1
|
Indari O, Ghosh S, Bal AS, James A, Garg M, Mishra A, Karmodiya K, Jha HC. Awakening the sleeping giant: Epstein-Barr virus reactivation by biological agents. Pathog Dis 2024; 82:ftae002. [PMID: 38281067 PMCID: PMC10901609 DOI: 10.1093/femspd/ftae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 01/29/2024] Open
Abstract
Epstein-Barr virus (EBV) may cause harm in immunocompromised conditions or on stress stimuli. Various chemical agents have been utilized to induce the lytic cycle in EBV-infected cells. However, apart from chemical agents and external stress stimuli, certain infectious agents may reactivate the EBV. In addition, the acute infection of other pathogens may provide suitable conditions for EBV to thrive more and planting the roots for EBV-associated pathologies. Various bacteria such as periodontal pathogens like Aggregatibacter, Helicobacter pylori, etc. have shown to induce EBV reactivation either by triggering host cells directly or indirectly. Viruses such as Human simplex virus-1 (HSV) induce EBV reactivation by HSV US3 kinase while other viruses such as HIV, hepatitis virus, and even novel SARS-CoV-2 have also been reported to cause EBV reactivation. The eukaryotic pathogens such as Plasmodium falciparum and Aspergillus flavus can also reactivate EBV either by surface protein interaction or as an impact of aflatoxin, respectively. To highlight the underexplored niche of EBV reactivation by biological agents, we have comprehensively presented the related information in this review. This may help to shedding the light on the research gaps as well as to unveil yet unexplored mechanisms of EBV reactivation.
Collapse
Affiliation(s)
- Omkar Indari
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol Campus, Simrol, Indore 453552, India
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Subhrojyoti Ghosh
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol Campus, Simrol, Indore 453552, India
| | - Adhiraj Singh Bal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol Campus, Simrol, Indore 453552, India
| | - Ajay James
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol Campus, Simrol, Indore 453552, India
| | - Mehek Garg
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol Campus, Simrol, Indore 453552, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Krishanpal Karmodiya
- Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune 411008, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol Campus, Simrol, Indore 453552, India
| |
Collapse
|
2
|
Tian XP, Cao Y, Cai J, Zhang YC, Zou QH, Wang JN, Fang Y, Wang JH, Guo SB, Cai QQ. Novel target and treatment agents for natural killer/T-cell lymphoma. J Hematol Oncol 2023; 16:78. [PMID: 37480137 PMCID: PMC10362755 DOI: 10.1186/s13045-023-01483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023] Open
Abstract
The rapidly increasing use of high-throughput screening had produced a plethora of expanding knowledge on the molecular basis of natural killer/T-cell lymphoma (NKTCL), which in turn has revolutionized the treatment. Specifically, the use of asparaginase-containing regimens has led to substantial improvement in survival outcomes in NKTCL patients. Novel treatment strategies that are currently under development include cell-surface-targeted antibodies, immune checkpoint inhibitors, Epstein-Barr virus targeted cytotoxic T lymphocyte, immunomodulatory agents, chimeric antigen receptor T cells, signaling pathway inhibitors and epigenetic targeted agents. In almost all cases, initial clinical studies of newly developed treatment are conducted in patients relapsed, and refractory NKTCL due to very limited treatment options. This review summarizes the results of these novel treatments for NKTCL and discusses their potential for likely use in NKTCL in a wider setting in the future.
Collapse
Affiliation(s)
- Xiao-Peng Tian
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yi Cao
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jun Cai
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yu-Chen Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Qi-Hua Zou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jin-Ni Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yu Fang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jia-Hui Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Song-Bin Guo
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Qing-Qing Cai
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.
| |
Collapse
|
3
|
Thakur A, Kumar M. Integration of Human and Viral miRNAs in Epstein-Barr Virus-Associated Tumors and Implications for Drug Repurposing. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:93-108. [PMID: 36927073 DOI: 10.1089/omi.2023.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Epstein-Barr virus (EBV) is associated with several tumors, and has substantial relevance for public health. Therapeutics innovation for EBV-related disorders is much needed. In this context, miRNAs are noncoding RNA molecules that play vital roles in EBV infection. miRNA-Seq and RNA-Seq data for EBV-associated clinical samples and cell lines have been generated, but their detailed integrative analyses, and exploitation for drug repurposing against EBV are lacking. Hence, we identified and analyzed the differentially expressed miRNAs (DEmiRs) in EBV-infected cell lines (28) and infected (28) and uninfected human tissue (20) samples using an in-house pipeline. We found significantly enriched host miRNAs like hsa-mir-3651, hsa-mir-1248, and hsa-mir-29c-3p in EBV-infected samples from EBV-associated nasopharyngeal carcinoma and Hodgkin's lymphoma, among others. Furthermore, we also identified significantly enriched novel miRNAs such as hsa-mir-29c-3p, hsa-mir-3651, and hsa-mir-98-3p, which were not previously reported in EBV-related tumors. Differentially expressed mRNAs (DEMs) were identified in EBV-infected cell lines (21) and uninfected human tissue (14) samples. We predicted and selected 1572 DEMs (upregulated) that are targeted by 547 DEmiRs (downregulated). These were further classified into essential (870) and nonessential (702) genes. Moreover, a miRNA-mRNA network was developed for the hub miRNAs. Importantly, we used the DEMs during EBV latent infection types I, II, and III to identify the candidate drugs for repurposing: Glyburide, Levodopa, Nateglinide, and Stiripentol, among others. To the best of our knowledge, this is the first integrative analyses that identified DEmiRs and DEMs as potential therapeutic targets and predicted drugs as potential candidates for repurposing against EBV-related tumors.
Collapse
Affiliation(s)
- Anamika Thakur
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manoj Kumar
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Chao TY, Cheng YY, Wang ZY, Fang TF, Chang YR, Fuh CS, Su MT, Su YW, Hsu PH, Su YC, Chang YC, Lee TY, Chou WH, Middeldorp JM, Saraste J, Chen MR. Subcellular Distribution of BALF2 and the Role of Rab1 in the Formation of Epstein-Barr Virus Cytoplasmic Assembly Compartment and Virion Release. Microbiol Spectr 2023; 11:e0436922. [PMID: 36602343 PMCID: PMC9927466 DOI: 10.1128/spectrum.04369-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Epstein-Barr virus (EBV) replicates its genome in the nucleus and undergoes tegumentation and envelopment in the cytoplasm. We are interested in how the single-stranded DNA binding protein BALF2, which executes its function and distributes predominantly in the nucleus, is packaged into the tegument of virions. At the mid-stage of virus replication in epithelial TW01-EBV cells, a small pool of BALF2 colocalizes with tegument protein BBLF1, BGLF4 protein kinase, and the cis-Golgi marker GM130 at the perinuclear viral assembly compartment (AC). A possible nuclear localization signal (NLS) between amino acids 1100 and 1128 (C29), which contains positive charged amino acid 1113RRKRR1117, is able to promote yellow fluorescent protein (YFP)-LacZ into the nucleus. In addition, BALF2 interacts with the nucleocapsid-associated protein BVRF1, suggesting that BALF2 may be transported into the cytoplasm with nucleocapsids in a nuclear egress complex (NEC)-dependent manner. A group of proteins involved in intracellular transport were identified to interact with BALF2 in a proteomic analysis. Among them, the small GTPase Rab1A functioning in bi-directional trafficking at the ER-Golgi interface is also a tegument component. In reactivated TW01-EBV cells, BALF2 colocalizes with Rab1A in the cytoplasmic AC. Expression of dominant-negative GFP-Rab1A(N124I) diminished the accumulation of BALF2 in the AC, coupling with attenuation of gp350/220 glycosylation. Virion release was significantly downregulated by expressing dominant-negative GFP-Rab1A(N124I). Overall, the subcellular distribution of BALF2 is regulated through its complex interaction with various proteins. Rab1 activity is required for proper gp350/220 glycosylation and the maturation of EBV. IMPORTANCE Upon EBV lytic reactivation, the virus-encoded DNA replication machinery functions in the nucleus, while the newly synthesized DNA is encapsidated and transported to the cytoplasm for final virus assembly. The single-stranded DNA binding protein BALF2 executing functions within the nucleus was also identified in the tegument layer of mature virions. Here, we studied the functional domain of BALF2 that contributes to the nuclear targeting and used a proteomic approach to identify novel BALF2-interacting cellular proteins that may contribute to virion morphogenesis. The GTPase Rab1, a master regulator of anterograde and retrograde endoplasmic reticulum (ER)-Golgi trafficking, colocalizes with BALF2 in the juxtanuclear concave region at the midstage of EBV reactivation. Rab1 activity is required for BALF2 targeting to the cytoplasmic assembly compartment (AC) and for gp350/220 targeting to cis-Golgi for proper glycosylation and virion release. Our study hints that EBV hijacks the bi-directional ER-Golgi trafficking machinery to complete virus assembly.
Collapse
Affiliation(s)
- Tsung-Yu Chao
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Yi-Ying Cheng
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Zi-Yun Wang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Tien-Fang Fang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Yu-Ruei Chang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Chi-Shane Fuh
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Mei-Tzu Su
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Yuan-Wei Su
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Yu-Chen Su
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Yu-Ching Chang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Ting-Yau Lee
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Wei-Han Chou
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Jaap M. Middeldorp
- VU University Medical Center, Department of Pathology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center, University of Bergen, Bergen, Norway
| | - Mei-Ru Chen
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| |
Collapse
|
5
|
Yap DRY, Lim JQ, Huang D, Ong CK, Chan JY. Emerging predictive biomarkers for novel therapeutics in peripheral T-cell and natural killer/T-cell lymphoma. Front Immunol 2023; 14:1068662. [PMID: 36776886 PMCID: PMC9909478 DOI: 10.3389/fimmu.2023.1068662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Peripheral T-cell lymphoma (PTCL) and natural killer/T-cell lymphoma (NKTCL) are rare subtypes of non-Hodgkin's lymphoma that are typically associated with poor treatment outcomes. Contemporary first-line treatment strategies generally involve the use of combination chemoimmunotherapy, radiation and/or stem cell transplant. Salvage options incorporate a number of novel agents including epigenetic therapies (e.g. HDAC inhibitors, DNMT inhibitors) as well as immune checkpoint inhibitors. However, validated biomarkers to select patients for individualized precision therapy are presently lacking, resulting in high treatment failure rates, unnecessary exposure to drug toxicities, and missed treatment opportunities. Recent advances in research on the tumor and microenvironmental factors of PTCL and NKTCL, including alterations in specific molecular features and immune signatures, have improved our understanding of these diseases, though several issues continue to impede progress in clinical translation. In this Review, we summarize the progress and development of the current predictive biomarker landscape, highlight potential knowledge gaps, and discuss the implications on novel therapeutics development in PTCL and NKTCL.
Collapse
Affiliation(s)
- Daniel Ren Yi Yap
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Jing Quan Lim
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Dachuan Huang
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Choon Kiat Ong
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Jason Yongsheng Chan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Swift ML, Beishline K, Azizkhan-Clifford J. Sp1-dependent recruitment of the histone acetylase p300 to DSBs facilitates chromatin remodeling and recruitment of the NHEJ repair factor Ku70. DNA Repair (Amst) 2021; 105:103171. [PMID: 34252870 DOI: 10.1016/j.dnarep.2021.103171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/18/2021] [Accepted: 07/04/2021] [Indexed: 11/18/2022]
Abstract
In response to DNA damage, most factors involved in damage recognition and repair are tightly regulated to ensure proper repair pathway choice. Histone acetylation at DNA double strand breaks (DSBs) by p300 histone acetyltransferase (HAT) is critical for the recruitment of DSB repair proteins to chromatin. Here, we show that phosphorylation of Sp1 by ATM increases its interaction with p300 and that Sp1-dependent recruitment of p300 to DSBs is necessary to modify the histones associated with p300 activity and NHEJ repair factor recruitment and repair. p300 is known to acetylate multiple residues on histones H3 and H4 necessary for NHEJ. Acetylation of H3K18 by p300 is associated with the recruitment of the SWI/SNF chromatin remodeling complex and Ku70 to DSBs for NHEJ repair. Depletion of Sp1 results in decreased acetylation of lysines on histones H3 and H4. Specifically, cells depleted of Sp1 display defects in the acetylation of H3K18, resulting in defective SWI/SNF and Ku70 recruitment to DSBs. These results shed light on mechanisms by which chromatin remodelers are regulated to ensure activation of the appropriate DSB repair pathway.
Collapse
Affiliation(s)
- Michelle L Swift
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kate Beishline
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Jane Azizkhan-Clifford
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Yiu SPT, Dorothea M, Hui KF, Chiang AKS. Lytic Induction Therapy against Epstein-Barr Virus-Associated Malignancies: Past, Present, and Future. Cancers (Basel) 2020; 12:cancers12082142. [PMID: 32748879 PMCID: PMC7465660 DOI: 10.3390/cancers12082142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022] Open
Abstract
Epstein-Barr virus (EBV) lytic induction therapy is an emerging virus-targeted therapeutic approach that exploits the presence of EBV in tumor cells to confer specific killing effects against EBV-associated malignancies. Efforts have been made in the past years to uncover the mechanisms of EBV latent-lytic switch and discover different classes of chemical compounds that can reactivate the EBV lytic cycle. Despite the growing list of compounds showing potential to be used in the lytic induction therapy, only a few are being tested in clinical trials, with varying degrees of success. This review will summarize the current knowledge on EBV lytic reactivation, the major hurdles of translating the lytic induction therapy into clinical settings, and highlight some potential strategies in the future development of this therapy for EBV-related lymphoid and epithelial malignancies.
Collapse
|
8
|
Hau PM, Lung HL, Wu M, Tsang CM, Wong KL, Mak NK, Lo KW. Targeting Epstein-Barr Virus in Nasopharyngeal Carcinoma. Front Oncol 2020; 10:600. [PMID: 32528868 PMCID: PMC7247807 DOI: 10.3389/fonc.2020.00600] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is consistently associated with Epstein-Barr virus (EBV) infection in regions in which it is endemic, including Southern China and Southeast Asia. The high mortality rates of NPC patients with advanced and recurrent disease highlight the urgent need for effective treatments. While recent genomic studies have revealed few druggable targets, the unique interaction between the EBV infection and host cells in NPC strongly implies that targeting EBV may be an efficient approach to cure this virus-associated cancer. Key features of EBV-associated NPC are the persistence of an episomal EBV genome and the requirement for multiple viral latent gene products to enable malignant transformation. Many translational studies have been conducted to exploit these unique features to develop pharmaceutical agents and therapeutic strategies that target EBV latent proteins and induce lytic reactivation in NPC. In particular, inhibitors of the EBV latent protein EBNA1 have been intensively explored, because of this protein's essential roles in maintaining EBV latency and viral genome replication in NPC cells. In addition, recent advances in chemical bioengineering are driving the development of therapeutic agents targeting the critical functional regions of EBNA1. Promising therapeutic effects of the resulting EBNA1-specific inhibitors have been shown in EBV-positive NPC tumors. The efficacy of multiple classes of EBV lytic inducers for NPC cytolytic therapy has also been long investigated. However, the lytic-induction efficiency of these compounds varies among different EBV-positive NPC models in a cell-context-dependent manner. In each tumor, NPC cells can evolve and acquire somatic changes to maintain EBV latency during cancer progression. Unfortunately, the poor understanding of the cellular mechanisms regulating EBV latency-to-lytic switching in NPC cells limits the clinical application of EBV cytolytic treatment. In this review, we discuss the potential approaches for improvement of the above-mentioned EBV-targeting strategies.
Collapse
Affiliation(s)
- Pok Man Hau
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hong Lok Lung
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Man Wu
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Man Tsang
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Nai Ki Mak
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Himi K, Takeichi O, Imai K, Hatori K, Tamura T, Ogiso B. Epstein-Barr virus reactivation by persistent apical periodontal pathogens. Int Endod J 2019; 53:492-505. [PMID: 31730263 DOI: 10.1111/iej.13255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022]
Abstract
AIM To assess whether Epstein-Barr virus (EBV) reactivation is triggered by persistent apical periodontitis-related microbes using in vitro and ex vivo methodologies. METHODOLOGY Surgically removed human periapical granulomas (n = 50) and healthy gingival tissues (n = 10) were analysed to determine the presence of EBV and seven persistent apical periodontitis-related microbes. In addition, real-time polymerase chain reaction was used to detect the mRNA expression of BZLF-1, an immediate-early gene of EBV. Expression of latent membrane protein (LMP)-1 and ZEBRA, an early lytic protein of EBV encoded by BZLF-1, was also examined using triple-colour immunofluorescence staining. n-Butyric acid produced by the microbes was quantified, and luciferase assays were performed in association with bacterial lysates. In addition, Daudi cells were cultured with bacterial lysates, and the expression levels of BZLF-1 mRNA and ZEBRA protein were determined. RESULTS EBV DNA and BZLF-1 mRNA were detected in 47 out of 50 periapical granulomas, but not in healthy gingival tissues. The EBV DNA copy number and the number of Fusobacterium nucleatum were significantly positively correlated with BZLF-1 expression in periapical granulomas. The number of Prevotella intermedia was slightly correlated with BZLF-1 expression; however, the other microbes were not. CD79a-positive B cells in periapical granulomas, but not those in healthy gingival tissues, expressed both LMP-1 and ZEBRA. n-Butyric acid production was the highest in F. nucleatum and the lowest in P. intermedia. Enterococcus faecalis, Candida albicans and the other tested microbes did not produce n-butyric acid. An F. nucleatum lysate exhibited significantly increased BZLF-1-luciferase activity in the same manner of commercial butyric acid, whereas P. intermedia did not. F. nucleatum also induced the expression of BZLF-1 mRNA and ZEBRA protein by Daudi cells, indicating that EBV reactivation was induced. CONCLUSION Among the persistent apical periodontitis-related bacteria that were tested, F. nucleatum most strongly reactivated latent EBV, whereas E. faecalis and C. albicans as well as the other microbes did not.
Collapse
Affiliation(s)
- K Himi
- Department of Endodontics, School of Dentistry, Nihon University, Tokyo, Japan
| | - O Takeichi
- Department of Endodontics, School of Dentistry, Nihon University, Tokyo, Japan.,Division of Advanced Dental Treatment, Dental Research Centre, School of Dentistry, Nihon University, Tokyo, Japan
| | - K Imai
- Department of Microbiology, School of Dentistry, Nihon University, Tokyo, Japan.,Division of Immunology and Pathobiology, Dental Research Centre, School of Dentistry, Nihon University, Tokyo, Japan
| | - K Hatori
- Department of Endodontics, School of Dentistry, Nihon University, Tokyo, Japan.,Division of Advanced Dental Treatment, Dental Research Centre, School of Dentistry, Nihon University, Tokyo, Japan
| | - T Tamura
- Department of Endodontics, School of Dentistry, Nihon University, Tokyo, Japan
| | - B Ogiso
- Department of Endodontics, School of Dentistry, Nihon University, Tokyo, Japan.,Division of Advanced Dental Treatment, Dental Research Centre, School of Dentistry, Nihon University, Tokyo, Japan
| |
Collapse
|
10
|
Intracellular Iron Chelation by a Novel Compound, C7, Reactivates Epstein⁻Barr Virus (EBV) Lytic Cycle via the ERK-Autophagy Axis in EBV-Positive Epithelial Cancers. Cancers (Basel) 2018; 10:cancers10120505. [PMID: 30544928 PMCID: PMC6316324 DOI: 10.3390/cancers10120505] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/01/2018] [Accepted: 12/06/2018] [Indexed: 12/21/2022] Open
Abstract
Pharmaceutical reactivation of lytic cycle of Epstein–Barr virus (EBV) represents a potential therapeutic strategy against EBV-associated epithelial malignancies, e.g., gastric carcinoma (GC) and nasopharyngeal carcinoma (NPC). A novel lytic-inducing compound, C7, which exhibits structural similarity to Di-2-Pyridyl Ketone 4, 4-Dimethyl-3-Thiosemicarbazone (Dp44mT), a known chelator of intracellular iron, is found to reactivate EBV lytic cycle in GC and NPC. This study aims to investigate the role of intracellular iron chelation by C7 and other iron chelators in lytic reactivation of EBV in GC and NPC. Testing of six structural analogs of C7 revealed only those which have high affinity towards transition metals could induce EBV lytic cycle. Precomplexing C7 and iron chelators to iron prior to treatment of the cells abolished EBV lytic reactivation. Though hypoxia signaling pathway was activated, it was not the only pathway associated with EBV reactivation. Specifically, C7 and iron chelators initiated autophagy by activating extracellular signal-regulated kinase (ERK1/2) to reactivate EBV lytic cycle since autophagy and EBV lytic reactivation were abolished in cells treated with ERK1/2 blockers whilst inhibition of autophagy by 3-Methyladenine (3-MA) and atg5 knockdown significantly abolished EBV lytic reactivation. In summary, we discovered a novel mechanism of reactivation of the EBV lytic cycle through intracellular iron chelation and induction of ERK-autophagy axis in EBV-positive epithelial malignancies, raising the question whether clinically available iron chelators can be incorporated into existing therapeutic regimens to treat these cancers.
Collapse
|
11
|
Wang M, Wu W, Zhang Y, Yao G, Gu B. Rapamycin enhances lytic replication of Epstein-Barr virus in gastric carcinoma cells by increasing the transcriptional activities of immediate-early lytic promoters. Virus Res 2018; 244:173-180. [PMID: 29169830 DOI: 10.1016/j.virusres.2017.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/18/2017] [Accepted: 11/18/2017] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV), a human herpesvirus, is linked to both epithelial and lymphoid malignancies. Induction of EBV reactivation is a potential therapeutic strategy for EBV-associated tumors. In this study, we assessed the effects of rapamycin on EBV reactivation in gastric carcinoma cells. We found that rapamycin upregulated expression of EBV lytic proteins and increased the viral proliferation triggered by the EBV lytic inducer sodium butyrate. Reverse transcription-qPCR, luciferase activity assays, chromatin immunoprecipitation and western blotting were employed to explore the mechanism by which rapamycin promotes EBV reactivation. Our results showed that rapamycin treatment resulted in increased mRNA levels of EBV immediate-early genes. Rapamycin also enhanced the transcriptional activities of the EBV immediate-early lytic promoters Zp and Rp by strengthening Sp1 binding. Repression of the cellular ataxia telangiectasia-mutated/p53 pathway by siRNA-mediated knockdown of the ataxia telangiectasia-mutated gene significantly abrogated virus reactivation by rapamycin/sodium butyrate treatment, indicating that the ataxia telangiectasia-mutated/p53 pathway is involved in rapamycin-promoted EBV reactivation. Taken together, these findings demonstrate that rapamycin might have the potential to enhance the effectiveness of oncolytic viral therapies developed for EBV-associated malignancies.
Collapse
MESH Headings
- Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors
- Ataxia Telangiectasia Mutated Proteins/genetics
- Ataxia Telangiectasia Mutated Proteins/metabolism
- Butyric Acid/pharmacology
- Cell Line, Tumor
- Cell Survival/drug effects
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Gastric Mucosa/drug effects
- Gastric Mucosa/metabolism
- Gastric Mucosa/virology
- Gene Expression Regulation
- Genes, Reporter
- Herpesvirus 4, Human/drug effects
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/growth & development
- Herpesvirus 4, Human/metabolism
- Humans
- Immediate-Early Proteins/agonists
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Luciferases/genetics
- Luciferases/metabolism
- Oncolytic Virotherapy/methods
- Promoter Regions, Genetic/drug effects
- Protein Binding
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Sirolimus/pharmacology
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Transcription, Genetic
- Tumor Suppressor Protein p53/antagonists & inhibitors
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Virus Activation/drug effects
- Virus Replication/drug effects
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China.
| | - Wei Wu
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China
| | - Yinfeng Zhang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China
| | - Guoliang Yao
- Department of General Surgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China
| | - Bianli Gu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| |
Collapse
|
12
|
Cell-specific expression of aquaporin-5 (Aqp5) in alveolar epithelium is directed by GATA6/Sp1 via histone acetylation. Sci Rep 2017; 7:3473. [PMID: 28615712 PMCID: PMC5471216 DOI: 10.1038/s41598-017-03152-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/25/2017] [Indexed: 01/23/2023] Open
Abstract
Epigenetic regulation of differentiation-related genes is poorly understood. We previously reported that transcription factors GATA6 and Sp1 interact with and activate the rat proximal 358-bp promoter/enhancer (p358P/E) of lung alveolar epithelial type I (AT1) cell-specific gene aquaporin-5 (Aqp5). In this study, we found that histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) increased AQP5 expression and Sp1-mediated transcription of p358P/E. HDAC3 overexpression inhibited Sp1-mediated Aqp5 activation, while HDAC3 knockdown augmented AQP5 protein expression. Knockdown of GATA6 or transcriptional co-activator/histone acetyltransferase p300 decreased AQP5 expression, while p300 overexpression enhanced p358P/E activation by GATA6 and Sp1. GATA6 overexpression, SAHA treatment or HDAC3 knockdown increased histone H3 (H3) but not histone H4 (H4) acetylation within the homologous p358P/E region of mouse Aqp5. HDAC3 binds to Sp1 and HDAC3 knockdown increased interaction of GATA6/Sp1, GATA6/p300 and Sp1/p300. These results indicate that GATA6 and HDAC3 control Aqp5 transcription via modulation of H3 acetylation/deacetylation, respectively, through competition for binding to Sp1, and suggest that p300 modulates acetylation and/or interacts with GATA6/Sp1 to regulate Aqp5 transcription. Cooperative interactions among transcription factors and histone modifications regulate Aqp5 expression during alveolar epithelial cell transdifferentiation, suggesting that HDAC inhibitors may enhance repair by promoting acquisition of AT1 cell phenotype.
Collapse
|
13
|
EBV reactivation as a target of luteolin to repress NPC tumorigenesis. Oncotarget 2017; 7:18999-9017. [PMID: 26967558 PMCID: PMC4951347 DOI: 10.18632/oncotarget.7967] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 02/08/2016] [Indexed: 11/25/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignancy derived from the epithelial cells of the nasopharynx. Although a combination of radiotherapy with chemotherapy is effective for therapy, relapse and metastasis after remission remain major causes of mortality. Epstein-Barr virus (EBV) is believed to be one of causes of NPC development. We demonstrated previously that EBV reactivation is important for the carcinogenesis of NPC. We sought, therefore, to determine whether EBV reactivation can be a target for retardation of relapse of NPC. After screening, we found luteolin is able to inhibit EBV reactivation. It inhibited EBV lytic protein expression and repressed the promoter activities of two major immediate-early genes, Zta and Rta. Furthermore, luteolin was shown to reduce genomic instability induced by recurrent EBV reactivation in NPC cells. EBV reactivation-induced NPC cell proliferation and migration, as well as matrigel invasiveness, were also repressed by luteolin treatment. Tumorigenicity in mice, induced by EBV reactivation, was decreased profoundly following luteolin administration. Together, these results suggest that inhibition of EBV reactivation is a novel approach to prevent the relapse of NPC.
Collapse
|
14
|
MicroRNA 373 Facilitates the Replication of Porcine Reproductive and Respiratory Syndrome Virus by Its Negative Regulation of Type I Interferon Induction. J Virol 2017; 91:JVI.01311-16. [PMID: 27881653 DOI: 10.1128/jvi.01311-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/18/2016] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) play an important role in the regulation of immune responses. Previous studies have indicated that dysregulating the miRNAs leads to the immunosuppression of porcine reproductive and respiratory syndrome virus (PRRSV). However, it is not clear how PRRSV regulates the expression of host miRNA, which may lead to immune escape or promote the replication of the virus. The present work suggests that PRRSV upregulated the expression of miR-373 through elevating the expression of specificity protein 1 (Sp1) in MARC-145 cells. Furthermore, this work demonstrated that miR-373 promoted the replication of PRRSV, since miR-373 was a novel negative miRNA for the production of beta interferon (IFN-β) by targeting nuclear factor IA (NFIA), NFIB, interleukin-1 receptor-associated kinase 1 (IRAK1), IRAK4, and interferon regulatory factor 1 (IRF1). We also found that both NFIA and NFIB were novel proteins for inducing the production of IFN-β, and both of them could inhibit the replication of PRRSV. In conclusion, PRRSV upregulated the expression of miR-373 by elevating the expression of Sp1 and hijacked the host miR-373 to promote the replication of PRRSV by negatively regulating the production of IFN-β. IMPORTANCE PRRSV causes one of the most economically devastating diseases of swine, and there is no effective method for controlling PRRSV. It is not clear how PRRSV inhibits the host's immune response and induces persistent infection. Previous studies have shown that PRRSV inhibited the production of type I IFN, and the treatment of type I IFN could efficiently inhibit the replication of PRRSV, so it will be helpful to design new methods of controlling PRRSV by understanding the molecular mechanism by which PRRSV modulated the production of IFN. The current work shows that miR-373, upregulated by PRRSV, promotes PRRSV replication, since miR-373 impaired the production of IFN-β by targeting NFIA, NFIB, IRAK1, IRAK4, and IRF1, and both NFIA and NFIB were antiviral proteins to PRRSV. In conclusion, this paper revealed a novel mechanism of PRRSV that impaired the production of type I IFN by upregulating miR-373 expression in MARC-145 cells.
Collapse
|
15
|
Wu CC, Fang CY, Cheng YJ, Hsu HY, Chou SP, Huang SY, Tsai CH, Chen JY. Inhibition of Epstein-Barr virus reactivation by the flavonoid apigenin. J Biomed Sci 2017; 24:2. [PMID: 28056971 PMCID: PMC5217310 DOI: 10.1186/s12929-016-0313-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 12/18/2016] [Indexed: 12/03/2022] Open
Abstract
Background Lytic reactivation of EBV has been reported to play an important role in human diseases, including NPC carcinogenesis. Inhibition of EBV reactivation is considered to be of great benefit in the treatment of virus-associated diseases. For this purpose, we screened for inhibitory compounds and found that apigenin, a flavonoid, seemed to have the ability to inhibit EBV reactivation. Methods We performed western blotting, immunofluorescence and luciferase analyses to determine whether apigenin has anti-EBV activity. Results Apigenin inhibited expression of the EBV lytic proteins, Zta, Rta, EAD and DNase in epithelial and B cells. It also reduced the number of EBV-reactivating cells detectable by immunofluorescence analysis. In addition, apigenin has been found to reduce dramatically the production of EBV virions. Luciferase reporter analysis was performed to determine the mechanism by which apigenin inhibits EBV reactivation: apigenin suppressed the activity of the immediate-early (IE) gene Zta and Rta promoters, suggesting it can block initiation of the EBV lytic cycle. Conclusion Taken together, apigenin inhibits EBV reactivation by suppressing the promoter activities of two viral IE genes, suggesting apigenin is a potential dietary compound for prevention of EBV reactivation. Electronic supplementary material The online version of this article (doi:10.1186/s12929-016-0313-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chung-Chun Wu
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan.
| | - Chih-Yeu Fang
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan.,Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, 116, Taiwan
| | - Yu-Jhen Cheng
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan
| | - Hui-Yu Hsu
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan
| | - Sheng-Ping Chou
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan
| | - Sheng-Yen Huang
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan
| | - Ching-Hwa Tsai
- Department of Microbiology, College of Medicine National Health Research Institutes, National Taiwan University, No.35, Keyan Road, Zhunan Town, Miaoli County, Taipei, Taiwan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan. .,Department of Microbiology, College of Medicine National Health Research Institutes, National Taiwan University, No.35, Keyan Road, Zhunan Town, Miaoli County, Taipei, Taiwan.
| |
Collapse
|
16
|
Kim SJ, Kim WS. Reply to the letter to the editor 'Epstein-Barr virus reactivation in extranodal natural killer/T-cell lymphoma patients: a previously unrecognized serious adverse event in a pilot study with romidepsin, histone deacetylase (HDAC) inhibitors when combined with a proteasome inhibitor are safe and effective in patients with extranodal natural killer/T-cell lymphoma' by Tan et al. Ann Oncol 2016; 27:2133-2134. [PMID: 27502713 DOI: 10.1093/annonc/mdw296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- S J Kim
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - W S Kim
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul
| |
Collapse
|
17
|
Regulation of EBV LMP1-triggered EphA4 downregulation in EBV-associated B lymphoma and its impact on patients' survival. Blood 2016; 128:1578-89. [PMID: 27338098 DOI: 10.1182/blood-2016-02-702530] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/15/2016] [Indexed: 12/21/2022] Open
Abstract
Epstein-Barr virus (EBV), an oncogenic human virus, is associated with several lymphoproliferative disorders, including Burkitt lymphoma, Hodgkin disease, diffuse large B-cell lymphoma (DLBCL), and posttransplant lymphoproliferative disorder (PTLD). In vitro, EBV transforms primary B cells into lymphoblastoid cell lines (LCLs). Recently, several studies have shown that receptor tyrosine kinases (RTKs) play important roles in EBV-associated neoplasia. However, details of the involvement of RTKs in EBV-regulated B-cell neoplasia and malignancies remain largely unclear. Here, we found that erythropoietin-producing hepatocellular receptor A4 (EphA4), which belongs to the largest RTK Eph family, was downregulated in primary B cells post-EBV infection at the transcriptional and translational levels. Overexpression and knockdown experiments confirmed that EBV-encoded latent membrane protein 1 (LMP1) was responsible for this EphA4 suppression. Mechanistically, LMP1 triggered the extracellular signal-regulated kinase (ERK) pathway and promoted Sp1 to suppress EphA4 promoter activity. Functionally, overexpression of EphA4 prevented LCLs from proliferation. Pathologically, the expression of EphA4 was detected in EBV(-) tonsils but not in EBV(+) PTLD. In addition, an inverse correlation of EphA4 expression and EBV presence was verified by immunochemical staining of EBV(+) and EBV(-) DLBCL, suggesting EBV infection was associated with reduced EphA4 expression. Analysis of a public data set showed that lower EphA4 expression was correlated with a poor survival rate of DLBCL patients. Our findings provide a novel mechanism by which EphA4 can be regulated by an oncogenic LMP1 protein and explore its possible function in B cells. The results provide new insights into the role of EphA4 in EBV(+) PTLD and DLBCL.
Collapse
|
18
|
Tan D, Diong CP, Loh Y, Goh YT. Histone deacetylase (HDAC) inhibitors when combined with a proteasome inhibitor are safe and effective in patients with extranodal natural killer/T-cell lymphoma (ENKTL). Ann Oncol 2016; 27:1811-2. [PMID: 27287208 DOI: 10.1093/annonc/mdw231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- D Tan
- Raffles Cancer Centre, Raffles Hospital, Singapore
| | - C P Diong
- Department of Haematology, Singapore General Hospital, Singapore, Republic of Singapore
| | - Y Loh
- Raffles Cancer Centre, Raffles Hospital, Singapore
| | - Y T Goh
- Department of Haematology, Singapore General Hospital, Singapore, Republic of Singapore
| |
Collapse
|
19
|
Wu CC, Fang CY, Hsu HY, Chen YJ, Chou SP, Huang SY, Cheng YJ, Lin SF, Chang Y, Tsai CH, Chen JY. Luteolin inhibits Epstein-Barr virus lytic reactivation by repressing the promoter activities of immediate-early genes. Antiviral Res 2016; 132:99-110. [PMID: 27185626 DOI: 10.1016/j.antiviral.2016.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/27/2016] [Accepted: 05/09/2016] [Indexed: 02/08/2023]
Abstract
The lytic reactivation of Epstein-Barr virus (EBV) has been reported to be strongly associated with several human diseases, including nasopharyngeal carcinoma (NPC). Inhibition of the EBV lytic cycle has been shown to be of great benefit in the treatment of EBV-associated diseases. The administration of dietary compounds is safer and more convenient than other approaches to preventing EBV reactivation. We screened several dietary compounds for their ability to inhibit EBV reactivation in NPC cells. Among them, the flavonoid luteolin showed significant inhibition of EBV reactivation. Luteolin inhibited protein expression from EBV lytic genes in EBV-positive epithelial and B cell lines. It also reduced the numbers of EBV-reactivating cells detected by immunofluorescence analysis and reduced the production of virion. Furthermore, luteolin reduced the activities of the promoters of the immediate-early genes Zta (Zp) and Rta (Rp) and also inhibited Sp1-luc activity, suggesting that disruption of Sp1 binding is involved in the inhibitory mechanism. CHIP analysis revealed that luteolin suppressed the activities of Zp and Rp by deregulating Sp1 binding. Taken together, luteolin inhibits EBV reactivation by repressing the promoter activities of Zp and Rp, suggesting luteolin is a potential dietary compound for prevention of virus infection.
Collapse
Affiliation(s)
- Chung-Chun Wu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chih-Yeu Fang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan; Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, 116, Taiwan
| | - Hui-Yu Hsu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yen-Ju Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Sheng-Ping Chou
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Sheng-Yen Huang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Jhen Cheng
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Su-Fang Lin
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yao Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Ching-Hwa Tsai
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan; Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
20
|
Identification of Novel Small Organic Compounds with Diverse Structures for the Induction of Epstein-Barr Virus (EBV) Lytic Cycle in EBV-Positive Epithelial Malignancies. PLoS One 2015; 10:e0145994. [PMID: 26717578 PMCID: PMC4696655 DOI: 10.1371/journal.pone.0145994] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/19/2015] [Indexed: 11/20/2022] Open
Abstract
Phorbol esters, which are protein kinase C (PKC) activators, and histone deacetylase (HDAC) inhibitors, which cause enhanced acetylation of cellular proteins, are the main classes of chemical inducers of Epstein-Barr virus (EBV) lytic cycle in latently EBV-infected cells acting through the PKC pathway. Chemical inducers which induce EBV lytic cycle through alternative cellular pathways may aid in defining the mechanisms leading to lytic cycle reactivation and improve cells' responsiveness towards lytic induction. We performed a phenotypic screening on a chemical library of 50,240 novel small organic compounds to identify novel class(es) of strong inducer(s) of EBV lytic cycle in gastric carcinoma (GC) and nasopharyngeal carcinoma (NPC) cells. Five hit compounds were selected after three successive rounds of increasingly stringent screening. All five compounds are structurally diverse from each other and distinct from phorbol esters or HDAC inhibitors. They neither cause hyperacetylation of histone proteins nor significant PKC activation at their working concentrations, suggesting that their biological mode of action are distinct from that of the known chemical inducers. Two of the five compounds with rapid lytic-inducing action were further studied for their mechanisms of induction of EBV lytic cycle. Unlike HDAC inhibitors, lytic induction by both compounds was not inhibited by rottlerin, a specific inhibitor of PKCδ. Interestingly, both compounds could cooperate with HDAC inhibitors to enhance EBV lytic cycle induction in EBV-positive epithelial cancer cells, paving way for the development of strategies to increase cells' responsiveness towards lytic reactivation. One of the two compounds bears structural resemblance to iron chelators and the other strongly activates the MAPK pathways. These structurally diverse novel organic compounds may represent potential new classes of chemicals that can be used to investigate any alternative mechanism(s) leading to EBV lytic cycle reactivation from latency.
Collapse
|
21
|
Kim SJ, Kim JH, Ki CS, Ko YH, Kim JS, Kim WS. Epstein-Barr virus reactivation in extranodal natural killer/T-cell lymphoma patients: a previously unrecognized serious adverse event in a pilot study with romidepsin. Ann Oncol 2015; 27:508-13. [PMID: 26658891 DOI: 10.1093/annonc/mdv596] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 11/21/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Romidepsin, a histone deacetylase (HDAC) inhibitor, has been approved for the treatment of relapsed and refractory peripheral T-cell lymphoma. However, the efficacy and safety of romidepsin has never been studied in patients with relapsed or refractory extranodal natural killer (NK)/T-cell lymphoma (ENKTL). PATIENTS AND METHODS We conducted an open-label, prospective pilot study to evaluate the efficacy and feasibility of romidepsin in the treatment of patients with ENKTL. The treatment was intravenous infusion of romidepsin (14 mg/m(2)) for 4 h on days 1, 8, and 15 of a 28-day cycle, and was repeated until disease progression or the occurrence of unacceptable toxicity. RESULTS A total of five patients enrolled on to this pilot study. However, three patients developed fever and elevated liver enzyme and bilirubin levels immediately after their first administration of romidepsin. We suspected that these events were associated with Epstein-Barr virus (EBV) reactivation because of the rapidly elevated EBV DNA titers in blood from these patients. An in vitro study with the ENKTL cell line SNK-6 cells also showed that HDAC inhibitors including romidepsin increased the copy number of EBV DNA in a dose-dependent manner. These findings suggested that romidepsin-induced histone acetylation reversed the repressed state of the genes required for EBV reactivation and that romidepsin treatment may have caused EBV reactivation in EBV-infected tumor cells in ENKTL patients. Therefore, we discontinued the enrollment of patients into this pilot study. CONCLUSIONS Our study suggests that the use of romidepsin may cause severe EBV reactivation in patients with ENKTL.
Collapse
Affiliation(s)
- S J Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul
| | - J H Kim
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul
| | - C S Ki
- Departments of Laboratory Medicine and Genetics
| | - Y H Ko
- Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul
| | - J S Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul
| | - W S Kim
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Hui KF, Cheung AKL, Choi CK, Yeung PL, Middeldorp JM, Lung ML, Tsao SW, Chiang AKS. Inhibition of class I histone deacetylases by romidepsin potently induces Epstein-Barr virus lytic cycle and mediates enhanced cell death with ganciclovir. Int J Cancer 2015. [PMID: 26205347 DOI: 10.1002/ijc.29698] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pan-histone deacetylase (HDAC) inhibitors, which inhibit 11 HDAC isoforms, are widely used to induce Epstein-Barr virus (EBV) lytic cycle in EBV-associated cancers in vitro and in clinical trials. Here, we hypothesized that inhibition of one or several specific HDAC isoforms by selective HDAC inhibitors could potently induce EBV lytic cycle in EBV-associated malignancies such as nasopharyngeal carcinoma (NPC) and gastric carcinoma (GC). We found that inhibition of class I HDACs, particularly HDAC-1, -2 and -3, was sufficient to induce EBV lytic cycle in NPC and GC cells in vitro and in vivo. Among a panel of selective HDAC inhibitors, the FDA-approved HDAC inhibitor romidepsin was found to be the most potent lytic inducer, which could activate EBV lytic cycle at ∼0.5 to 5 nM (versus ∼800 nM achievable concentration in patients' plasma) in more than 75% of cells. Upregulation of p21(WAF1) , which is negatively regulated by class I HDACs, was observed before the induction of EBV lytic cycle. The upregulation of p21(WAF1) and induction of lytic cycle were abrogated by a specific inhibitor of PKC-δ but not the inhibitors of PI3K, MEK, p38 MAPK, JNK or ATM pathways. Interestingly, inhibition of HDAC-1, -2 and -3 by romidepsin or shRNA knockdown could confer susceptibility of EBV-positive epithelial cells to the treatment with ganciclovir (GCV). In conclusion, we demonstrated that inhibition of class I HDACs by romidepsin could potently induce EBV lytic cycle and mediate enhanced cell death with GCV, suggesting potential application of romidepsin for the treatment of EBV-associated cancers.
Collapse
Affiliation(s)
- Kwai Fung Hui
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Arthur Kwok Leung Cheung
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Chung King Choi
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Po Ling Yeung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Jaap M Middeldorp
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Maria Li Lung
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China.,Center for Nasopharyngeal Carcinoma Research, The University of Hong Kong, Hong Kong SAR, China
| | - Sai Wah Tsao
- Center for Nasopharyngeal Carcinoma Research, The University of Hong Kong, Hong Kong SAR, China.,Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Alan Kwok Shing Chiang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China.,Center for Nasopharyngeal Carcinoma Research, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
23
|
Maintenance of Epstein-Barr Virus Latent Status by a Novel Mechanism, Latent Membrane Protein 1-Induced Interleukin-32, via the Protein Kinase Cδ Pathway. J Virol 2015; 89:5968-80. [PMID: 25810549 DOI: 10.1128/jvi.00168-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/16/2015] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV), an oncogenic herpesvirus, has the potential to immortalize primary B cells into lymphoblastoid cell lines (LCLs) in vitro. During immortalization, several EBV products induce cytokines or chemokines, and most of these are required for the proliferation of LCLs. Interleukin-32 (IL-32), a recently discovered proinflammatory cytokine, is upregulated after EBV infection, and this upregulation is detectable in all LCLs tested. EBV latent membrane protein 1 (LMP1) is responsible for inducing IL-32 expression at the mRNA and protein levels. Mechanistically, we showed that this LMP1 induction is provided by the p65 subunit of NF-κB, which binds to and activates the IL-32 promoter. Furthermore, the short hairpin RNA (shRNA)-mediated depletion of endogenous LMP1 and p65 in LCLs suppressed IL-32 expression, further suggesting that LMP1 is the key factor that stimulates IL-32 in LCLs via the NF-κB p65 pathway. Functionally, knockdown of IL-32 in LCLs elicits viral reactivation and affects cytokine expression, but it has no impact on cell proliferation and apoptosis. Of note, we reveal the mechanism whereby IL-32 is involved in the maintenance of EBV viral latency by inactivation of Zta promoter activity. This atypical cytoplasmic IL-32 hijacks the Zta activator protein kinase Cδ (PKCδ) and inhibits its translocation from the cytoplasm to the nucleus, where PKCδ binds to the Zta promoter and activates lytic cycle progression. These novel findings reveal that IL-32 is involved in the maintenance of EBV latency in LCLs. This finding may provide new information to explain how EBV maintains latency, in addition to viral chromatin structure and epigenetic modification. IMPORTANCE EBV persists in two states, latency and lytic replication, which is a unique characteristic of human infections. So far, little is known about how herpesviruses maintain latency in particular tissues or cell types. EBV is an excellent model to study this question because more than 90% of people are latently infected. EBV can immortalize primary B cells into lymphoblastoid cell lines in vitro. Expression of IL-32, a novel atypical cytoplasmic proinflammatory cytokine, increased after infection. The expression of IL-32 was controlled by LMP1. In investigating the regulatory mechanism, we demonstrated that the p65 subunit of NF-κB is required for this upregulation. Of note, the important biological activity of IL-32 was to trap protein kinase Cδ in the cytoplasm and prevent it from binding to the Zta promoter, which is the key event for EBV reaction. So, the expression of LMP1-induced IL-32 plays a role in the maintenance of EBV latency.
Collapse
|
24
|
Epstein-Barr virus LMP2A suppresses MHC class II expression by regulating the B-cell transcription factors E47 and PU.1. Blood 2015; 125:2228-38. [PMID: 25631773 DOI: 10.1182/blood-2014-08-594689] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/25/2015] [Indexed: 02/07/2023] Open
Abstract
Oncogenic Epstein-Barr virus (EBV) uses various approaches to escape host immune responses and persist in B cells. Such persistent infections may provide the opportunity for this virus to initiate tumor formation. Using EBV-immortalized lymphoblastoid cell lines (LCLs) as a model, we found that the expression of major histocompatibility complex (MHC) class II and CD74 in B cells is repressed after EBV infection. Class II transactivator (CIITA) is the master regulator of MHC class II-related genes. As expected, CIITA was downregulated in LCLs. We showed that downregulation of CIITA is caused by EBV latent membrane protein 2A (LMP2A) and driven by the CIITA-PIII promoter. Furthermore, we demonstrated that LMP2A-mediated E47 and PU.1 reduction resulted in CIITA suppression. Mechanistically, the LMP2A immunoreceptor tyrosine-based activation motif was critical for the repression of E47 and PU.1 promoter activity via Syk, Src, and the phosphatidylinositol 3-kinase/Akt pathway. Elimination of LMP2A in LCLs using a shLMP2A approach showed that the expression levels of E47, PU.1, CIITA, MHC class II, and CD74 are reversed. These data indicated that the LMP2A may reduce MHC class II expression through interference with the E47/PU.1-CIITA pathway. Finally, we demonstrated that MHC class II may be detected in tonsils and EBV-negative Hodgkin disease but not in EBV-associated posttransplant lymphoproliferative disease and Hodgkin disease.
Collapse
|
25
|
Murata T. Regulation of Epstein-Barr virus reactivation from latency. Microbiol Immunol 2015; 58:307-17. [PMID: 24786491 DOI: 10.1111/1348-0421.12155] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/03/2014] [Accepted: 04/26/2014] [Indexed: 12/13/2022]
Abstract
The Epstein-Barr virus (EBV) is a human gamma-herpesvirus that is implicated in various types of proliferative diseases. Upon infection, it predominantly establishes latency in B cells and cannot ever be eradicated; it persists for the host's lifetime. Reactivation of the virus from latency depends on expression of the viral immediate-early gene, BamHI Z fragment leftward open reading frame 1 (BZLF1). The BZLF1 promoter normally exhibits only low basal activity but is activated in response to chemical or biological inducers, such as 12-O-tetradecanoylphorbol-13-acetate, calcium ionophore, histone deacetylase inhibitor, or anti-Ig. Transcription from the BZLF1 promoter is activated by myocyte enhancer factor 2, specificity protein 1, b-Zip type transcription factors and mediating epigenetic modifications of the promoter, such as histone acetylation and H3K4me3. In contrast, repression of the promoter is mediated by transcriptional suppressors, such as ZEB, ZIIR-BP, and jun dimerization protein 2, causing suppressive histone modifications like histone H3K27me3, H3K9me2/3 and H4K20me3. Interestingly, there is little CpG DNA methylation of the promoter, indicating that DNA methylation is not crucial for suppression of BZLF1. This review will focus on the molecular mechanisms by which the EBV lytic switch is controlled and discuss the physiological significance of this switching for its survival and oncogenesis.
Collapse
Affiliation(s)
- Takayuki Murata
- Department of Virology, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan; Division of Virology, Aichi Cancer Center Research Institute, 1-Kanokoden, Chikusa-ku, Nagoya, 464-8681, Japan
| |
Collapse
|
26
|
Abstract
Epstein-Barr virus, which mainly infects B cells and epithelial cells, has two modes of infection: latent and lytic. Epstein-Barr virus infection is predominantly latent; however, lytic infection is detected in healthy seropositive individuals and becomes more prominent in certain pathological conditions. Lytic infection is divided into several stages: early gene expression, DNA replication, late gene expression, assembly, and egress. This chapter summarizes the most recent progress made toward understanding the molecular mechanisms that regulate the different lytic stages leading to production of viral progeny. In addition, the chapter highlights the potential role of lytic infection in disease development and current attempts to purposely induce lytic infection as a therapeutic approach.
Collapse
Affiliation(s)
- Jessica McKenzie
- Department of Pediatrics, Division of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Ayman El-Guindy
- Department of Pediatrics, Division of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
27
|
Hau PM, Deng W, Jia L, Yang J, Tsurumi T, Chiang AKS, Huen MSY, Tsao SW. Role of ATM in the formation of the replication compartment during lytic replication of Epstein-Barr virus in nasopharyngeal epithelial cells. J Virol 2015; 89:652-68. [PMID: 25355892 PMCID: PMC4301132 DOI: 10.1128/jvi.01437-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 10/10/2014] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV), a type of oncogenic herpesvirus, is associated with human malignancies. Previous studies have shown that lytic reactivation of EBV in latently infected cells induces an ATM-dependent DNA damage response (DDR). The involvement of ATM activation has been implicated in inducing viral lytic gene transcription to promote lytic reactivation. Its contribution to the formation of a replication compartment during lytic reactivation of EBV remains poorly defined. In this study, the role of ATM in viral DNA replication was investigated in EBV-infected nasopharyngeal epithelial cells. We observed that induction of lytic infection of EBV triggers ATM activation and localization of DDR proteins at the viral replication compartments. Suppression of ATM activity using a small interfering RNA (siRNA) approach or a specific chemical inhibitor profoundly suppressed replication of EBV DNA and production of infectious virions in EBV-infected cells induced to undergo lytic reactivation. We further showed that phosphorylation of Sp1 at the serine-101 residue is essential in promoting the accretion of EBV replication proteins at the replication compartment, which is crucial for replication of viral DNA. Knockdown of Sp1 expression by siRNA effectively suppressed the replication of viral DNA and localization of EBV replication proteins to the replication compartments. Our study supports an important role of ATM activation in lytic reactivation of EBV in epithelial cells, and phosphorylation of Sp1 is an essential process downstream of ATM activation involved in the formation of viral replication compartments. Our study revealed an essential role of the ATM-dependent DDR pathway in lytic reactivation of EBV, suggesting a potential antiviral replication strategy using specific DDR inhibitors. IMPORTANCE Epstein-Barr virus (EBV) is closely associated with human malignancies, including undifferentiated nasopharyngeal carcinoma (NPC), which has a high prevalence in southern China. EBV can establish either latent or lytic infection depending on the cellular context of infected host cells. Recent studies have highlighted the importance of the DNA damage response (DDR), a surveillance mechanism that evolves to maintain genome integrity, in regulating lytic EBV replication. However, the underlying molecular events are largely undefined. ATM is consistently activated in EBV-infected epithelial cells when they are induced to undergo lytic reactivation. Suppression of ATM inhibits replication of viral DNA. Furthermore, we observed that phosphorylation of Sp1 at the serine-101 residue, a downstream event of ATM activation, plays an essential role in the formation of viral replication compartments for replication of virus DNA. Our study provides new insights into the mechanism through which EBV utilizes the host cell machinery to promote replication of viral DNA upon lytic reactivation.
Collapse
Affiliation(s)
- Pok Man Hau
- Department of Anatomy and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Wen Deng
- Department of Anatomy and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Lin Jia
- Department of Anatomy and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Jie Yang
- Department of Anatomy and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Tatsuya Tsurumi
- Division of Virology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Alan Kwok Shing Chiang
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Michael Shing-Yan Huen
- Genome Stability Research Laboratory, Department of Anatomy and Centre for Cancer Research, The University of Hong Kong, Hong Kong SAR
| | - Sai Wah Tsao
- Department of Anatomy and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
28
|
Kumar P, Tripathi S, Pandey KN. Histone deacetylase inhibitors modulate the transcriptional regulation of guanylyl cyclase/natriuretic peptide receptor-a gene: interactive roles of modified histones, histone acetyltransferase, p300, AND Sp1. J Biol Chem 2014; 289:6991-7002. [PMID: 24451378 DOI: 10.1074/jbc.m113.511444] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Atrial natriuretic peptide (ANP) binds guanylyl cyclase-A/natriuretic peptide receptor-A (GC-A/NPRA) and produces the intracellular second messenger, cGMP, which regulates cardiovascular homeostasis. We sought to determine the function of histone deacetylases (HDACs) in regulating Npr1 (coding for GC-A/NPRA) gene transcription, using primary mouse mesangial cells treated with class-specific HDAC inhibitors (HDACi). Trichostatin A, a pan inhibitor, and mocetinostat (MGCD0103), a class I HDAC inhibitor, significantly enhanced Npr1 promoter activity (by 8- and 10-fold, respectively), mRNA levels (4- and 5.3-fold, respectively), and NPRA protein (2.7- and 3.5-fold, respectively). However, MC1568 (class II HDAC inhibitor) had no discernible effect. Overexpression of HDAC1 and HDAC2 significantly attenuated Npr1 promoter activity, whereas HDAC3 and HDAC8 had no effect. HDACi-treated cultured cells in vitro and intact animals in vivo showed significantly reduced binding of HDAC1 and -2 and increased accumulation of acetylated H3-K9/14 and H4-K12 at the Npr1 promoter. Deletional analyses of the Npr1 promoter along with ectopic overexpression and inhibition of Sp1 confirmed that HDACi-induced Npr1 gene transcription is accomplished by Sp1 activation. Furthermore, HDACi attenuated the interaction of Sp1 with HDAC1/2 and promoted Sp1 association with p300 and p300/cAMP-binding protein-associated factor; it also promoted the recruitment of p300 and p300/cAMP-binding protein-associated factor to the Npr1 promoter. Our results demonstrate that trichostatin A and MGCD0103 enhanced Npr1 gene expression through inhibition of HDAC1/2 and increased both acetylation of histones (H3-K9/14, H4-K12) and Sp1 by p300, and their recruitment to Npr1 promoter. Our findings define a novel epigenetic regulatory mechanism that governs Npr1 gene transcription.
Collapse
Affiliation(s)
- Prerna Kumar
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana 70112
| | - Satyabha Tripathi
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana 70112
| | - Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana 70112.
| |
Collapse
|
29
|
Murata T, Tsurumi T. Switching of EBV cycles between latent and lytic states. Rev Med Virol 2013; 24:142-53. [DOI: 10.1002/rmv.1780] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Takayuki Murata
- Division of Virology; Aichi Cancer Center Research Institute; Nagoya Japan
- Department of Virology; Nagoya University School of Medicine; Nagoya Japan
| | - Tatsuya Tsurumi
- Division of Virology; Aichi Cancer Center Research Institute; Nagoya Japan
| |
Collapse
|
30
|
Liu YR, Huang SY, Chen JY, Wang LHC. Microtubule depolymerization activates the Epstein–Barr virus lytic cycle through protein kinase C pathways in nasopharyngeal carcinoma cells. J Gen Virol 2013; 94:2750-2758. [DOI: 10.1099/vir.0.058040-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Elevated levels of antibodies against Epstein–Barr virus (EBV) and the presence of viral DNA in plasma are reliable biomarkers for the diagnosis of nasopharyngeal carcinoma (NPC) in high-prevalence areas, such as South-East Asia. The presence of these viral markers in the circulation suggests that a minimal level of virus reactivation may have occurred in an infected individual, although the underlying mechanism of reactivation remains to be elucidated. Here, we showed that treatment with nocodazole, which provokes the depolymerization of microtubules, induces the expression of two EBV lytic cycle proteins, Zta and EA-D, in EBV-positive NPC cells. This effect was independent of mitotic arrest, as viral reactivation was not abolished in cells synchronized at interphase. Notably, the induction of Zta by nocodazole was mediated by transcriptional upregulation via protein kinase C (PKC). Pre-treatment with inhibitors for PKC or its downstream signalling partners p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) abolished the nocodazole-mediated induction of Zta and EA-D. Interestingly, the effect of nocodazole, as well as colchicine and vinblastine, on lytic gene expression occurred only in NPC epithelial cells but not in cells derived from lymphocytes. These results establish a novel role of microtubule integrity in controlling the EBV life cycle through PKC and its downstream pathways, which represents a tissue-specific mechanism for controlling the life-cycle switch of EBV.
Collapse
Affiliation(s)
- Yi-Ru Liu
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
- Graduate Program of Biotechnology in Medicine of National Tsing Hua University and National Health Research Institutes, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Sheng-Yen Huang
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
- Graduate Program of Biotechnology in Medicine of National Tsing Hua University and National Health Research Institutes, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
| | - Lily Hui-Ching Wang
- Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
31
|
Transcriptional regulation by post-transcriptional modification—Role of phosphorylation in Sp1 transcriptional activity. Gene 2012; 508:1-8. [DOI: 10.1016/j.gene.2012.07.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/22/2012] [Accepted: 07/16/2012] [Indexed: 01/05/2023]
|