegian red deer despite strain similarities between both prion agents. Vet Res 2024; 55:62. [PMID: 38750594 PMCID: PMC11097568 DOI: 10.1186/s13567-024-01320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
The first case of CWD in a Norwegian red deer was detected by a routine ELISA test and confirmed by western blotting and immunohistochemistry in the brain stem of the animal. Two different western blotting tests were conducted independently in two different laboratories, showing that the red deer glycoprofile was different from the Norwegian CWD reindeer and CWD moose and from North American CWD. The isolate showed nevertheless features similar to the classical BSE (BSE-C) strain. Furthermore, BSE-C could not be excluded based on the PrPSc immunohistochemistry staining in the brainstem and the absence of detectable PrPSc in the lymphoid tissues. Because of the known ability of BSE-C to cross species barriers as well as its zoonotic potential, the CWD red deer isolate was submitted to the EURL Strain Typing Expert Group (STEG) as a BSE-C suspect for further investigation. In addition, different strain typing in vivo and in vitro strategies aiming at identifying the BSE-C strain in the red deer isolate were performed independently in three research groups and BSE-C was not found in it. These results suggest that the Norwegian CWD red deer case was infected with a previously unknown CWD type and further investigation is needed to determine the characteristics of this potential new CWD strain.
Collapse
Affiliation(s)
- Alba Marín-Moreno
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | - Tomas Barrio
- UMR École Nationale Vétérinaire de Toulouse (ENVT), 1225 Interactions Hôtes-Agents Pathogènes, Institut National Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Toulouse, France
| | - Laura Pirisinu
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Juan Carlos Espinosa
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Linh Tran
- Norwegian Veterinary Institute, Ås, Norway
| | - Alvina Huor
- UMR École Nationale Vétérinaire de Toulouse (ENVT), 1225 Interactions Hôtes-Agents Pathogènes, Institut National Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Toulouse, France
| | - Michele Angelo Di Bari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Hasier Eraña
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Basque Foundation for Science, Bizkaia Technology Park & IKERBASQUE, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain
| | - Ben C Maddison
- RSK- ADAS Ltd, Technology Drive, Beeston, Nottingham, UK
| | - Claudia D'Agostino
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Natalia Fernández-Borges
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Sara Canoyra
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Nuria Jerez-Garrido
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Basque Foundation for Science, Bizkaia Technology Park & IKERBASQUE, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain
| | | | - Keith Bishop
- RSK- ADAS Ltd, Technology Drive, Beeston, Nottingham, UK
| | | | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Jorn Våge
- Norwegian Veterinary Institute, Ås, Norway
| | - Olivier Andréoletti
- UMR École Nationale Vétérinaire de Toulouse (ENVT), 1225 Interactions Hôtes-Agents Pathogènes, Institut National Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Toulouse, France
| | - Juan María Torres
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
5
|
Bruno R, Riccardi G, Iacobone F, Chiarotti F, Pirisinu L, Vanni I, Marcon S, D'Agostino C, Giovannelli M, Parchi P, Agrimi U, Nonno R, Di Bari MA. Strain-Dependent Morphology of Reactive Astrocytes in Human- and Animal-Vole-Adapted Prions. Biomolecules 2023; 13:biom13050757. [PMID: 37238627 DOI: 10.3390/biom13050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Reactive astrogliosis is one of the pathological hallmarks of prion diseases. Recent studies highlighted the influence of several factors on the astrocyte phenotype in prion diseases, including the brain region involved, the genotype backgrounds of the host, and the prion strain. Elucidating the influence of prion strains on the astrocyte phenotype may provide crucial insights for developing therapeutic strategies. Here, we investigated the relationship between prion strains and astrocyte phenotype in six human- and animal-vole-adapted strains characterized by distinctive neuropathological features. In particular, we compared astrocyte morphology and astrocyte-associated PrPSc deposition among strains in the same brain region, the mediodorsal thalamic nucleus (MDTN). Astrogliosis was detected to some extent in the MDTN of all analyzed voles. However, we observed variability in the morphological appearance of astrocytes depending on the strain. Astrocytes displayed variability in thickness and length of cellular processes and cellular body size, suggesting strain-specific phenotypes of reactive astrocytes. Remarkably, four out of six strains displayed astrocyte-associated PrPSc deposition, which correlated with the size of astrocytes. Overall, these data show that the heterogeneous reactivity of astrocytes in prion diseases depends at least in part on the infecting prion strains and their specific interaction with astrocytes.
Collapse
Affiliation(s)
- Rosalia Bruno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Geraldina Riccardi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Floriana Iacobone
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Flavia Chiarotti
- Reference Center for the Behavioral Sciences and Mental Health, Italian National Institute of Health, 00161 Rome, Italy
| | - Laura Pirisinu
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Ilaria Vanni
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Stefano Marcon
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Claudia D'Agostino
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Matteo Giovannelli
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40138 Bologna, Italy
| | - Umberto Agrimi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Michele Angelo Di Bari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
6
|
Arshad H, Patel Z, Amano G, Li LY, Al-Azzawi ZAM, Supattapone S, Schmitt-Ulms G, Watts JC. A single protective polymorphism in the prion protein blocks cross-species prion replication in cultured cells. J Neurochem 2023; 165:230-245. [PMID: 36511154 PMCID: PMC11806934 DOI: 10.1111/jnc.15739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
The bank vole (BV) prion protein (PrP) can function as a universal acceptor of prions. However, the molecular details of BVPrP's promiscuity for replicating a diverse range of prion strains remain obscure. To develop a cultured cell paradigm capable of interrogating the unique properties of BVPrP, we generated monoclonal lines of CAD5 cells lacking endogenous PrP but stably expressing either hamster (Ha), mouse (Mo), or BVPrP (M109 or I109 polymorphic variants) and then challenged them with various strains of mouse or hamster prions. Cells expressing BVPrP were susceptible to both mouse and hamster prions, whereas cells expressing MoPrP or HaPrP could only be infected with species-matched prions. Propagation of mouse and hamster prions in cells expressing BVPrP resulted in strain adaptation in several instances, as evidenced by alterations in conformational stability, glycosylation, susceptibility to anti-prion small molecules, and the inability of BVPrP-adapted mouse prion strains to infect cells expressing MoPrP. Interestingly, cells expressing BVPrP containing the G127V prion gene variant, identified in individuals resistant to kuru, were unable to become infected with prions. Moreover, the G127V polymorphic variant impeded the spontaneous aggregation of recombinant BVPrP. These results demonstrate that BVPrP can facilitate cross-species prion replication in cultured cells and that a single amino acid change can override the prion-permissive nature of BVPrP. This cellular paradigm will be useful for dissecting the molecular features of BVPrP that allow it to function as a universal prion acceptor.
Collapse
Affiliation(s)
- Hamza Arshad
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Zeel Patel
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Genki Amano
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Le yao Li
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Zaid A. M. Al-Azzawi
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Surachai Supattapone
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Joel C. Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Vanni I, Iacobone F, D’Agostino C, Giovannelli M, Pirisinu L, Altmeppen HC, Castilla J, Torres JM, Agrimi U, Nonno R. An optimized Western blot assay provides a comprehensive assessment of the physiological endoproteolytic processing of the prion protein. J Biol Chem 2022; 299:102823. [PMID: 36565989 PMCID: PMC9867980 DOI: 10.1016/j.jbc.2022.102823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
The prion protein (PrPC) is subjected to several conserved endoproteolytic events producing bioactive fragments that are of increasing interest for their physiological functions and their implication in the pathogenesis of prion diseases and other neurodegenerative diseases. However, systematic and comprehensive investigations on the full spectrum of PrPC proteoforms have been hampered by the lack of methods able to identify all PrPC-derived proteoforms. Building on previous knowledge of PrPC endoproteolytic processing, we thus developed an optimized Western blot assay able to obtain the maximum information about PrPC constitutive processing and the relative abundance of PrPC proteoforms in a complex biological sample. This approach led to the concurrent identification of the whole spectrum of known endoproteolytic-derived PrPC proteoforms in brain homogenates, including C-terminal, N-terminal and, most importantly, shed PrPC-derived fragments. Endoproteolytic processing of PrPC was remarkably similar in the brain of widely used wild type and transgenic rodent models, with α-cleavage-derived C1 representing the most abundant proteoform and ADAM10-mediated shedding being an unexpectedly prominent proteolytic event. Interestingly, the relative amount of shed PrPC was higher in WT mice than in most other models. Our results indicate that constitutive endoproteolytic processing of PrPC is not affected by PrPC overexpression or host factors other than PrPC but can be impacted by PrPC primary structure. Finally, this method represents a crucial step in gaining insight into pathophysiological roles, biomarker suitability, and therapeutic potential of shed PrPC and for a comprehensive appraisal of PrPC proteoforms in therapies, drug screening, or in the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ilaria Vanni
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Floriana Iacobone
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Claudia D’Agostino
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Matteo Giovannelli
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Pirisinu
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Joaquin Castilla
- Basque Research and Technology Alliance (BRTA) - CIC BioGUNE & IKERBasque, Bizkaia, Spain,Centro de Investigación Biomédica en Red de Enfermedades infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Maria Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Umberto Agrimi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
8
|
Gerstmann-Sträussler-Scheinker Disease with F198S Mutation Induces Independent Tau and Prion Protein Pathologies in Bank Voles. Biomolecules 2022; 12:biom12101537. [PMID: 36291746 PMCID: PMC9599806 DOI: 10.3390/biom12101537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Gerstmann–Sträussler–Scheinker disease (GSS) is a rare genetic prion disease. A large GSS kindred linked to the serine-for-phenylalanine substitution at codon 198 of the prion protein gene (GSS-F198S) is characterized by conspicuous accumulation of prion protein (PrP)-amyloid deposits and neurofibrillary tangles. Recently, we demonstrated the transmissibility of GSS-F198S prions to bank vole carrying isoleucine at 109 PrP codon (BvI). Here we investigated: (i) the transmissibility of GSS-F198S prions to voles carrying methionine at codon 109 (BvM); (ii) the induction of hyperphosphorylated Tau (pTau) in two vole lines, and (iii) compared the phenotype of GSS-F198S-induced pTau with pTau induced in BvM following intracerebral inoculation of a familial Alzheimer’s disease case carrying Presenilin 1 mutation (fAD-PS1). We did not detect prion transmission to BvM, despite the high susceptibility of BvI previously observed. Immunohistochemistry established the presence of induced pTau depositions in vole brains that were not affected by prions. Furthermore, the phenotype of pTau deposits in vole brains was similar in GSS-F198S and fAD-PS1. Overall, results suggest that, regardless of the cause of pTau deposition and its relationship with PrPSc in GSS-F198S human-affected brains, the two components possess their own seeding properties, and that pTau deposition is similarly induced by GSS-F198S and fAD-PS1.
Collapse
|
9
|
Pirisinu L, Di Bari MA, D’Agostino C, Vanni I, Riccardi G, Marcon S, Vaccari G, Chiappini B, Benestad SL, Agrimi U, Nonno R. A single amino acid residue in bank vole prion protein drives permissiveness to Nor98/atypical scrapie and the emergence of multiple strain variants. PLoS Pathog 2022; 18:e1010646. [PMID: 35731839 PMCID: PMC9255773 DOI: 10.1371/journal.ppat.1010646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/05/2022] [Accepted: 06/03/2022] [Indexed: 12/03/2022] Open
Abstract
Prions are infectious agents that replicate through the autocatalytic misfolding of the cellular prion protein (PrPC) into infectious aggregates (PrPSc) causing fatal neurodegenerative diseases in humans and animals. Prions exist as strains, which are encoded by conformational variants of PrPSc. The transmissibility of prions depends on the PrPC sequence of the recipient host and on the incoming prion strain, so that some animal prion strains are more contagious than others or are transmissible to new species, including humans. Nor98/atypical scrapie (AS) is a prion disease of sheep and goats reported in several countries worldwide. At variance with classical scrapie (CS), AS is considered poorly contagious and is supposed to be spontaneous in origin. The zoonotic potential of AS, its strain variability and the relationships with the more contagious CS strains remain largely unknown. We characterized AS isolates from sheep and goats by transmission in ovinised transgenic mice (tg338) and in two genetic lines of bank voles, carrying either methionine (BvM) or isoleucine (BvI) at PrP residue 109. All AS isolates induced the same pathological phenotype in tg338 mice, thus proving that they encoded the same strain, irrespective of their geographical origin or source species. In bank voles, we found that the M109I polymorphism dictates the susceptibility to AS. BvI were susceptible and faithfully reproduced the AS strain, while the transmission in BvM was highly inefficient and was characterized by a conformational change towards a CS-like prion strain. Sub-passaging experiments revealed that the main strain component of AS is accompanied by minor CS-like strain components, which can be positively selected during replication in both AS-resistant or AS-susceptible animals. These findings add new clues for a better comprehension of strain selection dynamics in prion infections and have wider implications for understanding the origin of contagious prion strains, such as CS. Prions are transmissible agents responsible for fatal neurodegenerative diseases in humans and animals. Prions exist as strains, exhibiting distinct disease phenotypes and transmission properties. Some prion diseases occur sporadically with a supposedly spontaneous origin, while others are contagious and give rise to epidemics, mainly in animals. We investigated the strain properties of Nor98/atypical scrapie (AS), a sporadic prion disease of small ruminants. We found that AS was faithfully reproduced not only in a homologous context, i.e. ovinised transgenic mice, but also in an unrelated animal species, the bank vole. A natural polymorphism of the bank vole prion protein, coding for methionine (BvM) or for isoleucine (BvI) at codon 109, dictated the susceptibility of voles to AS, with BvI being highly susceptible to AS and BvM rather resistant. Most importantly, the M109I polymorphism mediated the emergence of AS-derived mutant prion strains resembling classical scrapie (CS), a contagious prion disease. Finally, by sub-passages in bank voles, we found that the main strain component of AS is accompanied by minor CS-like strain components, which can be positively selected during replication in both AS-resistant or AS-susceptible vole lines. These findings allow a better understanding of strain selection dynamics and suggest a link between sporadic and contagious prion diseases.
Collapse
Affiliation(s)
- Laura Pirisinu
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Michele Angelo Di Bari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Claudia D’Agostino
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Ilaria Vanni
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Geraldina Riccardi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Marcon
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Gabriele Vaccari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Chiappini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Umberto Agrimi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
- * E-mail:
| |
Collapse
|
10
|
Arshad H, Watts JC. Genetically engineered cellular models of prion propagation. Cell Tissue Res 2022; 392:63-80. [PMID: 35581386 DOI: 10.1007/s00441-022-03630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/26/2022] [Indexed: 11/02/2022]
Abstract
For over three decades, cultured cells have been a useful tool for dissecting the molecular details of prion replication and the identification of candidate therapeutics for prion disease. A major issue limiting the translatability of these studies has been the inability to reliably propagate disease-relevant, non-mouse strains of prions in cells relevant to prion pathogenesis. In recent years, fueled by advances in gene editing technology, it has become possible to propagate prions from hamsters, cervids, and sheep in immortalized cell lines originating from the central nervous system. In particular, the use of CRISPR-Cas9-mediated gene editing to generate versions of prion-permissive cell lines that lack endogenous PrP expression has provided a blank canvas upon which re-expression of PrP leads to species-matched susceptibility to prion infection. When coupled with the ability to propagate prions in cells or organoids derived from stem cells, these next-generation cellular models should provide an ideal paradigm for identifying small molecules and other biological therapeutics capable of interfering with prion replication in animal and human prion disorders. In this review, we summarize recent advances that have widened the spectrum of prion strains that can be propagated in cultured cells and cutting-edge tissue-based models.
Collapse
Affiliation(s)
- Hamza Arshad
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower Rm. 4KD481, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building Rm. 5207, Toronto, ON, M5S 1A8, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower Rm. 4KD481, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada. .,Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building Rm. 5207, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
11
|
Marín-Moreno A, Espinosa JC, Aguilar-Calvo P, Fernández-Borges N, Pitarch JL, González L, Torres JM. Canine D 163-PrP polymorphic variant does not provide complete protection against prion infection in small ruminant PrP context. Sci Rep 2021; 11:14309. [PMID: 34253783 PMCID: PMC8275588 DOI: 10.1038/s41598-021-93594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/09/2021] [Indexed: 11/09/2022] Open
Abstract
E/D163 polymorphism of dog prion protein (PrP) has been recently proposed as the variant responsible for canid prion resistance. To further investigate the protective role of this variant against prion replication, the transgenic mouse model OvPrP-Tg532 expressing sheep/goat PrP carrying the substitution D162 (equivalent to D163 position of dog PrP) was generated and intracranially inoculated with a broad collection of small ruminant prion strains. OvPrP-Tg532 mice showed resistance to classical bovine spongiform encephalopathy (BSE) from sheep and some classical scrapie isolates from sheep and goat but were susceptible to ovine atypical L-BSE and numerous classical scrapie isolates. Strikingly, some of these classical scrapie isolates showed a shift in their prion strain properties. These results suggest that other PrP residues apart from E/D163 variant of dog PrP or factors distinct than PrP may participate in prion resistance of canids and that different factors may be required for D162 sheep PrP to provide effective protection to sheep against ruminant prions.
Collapse
Affiliation(s)
- Alba Marín-Moreno
- Centro de Investigación en Sanidad Animal, CISA-INIA, Valdeolmos, Madrid, Spain
| | | | | | | | - José Luis Pitarch
- Centro de Investigación en Sanidad Animal, CISA-INIA, Valdeolmos, Madrid, Spain
| | - Lorenzo González
- Animal Health and Veterinary Laboratories Agency (AHVLA), Penicuik, Midlothian, UK
| | - Juan María Torres
- Centro de Investigación en Sanidad Animal, CISA-INIA, Valdeolmos, Madrid, Spain.
| |
Collapse
|
12
|
Bistaffa E, Marín-Moreno A, Espinosa JC, De Luca CMG, Cazzaniga FA, Portaleone SM, Celauro L, Legname G, Giaccone G, Torres JM, Moda F. PMCA-generated prions from the olfactory mucosa of patients with Fatal Familial Insomnia cause prion disease in mice. eLife 2021; 10:65311. [PMID: 33851575 PMCID: PMC8064759 DOI: 10.7554/elife.65311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/13/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Fatal Familial Insomnia (FFI) is a genetic prion disease caused by the D178N mutation in the prion protein gene (PRNP) in coupling phase with methionine at PRNP 129. In 2017, we have shown that the olfactory mucosa (OM) collected from FFI patients contained traces of PrPSc detectable by Protein Misfolding Cyclic Amplification (PMCA). Methods: In this work, we have challenged PMCA-generated products obtained from OM and brain homogenate of FFI patients in BvPrP-Tg407 transgenic mice expressing the bank vole prion protein to test their ability to induce prion pathology. Results: All inoculated mice developed mild spongiform changes, astroglial activation, and PrPSc deposition mainly affecting the thalamus. However, their neuropathological alterations were different from those found in the brain of BvPrP-Tg407 mice injected with raw FFI brain homogenate. Conclusions: Although with some experimental constraints, we show that PrPSc present in OM of FFI patients is potentially infectious. Funding: This work was supported in part by the Italian Ministry of Health (GR-2013-02355724 and Ricerca Corrente), MJFF, ALZ, Alzheimer’s Research UK and the Weston Brain Institute (BAND2015), and Euronanomed III (SPEEDY) to FM; by the Spanish Ministerio de Economía y Competitividad (grant AGL2016-78054-R [AEI/FEDER, UE]) to JMT and JCE; AM-M was supported by a fellowship from the INIA (FPI-SGIT-2015-02).
Collapse
Affiliation(s)
- Edoardo Bistaffa
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milan, Italy
| | - Alba Marín-Moreno
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Juan Carlos Espinosa
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Chiara Maria Giulia De Luca
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milan, Italy.,Scuola Internazionale Superiore di Studi Avanzati (SISSA), Department of Neuroscience, Laboratory of Prion Biology, Trieste, Italy
| | - Federico Angelo Cazzaniga
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milan, Italy
| | - Sara Maria Portaleone
- ASST Santi Paolo e Carlo, Department of Health Sciences, Otolaryngology Unit, Università Degli Studi di Milano, Milan, Italy
| | - Luigi Celauro
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Department of Neuroscience, Laboratory of Prion Biology, Trieste, Italy
| | - Giuseppe Legname
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Department of Neuroscience, Laboratory of Prion Biology, Trieste, Italy
| | - Giorgio Giaccone
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milan, Italy
| | - Juan Maria Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milan, Italy
| |
Collapse
|
13
|
Allelic Interference in Prion Replication Is Modulated by the Convertibility of the Interfering PrP C and Other Host-Specific Factors. mBio 2021; 12:mBio.03508-20. [PMID: 33727358 PMCID: PMC8092304 DOI: 10.1128/mbio.03508-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prion propagation can be interfered with by the expression of a second prion protein in the host. In the present study, we investigated prion propagation in a host expressing two different prion protein genes. Early studies in transgenic mouse lines have shown that the coexpression of endogenous murine prion protein (PrPC) and transgenic PrPC from another species either inhibits or allows the propagation of prions, depending on the infecting prion strain and interacting protein species. The way whereby this phenomenon, so-called “interference,” is modulated remains to be determined. In this study, different transgenic mouse lines were crossbred to produce mice coexpressing bovine and porcine PrPC, bovine and murine PrPC, or murine and porcine PrPC. These animals and their respective hemizygous controls were inoculated with several prion strains from different sources (cattle, mice, and pigs) to examine the effects of the simultaneous presence of PrPC from two different species. Our results indicate interference with the infection process, manifested as extended survival times and reduced attack rates. The interference with the infectious process was reduced or absent when the potentiality interfering PrPC species was efficiently converted by the inoculated agent. However, the propagation of the endogenous murine PrPSc was favored, allowing us to speculate that host-specific factors may disturb the interference caused by the coexpression of an exogenous second PrPC.
Collapse
|
14
|
Bélondrade M, Nicot S, Mayran C, Bruyere-Ostells L, Almela F, Di Bari MA, Levavasseur E, Watts JC, Fournier-Wirth C, Lehmann S, Haïk S, Nonno R, Bougard D. Sensitive protein misfolding cyclic amplification of sporadic Creutzfeldt-Jakob disease prions is strongly seed and substrate dependent. Sci Rep 2021; 11:4058. [PMID: 33603091 PMCID: PMC7893054 DOI: 10.1038/s41598-021-83630-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Unlike variant Creutzfeldt-Jakob disease prions, sporadic Creutzfeldt-Jakob disease prions have been shown to be difficult to amplify in vitro by protein misfolding cyclic amplification (PMCA). We assessed PMCA of pathological prion protein (PrPTSE) from 14 human sCJD brain samples in 3 substrates: 2 from transgenic mice expressing human prion protein (PrP) with either methionine (M) or valine (V) at position 129, and 1 from bank voles. Brain extracts representing the 5 major clinicopathological sCJD subtypes (MM1/MV1, MM2, MV2, VV1, and VV2) all triggered seeded PrPTSE amplification during serial PMCA with strong seed- and substrate-dependence. Remarkably, bank vole PrP substrate allowed the propagation of all sCJD subtypes with preservation of the initial molecular PrPTSE type. In contrast, PMCA in human PrP substrates was accompanied by a PrPTSE molecular shift during heterologous (M/V129) PMCA reactions, with increased permissiveness of V129 PrP substrate to in vitro sCJD prion amplification compared to M129 PrP substrate. Combining PMCA amplification sensitivities with PrPTSE electrophoretic profiles obtained in the different substrates confirmed the classification of 4 distinct major sCJD prion strains (M1, M2, V1, and V2). Finally, the level of sensitivity required to detect VV2 sCJD prions in cerebrospinal fluid was achieved.
Collapse
Affiliation(s)
- Maxime Bélondrade
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France
| | - Simon Nicot
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France
| | - Charly Mayran
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France
| | - Lilian Bruyere-Ostells
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France
| | - Florian Almela
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France
| | - Michele A Di Bari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanita, Rome, Italy
| | - Etienne Levavasseur
- Inserm U 1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, Paris, France
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Chantal Fournier-Wirth
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France
| | - Sylvain Lehmann
- IRMB, INM, INSERM, CHU Montpellier, (LBPC-PPC), Univ Montpellier, Montpellier, France
| | - Stéphane Haïk
- Inserm U 1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, Paris, France
| | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanita, Rome, Italy
| | - Daisy Bougard
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France.
| |
Collapse
|
15
|
Nonno R, Di Bari MA, Pirisinu L, D'Agostino C, Vanni I, Chiappini B, Marcon S, Riccardi G, Tran L, Vikøren T, Våge J, Madslien K, Mitchell G, Telling GC, Benestad SL, Agrimi U. Studies in bank voles reveal strain differences between chronic wasting disease prions from Norway and North America. Proc Natl Acad Sci U S A 2020; 117:31417-31426. [PMID: 33229531 PMCID: PMC7733848 DOI: 10.1073/pnas.2013237117] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic wasting disease (CWD) is a relentless epidemic disorder caused by infectious prions that threatens the survival of cervid populations and raises increasing public health concerns in North America. In Europe, CWD was detected for the first time in wild Norwegian reindeer (Rangifer tarandus) and moose (Alces alces) in 2016. In this study, we aimed at comparing the strain properties of CWD prions derived from different cervid species in Norway and North America. Using a classical strain typing approach involving transmission and adaptation to bank voles (Myodes glareolus), we found that prions causing CWD in Norway induced incubation times, neuropathology, regional deposition of misfolded prion protein aggregates in the brain, and size of their protease-resistant core, different from those that characterize North American CWD. These findings show that CWD prion strains affecting Norwegian cervids are distinct from those found in North America, implying that the highly contagious North American CWD prions are not the proximate cause of the newly discovered Norwegian CWD cases. In addition, Norwegian CWD isolates showed an unexpected strain variability, with reindeer and moose being caused by different CWD strains. Our findings shed light on the origin of emergent European CWD, have significant implications for understanding the nature and the ecology of CWD in Europe, and highlight the need to assess the zoonotic potential of the new CWD strains detected in Europe.
Collapse
Affiliation(s)
- Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Michele A Di Bari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Laura Pirisinu
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Claudia D'Agostino
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Ilaria Vanni
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Barbara Chiappini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Stefano Marcon
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Geraldina Riccardi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Linh Tran
- World Organization for Animal Health Reference Laboratory for Chronic Wasting Disease, Norwegian Veterinary Institute, N-0106 Oslo, Norway
| | - Turid Vikøren
- World Organization for Animal Health Reference Laboratory for Chronic Wasting Disease, Norwegian Veterinary Institute, N-0106 Oslo, Norway
| | - Jørn Våge
- World Organization for Animal Health Reference Laboratory for Chronic Wasting Disease, Norwegian Veterinary Institute, N-0106 Oslo, Norway
| | - Knut Madslien
- World Organization for Animal Health Reference Laboratory for Chronic Wasting Disease, Norwegian Veterinary Institute, N-0106 Oslo, Norway
| | - Gordon Mitchell
- National and World Organization for Animal Health Reference Laboratory for Scrapie and Chronic Wasting Disease, Canadian Food Inspection Agency, Ottawa, ON K2H 8P9, Canada
| | - Glenn C Telling
- Prion Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80525
| | - Sylvie L Benestad
- World Organization for Animal Health Reference Laboratory for Chronic Wasting Disease, Norwegian Veterinary Institute, N-0106 Oslo, Norway
| | - Umberto Agrimi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
16
|
Marín-Moreno A, Espinosa JC, Torres JM. Transgenic mouse models for the study of prion diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:147-177. [PMID: 32958231 DOI: 10.1016/bs.pmbts.2020.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Prions are unique agents that challenge the molecular biology dogma by transmitting information on the protein level. They cause neurodegenerative diseases that lack of any cure or treatment called transmissible spongiform encephalopathies. The function of the normal form of the prion protein, the exact mechanism of prion propagation between species as well as at the cellular level and neuron degeneration remains elusive. However, great amount of information known for all these aspects has been achieved thanks to the use of animal models and more precisely to transgenic mouse models. In this chapter, the main contributions of these powerful research tools in the prion field are revised.
Collapse
Affiliation(s)
- Alba Marín-Moreno
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | | | - Juan María Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain.
| |
Collapse
|
17
|
Arshad H, Bourkas MEC, Watts JC. The utility of bank voles for studying prion disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:179-211. [PMID: 32958232 DOI: 10.1016/bs.pmbts.2020.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The transmission of prions between species is typically an inefficient process due to the species barrier, which represents incompatibility between prion seed and substrate molecules. Bank voles (Myodes glareolus) are an exception to this rule, as they are susceptible to a diverse range of prion strains from many different animal species. In particular, bank voles can be efficiently infected with most types of human prions and have played a critical role in validating variably protease-sensitive prionopathy (VPSPr) and certain forms of Gerstmann-Sträussler-Scheinker (GSS) disease as bona fide prion disorders rather than non-transmissible proteinopathies. The bank vole prion protein (BVPrP) confers a "universal prion acceptor" phenotype when expressed in mice and when used as a substrate for in vitro prion amplification assays, indicating that the unique prion transmission properties of bank voles are mediated by BVPrP. Over-expression of BVPrP in mice can also promote the spontaneous development of prion disease, indicating that BVPrP is intrinsically prone to both spontaneous and template-directed misfolding. Here, we discuss the utility of bank voles and BVPrP for prion research and how they have provided new tools for establishing rapid animal bioassays, modeling spontaneous prion disease, standardizing prion diagnostics, and understanding the molecular basis of the species barrier.
Collapse
Affiliation(s)
- Hamza Arshad
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Matthew E C Bourkas
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
18
|
Identification of a homology-independent linchpin domain controlling mouse and bank vole prion protein conversion. PLoS Pathog 2020; 16:e1008875. [PMID: 32898162 PMCID: PMC7508373 DOI: 10.1371/journal.ppat.1008875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/22/2020] [Accepted: 08/11/2020] [Indexed: 11/19/2022] Open
Abstract
Prions are unorthodox pathogens that cause fatal neurodegenerative diseases in humans and other mammals. Prion propagation occurs through the self-templating of the pathogenic conformer PrPSc, onto the cell-expressed conformer, PrPC. Here we study the conversion of PrPC to PrPSc using a recombinant mouse PrPSc conformer (mouse protein-only recPrPSc) as a unique tool that can convert bank vole but not mouse PrPC substrates in vitro. Thus, its templating ability is not dependent on sequence homology with the substrate. In the present study, we used chimeric bank vole/mouse PrPC substrates to systematically determine the domain that allows for conversion by Mo protein-only recPrPSc. Our results show that that either the presence of the bank vole amino acid residues E227 and S230 or the absence of the second N-linked glycan are sufficient to allow PrPC substrates to be converted by Mo protein-only recPrPSc and several native infectious prion strains. We propose that residues 227 and 230 and the second glycan are part of a C-terminal domain that acts as a linchpin for bank vole and mouse prion conversion. Prions are unconventional infectious agents that lack nucleic acids such as DNA and RNA, and the mechanism by which prions replicate is not fully understood. It has been established that a central feature of the replication mechanism involves the misfolding of a host protein (PrPC) into an infectious shape termed PrPSc, but it is unclear how this misfolding occurs. Interestingly, it has been observed that a particular animal species, the European bank vole, is unusually susceptible to prion infection and that this near-universal susceptibility is caused by the specific PrPC sequence of this protein. Here we use a powerful and unique biochemical system to determine the specific region of bank vole PrPC that is primarily responsible for its propensity to misfold into PrPSc. This critical region, which is located at the extreme C-terminal end of the protein, appears to act as a linchpin domain that normally stabilizes the shape of PrPC and thereby regulates its misfolding into PrPSc.
Collapse
|
19
|
Supattapone S. Cofactor molecules: Essential partners for infectious prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:53-75. [PMID: 32958241 DOI: 10.1016/bs.pmbts.2020.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The protein-only hypothesis predicts that infectious mammalian prions are composed solely of PrPSc, a misfolded conformer of the normal prion protein, PrPC. However, to date, all wild type protein-only PrPSc preparations lack significant levels of prion infectivity. Using a systemic biochemical approach, our laboratory isolated and identified two different endogenous cofactor molecules, RNA (Deleault et al., 2003 [50]; Deleault et al., 2007 [59]) and phosphatidylethanolamine (Deleault et al., 2012 [61]; Deleault et al., 2012 [18]), which facilitate the formation of prions with high levels of specific infectivity, leading us to propose to the alternative hypothesis that cofactor molecules are required to form wild type infectious prions (Deleault et al., 2007 [59]; Deleault et al., 2012 [18]; Geoghegan et al., 2007 [57]). In addition, we found that purified cofactor molecules restrict the strain properties of chemically defined infectious prions (Deleault et al., 2012 [18]), suggesting a "cofactor selection" model in which natural variation in the distribution of strain-specific cofactor molecules in different parts of the brain may be responsible for strain-dependent patterns of neurotropism (Deleault et al., 2012 [18]; Geoghegan et al., 2007 [57]).
Collapse
Affiliation(s)
- Surachai Supattapone
- Department of Biochemistry and Cell Biology and Department of Medicine, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States.
| |
Collapse
|
20
|
Assessment of Glial Activation Response in the Progress of Natural Scrapie after Chronic Dexamethasone Treatment. Int J Mol Sci 2020; 21:ijms21093231. [PMID: 32370224 PMCID: PMC7247567 DOI: 10.3390/ijms21093231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation has been correlated with the progress of neurodegeneration in many neuropathologies. Although glial cells have traditionally been considered to be protective, the concept of them as neurotoxic cells has recently emerged. Thus, a major unsolved question is the exact role of astroglia and microglia in neurodegenerative disorders. On the other hand, it is well known that glucocorticoids are the first choice to regulate inflammation and, consequently, neuroglial inflammatory activity. The objective of this study was to determine how chronic dexamethasone treatment influences the host immune response and to characterize the beneficial or detrimental role of glial cells. To date, this has not been examined using a natural neurodegenerative model of scrapie. With this aim, immunohistochemical expression of glial markers, prion protein accumulation, histopathological lesions and clinical evolution were compared with those in a control group. The results demonstrated how the complex interaction between glial populations failed to compensate for brain damage in natural conditions, emphasizing the need for using natural models. Additionally, the data showed that modulation of neuroinflammation by anti-inflammatory drugs might become a research focus as a potential therapeutic target for prion diseases, similar to that considered previously for other neurodegenerative disorders classified as prion-like diseases.
Collapse
|
21
|
Krance SH, Luke R, Shenouda M, Israwi AR, Colpitts SJ, Darwish L, Strauss M, Watts JC. Cellular models for discovering prion disease therapeutics: Progress and challenges. J Neurochem 2020; 153:150-172. [PMID: 31943194 DOI: 10.1111/jnc.14956] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/22/2022]
Abstract
Prions, which cause fatal neurodegenerative disorders such as Creutzfeldt-Jakob disease, are misfolded and infectious protein aggregates. Currently, there are no treatments available to halt or even delay the progression of prion disease in the brain. The infectious nature of prions has resulted in animal paradigms that accurately recapitulate all aspects of prion disease, and these have proven to be instrumental for testing the efficacy of candidate therapeutics. Nonetheless, infection of cultured cells with prions provides a much more powerful system for identifying molecules capable of interfering with prion propagation. Certain lines of cultured cells can be chronically infected with various types of mouse prions, and these models have been used to unearth candidate anti-prion drugs that are at least partially efficacious when administered to prion-infected rodents. However, these studies have also revealed that not all types of prions are equal, and that drugs active against mouse prions are not necessarily effective against prions from other species. Despite some recent progress, the number of cellular models available for studying non-mouse prions remains limited. In particular, human prions have proven to be particularly challenging to propagate in cultured cells, which has severely hindered the discovery of drugs for Creutzfeldt-Jakob disease. In this review, we summarize the cellular models that are presently available for discovering and testing drugs capable of blocking the propagation of prions and highlight challenges that remain on the path towards developing therapies for prion disease.
Collapse
Affiliation(s)
- Saffire H Krance
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Russell Luke
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Marc Shenouda
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Ahmad R Israwi
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Sarah J Colpitts
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Lina Darwish
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Maximilian Strauss
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Nonno R, Marin-Moreno A, Carlos Espinosa J, Fast C, Van Keulen L, Spiropoulos J, Lantier I, Andreoletti O, Pirisinu L, Di Bari MA, Aguilar-Calvo P, Sklaviadis T, Papasavva-Stylianou P, Acutis PL, Acin C, Bossers A, Jacobs JG, Vaccari G, D'Agostino C, Chiappini B, Lantier F, Groschup MH, Agrimi U, Maria Torres J, Langeveld JPM. Characterization of goat prions demonstrates geographical variation of scrapie strains in Europe and reveals the composite nature of prion strains. Sci Rep 2020; 10:19. [PMID: 31913327 PMCID: PMC6949283 DOI: 10.1038/s41598-019-57005-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/16/2019] [Indexed: 11/09/2022] Open
Abstract
Bovine Spongiform Encephalopathy (BSE) is the only animal prion which has been recognized as a zoonotic agent so far. The identification of BSE in two goats raised the need to reliably identify BSE in small ruminants. However, our understanding of scrapie strain diversity in small ruminants remains ill-defined, thus limiting the accuracy of BSE surveillance and spreading fear that BSE might lurk unrecognized in goats. We investigated prion strain diversity in a large panel of European goats by a novel experimental approach that, instead of assessing the neuropathological profile after serial transmissions in a single animal model, was based on the direct interaction of prion isolates with several recipient rodent models expressing small ruminants or heterologous prion proteins. The findings show that the biological properties of scrapie isolates display different patterns of geographical distribution in Europe and suggest that goat BSE could be reliably discriminated from a wide range of biologically and geographically diverse goat prion isolates. Finally, most field prion isolates showed composite strain features, with discrete strain components or sub-strains being present in different proportions in individual goats or tissues. This has important implications for understanding the nature and evolution of scrapie strains and their transmissibility to other species, including humans.
Collapse
Affiliation(s)
- Romolo Nonno
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy.
| | | | | | - Christine Fast
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Greifswald-Isle of Riems, Germany
| | | | - John Spiropoulos
- Animal and Plant Health Agency, New Haw, Addlestone, Surrey, United Kingdom
| | - Isabelle Lantier
- INRA-Centre Val de Loire, Infectiologie et Santé Publique, Nouzilly, France
| | - Olivier Andreoletti
- UMR INRA ENVT 1225- IHAP, École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Laura Pirisinu
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Michele A Di Bari
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | | | - Theodoros Sklaviadis
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Pier Luigi Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Cristina Acin
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Alex Bossers
- Wageningen BioVeterinary Research, Lelystad, the Netherlands
| | - Jorge G Jacobs
- Wageningen BioVeterinary Research, Lelystad, the Netherlands
| | - Gabriele Vaccari
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Claudia D'Agostino
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Barbara Chiappini
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Frederic Lantier
- INRA-Centre Val de Loire, Infectiologie et Santé Publique, Nouzilly, France
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Greifswald-Isle of Riems, Germany
| | - Umberto Agrimi
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | | | | |
Collapse
|
23
|
Espinosa JC, Comoy EE, Marin-Moreno A, Aguilar-Calvo P, Birling MC, Pitarch JL, Deslys JP, Torres JM. Transgenic mouse models expressing human and macaque prion protein exhibit similar prion susceptibility on a strain-dependent manner. Sci Rep 2019; 9:15699. [PMID: 31666632 PMCID: PMC6821920 DOI: 10.1038/s41598-019-52155-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 09/27/2019] [Indexed: 01/25/2023] Open
Abstract
Cynomolgus macaque has been used for the evaluation of the zoonotic potential of prion diseases, especially for classical-Bovine Spongiform Encephalopathy (classical-BSE) infectious agent. PrP amino acid sequence is considered to play a key role in the susceptibility to prion strains and only one amino acid change may alter this susceptibility. Macaque and human-PrP sequences have only nine amino acid differences, but the effect of these amino acid changes in the susceptibility to dissimilar prion strains is unknown. In this work, the transmissibility of a panel of different prions from several species was compared in transgenic mice expressing either macaque-PrPC (TgMac) or human-PrPC (Hu-Tg340). Similarities in the transmissibility of most prion strains were observed suggesting that macaque is an adequate model for the evaluation of human susceptibility to most of the prion strains tested. Interestingly, TgMac were more susceptible to classical-BSE strain infection than Hu-Tg340. This differential susceptibility to classical-BSE transmission should be taken into account for the interpretation of the results obtained in macaques. It could notably explain why the macaque model turned out to be so efficient (worst case model) until now to model human situation towards classical-BSE despite the limited number of animals inoculated in the laboratory experiments.
Collapse
Affiliation(s)
- Juan Carlos Espinosa
- Centro de Investigación en Sanidad Animal (INIA-CISA), 28130, Valdeolmos, Madrid, Spain.
| | - Emmanuel E Comoy
- CEA, Institut François Jacob, Université Paris-Saclay, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Alba Marin-Moreno
- Centro de Investigación en Sanidad Animal (INIA-CISA), 28130, Valdeolmos, Madrid, Spain
| | | | | | - José Luis Pitarch
- Centro de Investigación en Sanidad Animal (INIA-CISA), 28130, Valdeolmos, Madrid, Spain
| | - Jean-Philippe Deslys
- CEA, Institut François Jacob, Université Paris-Saclay, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Juan María Torres
- Centro de Investigación en Sanidad Animal (INIA-CISA), 28130, Valdeolmos, Madrid, Spain.
| |
Collapse
|
24
|
Nonno R, Notari S, Di Bari MA, Cali I, Pirisinu L, d'Agostino C, Cracco L, Kofskey D, Vanni I, Lavrich J, Parchi P, Agrimi U, Gambetti P. Variable Protease-Sensitive Prionopathy Transmission to Bank Voles. Emerg Infect Dis 2019; 25:73-81. [PMID: 30561322 PMCID: PMC6302590 DOI: 10.3201/eid2501.180807] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Variably protease-sensitive prionopathy (VPSPr), a recently described human sporadic prion disease, features a protease-resistant, disease-related prion protein (resPrPD) displaying 5 fragments reminiscent of Gerstmann-Sträussler-Scheinker disease. Experimental VPSPr transmission to human PrP-expressing transgenic mice, although replication of the VPSPr resPrPD profile succeeded, has been incomplete because of second passage failure. We bioassayed VPSPr in bank voles, which are susceptible to human prion strains. Transmission was complete; first-passage attack rates were 5%-35%, and second-passage rates reached 100% and survival times were 50% shorter. We observed 3 distinct phenotypes and resPrPD profiles; 2 imitated sporadic Creutzfeldt-Jakob disease resPrPD, and 1 resembled Gerstmann-Sträussler-Scheinker disease resPrPD. The first 2 phenotypes may be related to the presence of minor PrPD components in VPSPr. Full VPSPr transmission confirms permissiveness of bank voles to human prions and suggests that bank vole PrP may efficiently reveal an underrepresented native strain but does not replicate the complex VPSPr PrPD profile.
Collapse
|
25
|
Vorberg I, Chiesa R. Experimental models to study prion disease pathogenesis and identify potential therapeutic compounds. Curr Opin Pharmacol 2019; 44:28-38. [PMID: 30878006 DOI: 10.1016/j.coph.2019.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 01/02/2023]
Abstract
Prion diseases are devastating neurodegenerative disorders for which no drugs are available. The successful development of therapeutics depends on drug screening platforms and preclinical models that recapitulate key molecular and pathological features of the disease. Innovative experimental tools have been developed over the last few years that might facilitate drug discovery, including cell-free prion replication assays and prion-infected flies. However, there is still room for improvement. Animal models of genetic prion disease are few, and only partially recapitulate the complexity of the human disorder. Moreover, we still lack a human cell culture model suitable for high-content anti-prion drug screening. This review provides an overview of the models currently used in prion research, and discusses their promise and limitations for drug discovery.
Collapse
Affiliation(s)
- Ina Vorberg
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany; Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany.
| | - Roberto Chiesa
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy.
| |
Collapse
|
26
|
Burke CM, Walsh DJ, Steele AD, Agrimi U, Di Bari MA, Watts JC, Supattapone S. Full restoration of specific infectivity and strain properties from pure mammalian prion protein. PLoS Pathog 2019; 15:e1007662. [PMID: 30908557 PMCID: PMC6448948 DOI: 10.1371/journal.ppat.1007662] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/04/2019] [Accepted: 02/27/2019] [Indexed: 12/26/2022] Open
Abstract
The protein-only hypothesis predicts that infectious mammalian prions are composed solely of PrPSc, a misfolded conformer of the normal prion protein, PrPC. However, protein-only PrPSc preparations lack significant levels of prion infectivity, leading to the alternative hypothesis that cofactor molecules are required to form infectious prions. Here, we show that prions with parental strain properties and full specific infectivity can be restored from protein-only PrPSc in vitro. The restoration reaction is rapid, potent, and requires bank vole PrPC substrate, post-translational modifications, and cofactor molecules. To our knowledge, this represents the first report in which the essential properties of an infectious mammalian prion have been restored from pure PrP without adaptation. These findings provide evidence for a unified hypothesis of prion infectivity in which the global structure of protein-only PrPSc accurately stores latent infectious and strain information, but cofactor molecules control a reversible switch that unmasks biological infectivity.
Collapse
Affiliation(s)
- Cassandra M. Burke
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
| | - Daniel J. Walsh
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
| | - Alexander D. Steele
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
| | - Umberto Agrimi
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Michele Angelo Di Bari
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Joel C. Watts
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Surachai Supattapone
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
27
|
Kobayashi A, Matsuura Y, Takeuchi A, Yamada M, Miyoshi I, Mohri S, Kitamoto T. A domain responsible for spontaneous conversion of bank vole prion protein. Brain Pathol 2018; 29:155-163. [PMID: 30051525 DOI: 10.1111/bpa.12638] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/18/2018] [Indexed: 11/28/2022] Open
Abstract
Bank vole is a small rodent that shows high susceptibility to infection with diverse prion strains. To determine whether the increased susceptibility of bank voles to prion diseases can be attributed to the intrinsic nature of bank vole prion protein (PrP) or to host factors other than PrP, we produced transgenic mice overexpressing bank vole PrP. These transgenic mice spontaneously developed neurological illness with spongiform changes and the accumulation of abnormal PrP in the brain. Then, we produced transgenic mice overexpressing chimeric mouse/bank vole PrP, which differs from mouse PrP only at two residues located at the C-terminus, to determine the minimum essential domain for the induction of spontaneous generation of abnormal PrP. These transgenic mice also developed spontaneous neurological illness with spongiform changes and the accumulation of abnormal PrP in the brain. In addition, knock-in mice expressing bank vole PrP at the same level as that of wild-type mice did not develop spontaneous disease but showed high susceptibility to infection with diverse prion strains, similarly to bank voles. Taken together, these findings show that bank vole PrP has a high propensity for the conformational conversion both in spontaneous disease and in prion infection, probably due to the characteristic structural properties of the C-terminal domain.
Collapse
Affiliation(s)
- Atsushi Kobayashi
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yuichi Matsuura
- Prion Disease Unit, Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Atsuko Takeuchi
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Ichiro Miyoshi
- Center for Experimental Animal Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Laboratory Animal Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shirou Mohri
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuyuki Kitamoto
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
28
|
Abstract
Prion diseases are associated with the conversion of the cellular prion protein (PrPC), a glycoprotein expressed at the surface of a wide variety of cell types, into a misfolded conformer (the scrapie form of PrP, or PrPSc) that accumulates in brain tissues of affected individuals. PrPSc is a self-catalytic protein assembly capable of recruiting native conformers of PrPC, and causing their rearrangement into new PrPSc molecules. Several previous attempts to identify therapeutic agents against prion diseases have targeted PrPSc, and a number of compounds have shown potent anti-prion effects in experimental models. Unfortunately, so far, none of these molecules has successfully been translated into effective therapies for prion diseases. Moreover, mounting evidence suggests that PrPSc might be a difficult pharmacological target because of its poorly defined structure, heterogeneous composition, and ability to generate different structural conformers (known as prion strains) that can elude pharmacological intervention. In the last decade, a less intuitive strategy to overcome all these problems has emerged: targeting PrPC, the common substrate of any prion strain replication. This alternative approach possesses several technical and theoretical advantages, including the possibility of providing therapeutic effects also for other neurodegenerative disorders, based on recent observations indicating a role for PrPC in delivering neurotoxic signals of different misfolded proteins. Here, we provide an overview of compounds claimed to exert anti-prion effects by directly binding to PrPC, discussing pharmacological properties and therapeutic potentials of each chemical class.
Collapse
Affiliation(s)
| | - Nunzio Iraci
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| | - Silvia Biggi
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy.
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| | - Emiliano Biasini
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy.
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy.
| |
Collapse
|
29
|
Bett C, Piccardo P, Cervenak J, Torres JM, Asher DM, Gregori L. Both murine host and inoculum modulate expression of experimental variant Creutzfeldt-Jakob disease. J Gen Virol 2018; 99:422-433. [PMID: 29458529 DOI: 10.1099/jgv.0.001017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are infections that are experimentally transmissible to laboratory animals. TSE agents (prions) can be serially passaged in the same animal species. The susceptibility of mice to infection with specific TSE agents can be unpredictable and must be established empirically. We challenged wild-type C57BL/6 and RIIIS/J mice and transgenic mice overexpressing bovine prion protein (TgBo110) with a human brain infected with variant Creutzfeldt-Jakob disease (vCJD) agent and pooled brains of macaques experimentally infected with human vCJD agent (first-passage macaque vCJD). The human vCJD brain yielded a wide range of infectivity titres in different mouse models; TgBo110 mice were the most sensitive. In contrast, infectivity titres of macaque vCJD brain were similar in all three murine models. The brains of RIIIS/J mice infected with both human and macaque vCJD had mild or no vacuolation, while infected C57BL/6 and TgBo110 mice had spongiform degeneration with vacuolation. Abnormal prion protein (PrPTSE) extracted from the brains of vCJD-infected TgBo110 mice displayed different glycosylation profiles and had greater resistance to denaturation by guanidine hydrochloride than PrPTSE from infected wild-type mice or from either inoculum. Those histopathological features of TSE and physical properties of PrPTSE in mice with experimental vCJD were intrinsic to the host, even though we also observed differences between wild-type mice infected with either agent, suggesting a modulatory effect of the inoculum. This study compared three widely used mouse models infected with two different vCJD inocula. The results show that the host plays a major role in manifestations of experimental TSEs.
Collapse
Affiliation(s)
- Cyrus Bett
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Department of Emerging and Transfusion Transmitted Diseases, Laboratory of Bacterial and Transmissible Spongiform Encephalopathy Agents, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Pedro Piccardo
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Department of Emerging and Transfusion Transmitted Diseases, Laboratory of Bacterial and Transmissible Spongiform Encephalopathy Agents, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Juraj Cervenak
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Department of Emerging and Transfusion Transmitted Diseases, Laboratory of Bacterial and Transmissible Spongiform Encephalopathy Agents, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Juan-Maria Torres
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CISA-INIA), 28130 Valdeolmos, Madrid, Spain
| | - David M Asher
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Department of Emerging and Transfusion Transmitted Diseases, Laboratory of Bacterial and Transmissible Spongiform Encephalopathy Agents, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Luisa Gregori
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Department of Emerging and Transfusion Transmitted Diseases, Laboratory of Bacterial and Transmissible Spongiform Encephalopathy Agents, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| |
Collapse
|
30
|
Cofactors influence the biological properties of infectious recombinant prions. Acta Neuropathol 2018; 135:179-199. [PMID: 29094186 DOI: 10.1007/s00401-017-1782-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/20/2017] [Accepted: 10/21/2017] [Indexed: 12/23/2022]
Abstract
Prion diseases are caused by a misfolding of the cellular prion protein (PrP) to a pathogenic isoform named PrPSc. Prions exist as strains, which are characterized by specific pathological and biochemical properties likely encoded in the three-dimensional structure of PrPSc. However, whether cofactors determine these different PrPSc conformations and how this relates to their specific biological properties is largely unknown. To understand how different cofactors modulate prion strain generation and selection, Protein Misfolding Cyclic Amplification was used to create a diversity of infectious recombinant prion strains by propagation in the presence of brain homogenate. Brain homogenate is known to contain these mentioned cofactors, whose identity is only partially known, and which facilitate conversion of PrPC to PrPSc. We thus obtained a mix of distinguishable infectious prion strains. Subsequently, we replaced brain homogenate, by different polyanionic cofactors that were able to drive the evolution of mixed prion populations toward specific strains. Thus, our results show that a variety of infectious recombinant prions can be generated in vitro and that their specific type of conformation, i.e., the strain, is dependent on the cofactors available during the propagation process. These observations have significant implications for understanding the pathogenesis of prion diseases and their ability to replicate in different tissues and hosts. Importantly, these considerations might apply to other neurodegenerative diseases for which different conformations of misfolded proteins have been described.
Collapse
|
31
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Gironés R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Skandamis P, Snary E, Speybroeck N, Kuile BT, Threlfall J, Wahlström H, Benestad S, Gavier-Widen D, Miller MW, Telling GC, Tryland M, Latronico F, Ortiz-Pelaez A, Stella P, Simmons M. Scientific opinion on chronic wasting disease (II). EFSA J 2018; 16:e05132. [PMID: 32625679 PMCID: PMC7328883 DOI: 10.2903/j.efsa.2018.5132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The European Commission asked EFSA for a scientific opinion on chronic wasting disease in two parts. Part one, on surveillance, animal health risk-based measures and public health risks, was published in January 2017. This opinion (part two) addresses the remaining Terms of Reference, namely, 'are the conclusions and recommendations in the EFSA opinion of June 2004 on diagnostic methods for chronic wasting disease still valid? If not, an update should be provided', and 'update the conclusions of the 2010 EFSA opinion on the results of the European Union survey on chronic wasting disease in cervids, as regards its occurrence in the cervid population in the European Union'. Data on the performance of authorised rapid tests in North America are not comprehensive, and are more limited than those available for the tests approved for statutory transmissible spongiform encephalopathies surveillance applications in cattle and sheep. There are no data directly comparing available rapid test performances in cervids. The experience in Norway shows that the Bio-Rad TeSeE™ SAP test, immunohistochemistry and western blotting have detected reindeer, moose and red deer cases. It was shown that testing both brainstem and lymphoid tissue from each animal increases the surveillance sensitivity. Shortcomings in the previous EU survey limited the reliability of inferences that could be made about the potential disease occurrence in Europe. Subsequently, testing activity in Europe was low, until the detection of the disease in Norway, triggering substantial testing efforts in that country. Available data neither support nor refute the conclusion that chronic wasting disease does not occur widely in the EU and do not preclude the possibility that the disease was present in Europe before the survey was conducted. It appears plausible that chronic wasting disease could have become established in Norway more than a decade ago.
Collapse
|
32
|
Igel-Egalon A, Béringue V, Rezaei H, Sibille P. Prion Strains and Transmission Barrier Phenomena. Pathogens 2018; 7:E5. [PMID: 29301257 PMCID: PMC5874731 DOI: 10.3390/pathogens7010005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/25/2017] [Accepted: 12/26/2017] [Indexed: 11/30/2022] Open
Abstract
Several experimental evidences show that prions are non-conventional pathogens, which physical support consists only in proteins. This finding raised questions regarding the observed prion strain-to-strain variations and the species barrier that happened to be crossed with dramatic consequences on human health and veterinary policies during the last 3 decades. This review presents a focus on a few advances in the field of prion structure and prion strains characterization: from the historical approaches that allowed the concept of prion strains to emerge, to the last results demonstrating that a prion strain may in fact be a combination of a few quasi species with subtle biophysical specificities. Then, we will focus on the current knowledge on the factors that impact species barrier strength and species barrier crossing. Finally, we present probable scenarios on how the interaction of strain properties with host characteristics may account for differential selection of new conformer variants and eventually species barrier crossing.
Collapse
Affiliation(s)
- Angélique Igel-Egalon
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| | - Vincent Béringue
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| | - Human Rezaei
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| | - Pierre Sibille
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| |
Collapse
|
33
|
Kurt TD, Aguilar-Calvo P, Jiang L, Rodriguez JA, Alderson N, Eisenberg DS, Sigurdson CJ. Asparagine and glutamine ladders promote cross-species prion conversion. J Biol Chem 2017; 292:19076-19086. [PMID: 28931606 PMCID: PMC5704488 DOI: 10.1074/jbc.m117.794107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/01/2017] [Indexed: 11/06/2022] Open
Abstract
Prion transmission between species is governed in part by primary sequence similarity between the infectious prion aggregate, PrPSc, and the cellular prion protein of the host, PrPC A puzzling feature of prion formation is that certain PrPC sequences, such as that of bank vole, can be converted by a remarkably broad array of different mammalian prions, whereas others, such as rabbit, show robust resistance to cross-species prion conversion. To examine the structural determinants that confer susceptibility or resistance to prion conversion, we systematically tested over 40 PrPC variants of susceptible and resistant PrPC sequences in a prion conversion assay. Five key residue positions markedly impacted prion conversion, four of which were in steric zipper segments where side chains from amino acids tightly interdigitate in a dry interface. Strikingly, all five residue substitutions modulating prion conversion involved the gain or loss of an asparagine or glutamine residue. For two of the four positions, Asn and Gln residues were not interchangeable, revealing a strict requirement for either an Asn or Gln residue. Bank voles have a high number of Asn and Gln residues and a high Asn:Gln ratio. These findings suggest that a high number of Asn and Gln residues at specific positions may stabilize β-sheets and lower the energy barrier for cross-species prion transmission, potentially because of hydrogen bond networks from side chain amides forming extended Asn/Gln ladders. These data also suggest that multiple PrPC segments containing Asn/Gln residues may act in concert along a replicative interface to promote prion conversion.
Collapse
Affiliation(s)
- Timothy D Kurt
- From the Departments of Pathology and Medicine, University of California at San Diego, La Jolla, California 92093
| | - Patricia Aguilar-Calvo
- From the Departments of Pathology and Medicine, University of California at San Diego, La Jolla, California 92093
| | - Lin Jiang
- the Department of Neurology, UCLA, Los Angeles, California 90095, and
| | - José A Rodriguez
- the UCLA-DOE Institute, Howard Hughes Medical Institute, Los Angeles, California 90095
- the Molecular Biology Institute
- the Department of Chemistry and Biochemistry, and
| | - Nazilla Alderson
- From the Departments of Pathology and Medicine, University of California at San Diego, La Jolla, California 92093
| | - David S Eisenberg
- the UCLA-DOE Institute, Howard Hughes Medical Institute, Los Angeles, California 90095
- the Molecular Biology Institute
| | - Christina J Sigurdson
- From the Departments of Pathology and Medicine, University of California at San Diego, La Jolla, California 92093,
- the Department of Pathology, Immunology, and Microbiology, University of California at Davis, Davis, California 95616
| |
Collapse
|
34
|
Simmons M, Ru G, Casalone C, Iulini B, Cassar C, Seuberlich T. DISCONTOOLS: Identifying gaps in controlling bovine spongiform encephalopathy. Transbound Emerg Dis 2017; 65 Suppl 1:9-21. [PMID: 28795509 DOI: 10.1111/tbed.12671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Indexed: 11/29/2022]
Abstract
This article summarizes the 2016 update of the DISCONTOOLS project gap analysis on bovine spongiform encephalopathy (BSE), which was based on a combination of literature review and expert knowledge. Uncertainty still exists in relation to the pathogenesis, immunology and epidemiology of BSE, but provided that infected material is prohibited from entering the animal feed chain, cases should continue to decline. BSE does not appear to spread between cattle, but if new strains with this ability appear then control would be considerably more difficult. Atypical types of BSE (L-BSE and H-BSE) have been identified, which have different molecular patterns and pathology, and do not display the same clinical signs as classical BSE. Laboratory transmission experiments indicate that the L-BSE agent has zoonotic potential. There is no satisfactory conclusion regarding the origin of the BSE epidemic. C-BSE case numbers declined rapidly following strict controls banning ruminant protein in animal feed, but occasional cases still occur. It is unclear whether these more recent cases indicate inadequate implementation of the bans, or the possibility that C-BSE might occur spontaneously, as has been postulated for H- and L-BSE. All of this will have implications once existing bans and levels of surveillance are both relaxed. Immunochemical tests can only be applied post-mortem. There is no immunological basis for diagnosis in the live animal. All aspects of disease control are expensive, particularly surveillance, specified risk material removal and feed controls. There is pressure to relax feed controls, and concurrent pressure from other sources to reduce surveillance. While the cost benefit argument can be applied successfully to either of these approaches, it would be necessary to maintain the ban on intraspecies recycling and some baseline surveillance. However, the potential risk is not limited to intraspecies recycling; recycling with cross-species transmission may be an ideal way to select or/and modify properties of transmissible spongiform encephalopathies agents in the future.
Collapse
Affiliation(s)
- M Simmons
- OIE, National and EU Reference Laboratory for BSE and Scrapie, Department of Pathology, APHA Weybridge, Addlestone, Surrey, UK
| | - G Ru
- CEA - National Reference Laboratory for Transmissible Spongiform Encephalopathies, OIE Reference Laboratories for BSE and Scrapie, Unit of Biostatistics, Epidemiology and Risk Analysis, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy
| | - C Casalone
- CEA - National Reference Laboratory for Transmissible Spongiform Encephalopathies, OIE Reference Laboratories for BSE and Scrapie, Neuropathology Laboratory, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy
| | - B Iulini
- CEA - National Reference Laboratory for Transmissible Spongiform Encephalopathies, OIE Reference Laboratories for BSE and Scrapie, Neuropathology Laboratory, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy
| | - C Cassar
- OIE, National and EU Reference Laboratory for BSE and Scrapie, Department of Pathology, APHA Weybridge, Addlestone, Surrey, UK
| | - T Seuberlich
- NeuroCenter, OIE and National Reference Laboratories for BSE and Scrapie, Division of Neurological Sciences, Vetsuisse Faculty, Bern, Switzerland
| |
Collapse
|
35
|
Marín-Moreno A, Fernández-Borges N, Espinosa JC, Andréoletti O, Torres JM. Transmission and Replication of Prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:181-201. [PMID: 28838661 DOI: 10.1016/bs.pmbts.2017.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) are a group of progressive, invariably fatal diseases that affect the nervous system of many mammals including humans. The key molecular event in the pathogenesis of TSEs is the conversion of the cellular prion protein PrPC into a disease-associated isoform PrPSc. The "protein-only hypothesis" argues that PrPSc itself is the infectious agent. In effect, PrPSc can adopt several structures that represent different prion strains. The interspecies transmission of TSEs is difficult because of differences between the host and donor primary PrP sequence. However, transmission is not impossible as this occurred when bovine spongiform encephalopathy spread to humans causing variant Creutzfeldt-Jakob disease (vCJD). This event determined a need for a thorough understanding of prion replication and transmission so that we could be one step ahead of further threats for human health. This chapter focuses on these concepts and on new insights gained into prion propagation mechanisms.
Collapse
Affiliation(s)
| | | | - Juan C Espinosa
- Centro de Investigación en Sanidad Animal, CISA-INIA, Madrid, Spain
| | - Olivier Andréoletti
- UMR INRA-ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Juan M Torres
- Centro de Investigación en Sanidad Animal, CISA-INIA, Madrid, Spain.
| |
Collapse
|
36
|
Prion Strain Characterization of a Novel Subtype of Creutzfeldt-Jakob Disease. J Virol 2017; 91:JVI.02390-16. [PMID: 28298604 DOI: 10.1128/jvi.02390-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/07/2017] [Indexed: 12/26/2022] Open
Abstract
In 2007, we reported a patient with an atypical form of Creutzfeldt-Jakob disease (CJD) heterozygous for methionine-valine (MV) at codon 129 who showed a novel pathological prion protein (PrPTSE) conformation with an atypical glycoform (AG) profile and intraneuronal PrP deposition. In the present study, we further characterize the conformational properties of this pathological prion protein (PrPTSE MVAG), showing that PrPTSE MVAG is composed of multiple conformers with biochemical properties distinct from those of PrPTSE type 1 and type 2 of MV sporadic CJD (sCJD). Experimental transmission of CJD-MVAG to bank voles and gene-targeted transgenic mice carrying the human prion protein gene (TgHu mice) showed unique transmission rates, survival times, neuropathological changes, PrPTSE deposition patterns, and PrPTSE glycotypes that are distinct from those of sCJD-MV1 and sCJD-MV2. These biochemical and experimental data suggest the presence of a novel prion strain in CJD-MVAGIMPORTANCE Sporadic Creutzfeldt-Jakob disease is caused by the misfolding of the cellular prion protein, which assumes two different major conformations (type 1 and type 2) and, together with the methionine/valine polymorphic codon 129 of the prion protein gene, contribute to the occurrence of distinct clinical-pathological phenotypes. Inoculation in laboratory rodents of brain tissues from the six possible combinations of pathological prion protein types with codon 129 genotypes results in the identification of 3 or 4 strains of prions. We report on the identification of a novel strain of Creutzfeldt-Jakob disease isolated from a patient who carried an abnormally glycosylated pathological prion protein. This novel strain has unique biochemical characteristics, does not transmit to humanized transgenic mice, and shows exclusive transmission properties in bank voles. The identification of a novel human prion strain improves our understanding of the pathogenesis of the disease and of possible mechanisms of prion transmission.
Collapse
|
37
|
Redaelli V, Bistaffa E, Zanusso G, Salzano G, Sacchetto L, Rossi M, De Luca CMG, Di Bari M, Portaleone SM, Agrimi U, Legname G, Roiter I, Forloni G, Tagliavini F, Moda F. Detection of prion seeding activity in the olfactory mucosa of patients with Fatal Familial Insomnia. Sci Rep 2017; 7:46269. [PMID: 28387370 PMCID: PMC5384244 DOI: 10.1038/srep46269] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/14/2017] [Indexed: 11/09/2022] Open
Abstract
Fatal Familial Insomnia (FFI) is a genetic prion disease caused by a point mutation in the prion protein gene (PRNP) characterized by prominent thalamic atrophy, diffuse astrogliosis and moderate deposition of PrPSc in the brain. Here, for the first time, we demonstrate that the olfactory mucosa (OM) of patients with FFI contains trace amount of PrPSc detectable by PMCA and RT-QuIC. Quantitative PMCA analysis estimated a PrPSc concentration of about 1 × 10-14 g/ml. In contrast, PrPSc was not detected in OM samples from healthy controls and patients affected by other neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease and frontotemporal dementia. These results indicate that the detection limit of these assays is in the order of a single PrPSc oligomer/molecule with a specificity of 100%.
Collapse
Affiliation(s)
- Veronica Redaelli
- IRCCS Foundation Carlo Besta Neurological Institute, Department of Neurology 5 and Neuropathology, Milan, Italy
| | - Edoardo Bistaffa
- IRCCS Foundation Carlo Besta Neurological Institute, Department of Neurology 5 and Neuropathology, Milan, Italy.,Scuola Internazionale Superiore di Studi Avanzati (SISSA), Department of Neuroscience, Trieste, Italy
| | - Gianluigi Zanusso
- University of Verona, Department of Neurosciences, Biomedicine and Movement Sciences, Verona, Italy
| | - Giulia Salzano
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Department of Neuroscience, Trieste, Italy
| | - Luca Sacchetto
- University of Verona, Otolaryngology department, Verona, Italy
| | - Martina Rossi
- IRCCS Foundation Carlo Besta Neurological Institute, Department of Neurology 5 and Neuropathology, Milan, Italy.,Scuola Internazionale Superiore di Studi Avanzati (SISSA), Department of Neuroscience, Trieste, Italy
| | - Chiara Maria Giulia De Luca
- IRCCS Foundation Carlo Besta Neurological Institute, Department of Neurology 5 and Neuropathology, Milan, Italy
| | - Michele Di Bari
- Istituto Superiore di Sanità, Department of Veterinary Public Health and Food Safety, Rome, Italy
| | - Sara Maria Portaleone
- Otolaryngology Unit, San Paolo Hospital, Department of Health Sciences, University of Milan, Milan, Italy
| | - Umberto Agrimi
- Istituto Superiore di Sanità, Department of Veterinary Public Health and Food Safety, Rome, Italy
| | - Giuseppe Legname
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Department of Neuroscience, Trieste, Italy.,ELETTRA Laboratory, Sincrotrone Trieste S.C.p.A., Trieste, Italy
| | | | - Gianluigi Forloni
- IRCCS Foundation Istituto di Ricerche Farmacologiche Mario Negri, Department of Neuroscience, Milan, Italy
| | - Fabrizio Tagliavini
- IRCCS Foundation Carlo Besta Neurological Institute, Department of Neurology 5 and Neuropathology, Milan, Italy
| | - Fabio Moda
- IRCCS Foundation Carlo Besta Neurological Institute, Department of Neurology 5 and Neuropathology, Milan, Italy
| |
Collapse
|