1
|
Sprunger ML, Jackrel ME. The role of Matrin-3 in physiology and its dysregulation in disease. Biochem Soc Trans 2024; 52:961-972. [PMID: 38813817 PMCID: PMC11209761 DOI: 10.1042/bst20220585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
The dysfunction of many RNA-binding proteins (RBPs) that are heavily disordered, including TDP-43 and FUS, are implicated in amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). These proteins serve many important roles in the cell, and their capacity to form biomolecular condensates (BMCs) is key to their function, but also a vulnerability that can lead to misregulation and disease. Matrin-3 (MATR3) is an intrinsically disordered RBP implicated both genetically and pathologically in ALS/FTD, though it is relatively understudied as compared with TDP-43 and FUS. In addition to binding RNA, MATR3 also binds DNA and is implicated in many cellular processes including the DNA damage response, transcription, splicing, and cell differentiation. It is unclear if MATR3 localizes to BMCs under physiological conditions, which is brought further into question due to its lack of a prion-like domain. Here, we review recent studies regarding MATR3 and its roles in numerous physiological processes, as well as its implication in a range of diseases.
Collapse
Affiliation(s)
- Macy L Sprunger
- Department of Chemistry, Washington University, St. Louis, MO 63130, U.S.A
| | - Meredith E Jackrel
- Department of Chemistry, Washington University, St. Louis, MO 63130, U.S.A
| |
Collapse
|
2
|
Arvin AM. Creating the "Dew Drop on a Rose Petal": the Molecular Pathogenesis of Varicella-Zoster Virus Skin Lesions. Microbiol Mol Biol Rev 2023; 87:e0011622. [PMID: 37354037 PMCID: PMC10521358 DOI: 10.1128/mmbr.00116-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023] Open
Abstract
Varicella-zoster virus (VZV) is a human alphaherpesvirus that causes varicella (chicken pox) as the primary infection in a susceptible host. Varicella is very contagious through its transmission by direct contact with vesicular skin lesions that contain high titers of infectious virus and respiratory droplets. While the clinical manifestations of primary VZV infection are well recognized, defining the molecular mechanisms that drive VZV pathogenesis in the naive host before adaptive antiviral immunity is induced has been a challenge due to species specificity. This review focuses on advances made in identifying the differentiated human host cells targeted by VZV to cause varicella, the processes involved in viral takeover of these heterogenous cell types, and the host cell countermeasures that typically culminate in a benign illness. This work has revealed many unexpected and multifaceted mechanisms used by VZV to achieve its high prevalence and persistence in the human population.
Collapse
Affiliation(s)
- Ann M. Arvin
- Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
3
|
Purohit SK, Samer C, McWilliam HEG, Traves R, Steain M, McSharry BP, Kinchington PR, Tscharke DC, Villadangos JA, Rossjohn J, Abendroth A, Slobedman B. Varicella Zoster Virus Impairs Expression of the Nonclassical Major Histocompatibility Complex Class I-Related Gene Protein (MR1). J Infect Dis 2021; 227:391-401. [PMID: 34648018 PMCID: PMC9891426 DOI: 10.1093/infdis/jiab526] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/13/2021] [Indexed: 02/04/2023] Open
Abstract
The antigen presentation molecule MR1 (major histocompatibility complex, class I-related) presents ligands derived from the riboflavin (vitamin B) synthesis pathway, which is not present in mammalian species or viruses, to mucosal-associated invariant T (MAIT) cells. In this study, we demonstrate that varicella zoster virus (VZV) profoundly suppresses MR1 expression. We show that VZV targets the intracellular reservoir of immature MR1 for degradation, while preexisting, ligand-bound cell surface MR1 is protected from such targeting, thereby highlighting an intricate temporal relationship between infection and ligand availability. We also identify VZV open reading frame (ORF) 66 as functioning to suppress MR1 expression when this viral protein is expressed during transient transfection, but this is not apparent during infection with a VZV mutant virus lacking ORF66 expression. This indicates that VZV is likely to encode multiple viral genes that target MR1. Overall, we identify an immunomodulatory function of VZV whereby infection suppresses the MR1 biosynthesis pathway.
Collapse
Affiliation(s)
| | | | - Hamish E G McWilliam
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia,Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Renee Traves
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Megan Steain
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Brian P McSharry
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Paul R Kinchington
- Department of Ophthalmology and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David C Tscharke
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia,Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia,Institute of Infection and Immunity, Cardiff University School of Medicine, Wales, United Kingdom
| | | | - Barry Slobedman
- Correspondence: Barry Slobedman, BSc (Hons), PhD, Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown NSW 2006, Australia ()
| |
Collapse
|
4
|
Abstract
RNA-binding proteins (RBPs) are essential factors required for the physiological function of neurons, muscle, and other tissue types. In keeping with this, a growing body of genetic, clinical, and pathological evidence indicates that RBP dysfunction and/or gene mutation leads to neurodegeneration and myopathy. Here, we summarize the current understanding of matrin 3 (MATR3), a poorly understood RBP implicated not only in ALS and frontotemporal dementia but also in distal myopathy. We begin by reviewing MATR3's functions, its regulation, and how it may be involved in both sporadic and familial neuromuscular disease. We also discuss insights gleaned from cellular and animal models of MATR3 pathogenesis, the links between MATR3 and other disease-associated RBPs, and the mechanisms underlying RBP-mediated disorders.
Collapse
Affiliation(s)
- Ahmed M. Malik
- Medical Scientist Training Program
- Neuroscience Graduate Program, and
| | - Sami J. Barmada
- Neuroscience Graduate Program, and
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Unity and diversity among viral kinases. Gene 2019; 723:144134. [PMID: 31589960 DOI: 10.1016/j.gene.2019.144134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/27/2022]
Abstract
Viral kinases are known to undergo autophosphorylation and also phosphorylate viral and host substrates. Viral kinases have been implicated in various diseases and are also known to acquire host kinases for mimicking cellular functions and exhibit virulence. Although substantial analyses have been reported in the literature on diversity of viral kinases, there is a gap in the understanding of sequence and structural similarity among kinases from different classes of viruses. In this study, we performed a comprehensive analysis of protein kinases encoded in viral genomes. Homology search methods have been used to identify kinases from 104,282 viral genomic datasets. Serine/threonine and tyrosine kinases are identified only in 390 viral genomes. Out of seven viral classes that are based on nature of genetic material, only viruses having double-stranded DNA and single-stranded RNA retroviruses are found to encode kinases. The 716 identified protein kinases are classified into 63 subfamilies based on their sequence similarity within each cluster, and sequence signatures have been identified for each subfamily. 11 clusters are well represented with at least 10 members in each of these clusters. Kinases from dsDNA viruses, Phycodnaviridae which infect green algae and Herpesvirales that infect vertebrates including human, form a major group. From our analysis, it has been observed that the protein kinases in viruses belonging to same taxonomic lineages form discrete clusters and the kinases encoded in alphaherpesvirus form host-specific clusters. A comprehensive sequence and structure-based analysis enabled us to identify the conserved residues or motifs in kinase catalytic domain regions across all viral kinases. Conserved sequence regions that are specific to a particular viral kinase cluster and the kinases that show close similarity to eukaryotic kinases were identified by using sequence and three-dimensional structural regions of eukaryotic kinases as reference. The regions specific to each viral kinase cluster can be used as signatures in the future in classifying uncharacterized viral kinases. We note that kinases from giant viruses Marseilleviridae have close similarity to viral oncogenes in the functional regions and in putative substrate binding regions indicating their possible role in cancer.
Collapse
|
6
|
Posttranscriptional Regulation of HIV-1 Gene Expression during Replication and Reactivation from Latency by Nuclear Matrix Protein MATR3. mBio 2018; 9:mBio.02158-18. [PMID: 30425153 PMCID: PMC6234869 DOI: 10.1128/mbio.02158-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The life cycle of HIV-1 requires integration of a DNA copy into the genome of the host cell. Transcription of the viral genes generates RNAs that are exported to the cytoplasm with the contribution of viral and cellular factors to get translated or incorporated in the newly synthesized virions. It has been observed that highly effective antiretroviral therapy, which is able to reduce circulating virus to undetectable levels, cannot fully eradicate the virus from cellular reservoirs that harbor a transcriptionally latent provirus. Thus, persistence of latently infected cells is the major barrier to a cure for HIV-1 infection. In order to purge these reservoirs of latently infected cells, it has been proposed to activate transcription to stimulate the virus to complete its life cycle. This strategy is believed to unmask these reservoirs, making them vulnerable to the immune system. However, limited successes of this approach may indicate additional posttranscriptional restrictions that need to be overcome for full virus reactivation. In this work we identify the cellular protein MATR3 as an essential cofactor of viral RNA processing. Reactivation of HIV-1 transcription per se is not sufficient to allow completion of a full life cycle of the virus if MATR3 is depleted. Furthermore, MATR3 is poorly expressed in quiescent CD4+ T lymphocytes that are the major reservoir of latent HIV-1. Cells derived from aviremic HIV-1 patients under antiretroviral therapy didn’t express MATR3, and most importantly, latency-reversing agents proposed for the rescue of latent provirus were ineffective for MATR3 upregulation. To conclude, our work identifies a cellular factor required for full HIV-1 reactivation and points to the revision of the current strategies for purging viral reservoirs that focus only on transcription. Posttranscriptional regulation of HIV-1 replication is finely controlled by viral and host factors. Among the former, Rev controls the export of partially spliced and unspliced viral RNAs from the nucleus and their translation in the cytoplasm or incorporation into new virions as genomic viral RNA. To investigate the functional role of the Rev cofactor MATR3 in the context of HIV infection, we modulated its expression in Jurkat cells and primary peripheral blood lymphocytes (PBLs). We confirmed that MATR3 is a positive regulator of HIV-1 acting at a posttranscriptional level. By applying the same approach to J-lat cells, a well-established model for the study of HIV-1 latency, we observed that MATR3 depletion did not affect transcriptional reactivation of the integrated provirus, but caused a reduction of Gag production. Following these observations, we hypothesized that MATR3 could be involved in the establishment of HIV-1 posttranscriptional latency. Indeed, mechanisms acting at the posttranscriptional level have been greatly overlooked in favor of transcriptional pathways. MATR3 was almost undetectable in resting PBLs, but could be promptly upregulated upon cellular stimulation with PHA. However, HIV latency-reversing agents were poor inducers of MATR3 levels, providing a rationale for their inability to fully reactivate the virus. These data have been confirmed ex vivo in cells derived from patients under suppressive ART. Finally, in the context of MATR3-depleted J-lat cells, impaired reactivation by SAHA could be fully rescued by MATR3 reconstitution, demonstrating a direct role of MATR3 in the posttranscriptional regulation of HIV-1 latency.
Collapse
|
7
|
Attenuation of Simian Varicella Virus Infection by Enhanced Green Fluorescent Protein in Rhesus Macaques. J Virol 2018; 92:JVI.02253-17. [PMID: 29343566 DOI: 10.1128/jvi.02253-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 01/14/2023] Open
Abstract
Simian varicella virus (SVV), the primate counterpart of varicella-zoster virus, causes varicella (chickenpox), establishes latency in ganglia, and reactivates to produce zoster. We previously demonstrated that a recombinant SVV expressing enhanced green fluorescent protein (rSVV.eGFP) is slightly attenuated both in culture and in infected monkeys. Here, we generated two additional recombinant SVVs to visualize infected cells in vitro and in vivo One harbors eGFP fused to the N terminus of open reading frame 9 (ORF9) (rSVV.eGFP-2a-ORF9), and another harbors eGFP fused to the C terminus of ORF66 (rSVV.eGFP-ORF66). Both recombinant viruses efficiently expressed eGFP in cultured cells. Both recombinant SVV infections in culture were comparable to that of wild-type SVV (SVV.wt). Unlike SVV.wt, eGFP-tagged SVV did not replicate in rhesus cells in culture. Intratracheal (i.t.) or i.t. plus intravenous (i.v.) inoculation of rhesus macaques with these new eGFP-tagged viruses resulted in low viremia without varicella rash, although SVV DNA was abundant in bronchoalveolar lavage (BAL) fluid at 10 days postinoculation (dpi). SVV DNA was also found in trigeminal ganglia of one monkey inoculated with rSVV.eGFP-ORF66. Intriguingly, a humoral response to both SVV and eGFP was observed. In addition, monkeys inoculated with the eGFP-expressing viruses were protected from superinfection with SVV.wt, suggesting that the monkeys had mounted an efficient immune response. Together, our results show that eGFP expression could be responsible for their reduced pathogenesis.IMPORTANCE SVV infection in nonhuman primates has served as an extremely useful animal model to study varicella-zoster virus (VZV) pathogenesis. eGFP-tagged viruses are a great tool to investigate their pathogenesis. We constructed and tested two new recombinant SVVs with eGFP inserted into two different locations in the SVV genome. Both recombinant SVVs showed robust replication in culture but reduced viremia compared to that with SVV.wt during primary infection in rhesus macaques. Our results indicate that conclusions on eGFP-tagged viruses based on in vitro results should be handled with care, since eGFP expression could result in attenuation of the virus.
Collapse
|
8
|
Abstract
Human immunodeficiency virus-1 (HIV-1) is known to interact with multiple host cellular proteins during its replication in the target cell. While many of these host cellular proteins facilitate viral replication, a number of them are reported to inhibit HIV-1 replication at various stages of its life cycle. These host cellular proteins, which are known as restriction factors, constitute an integral part of the host's first line of defence against the viral pathogen. Since the discovery of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G) as an HIV-1 restriction factor, several human proteins have been identified that exhibit anti-HIV-1 restriction. While each restriction factor employs a distinct mechanism of inhibition, the HIV-1 virus has equally evolved complex counter strategies to neutralize their inhibitory effect. APOBEC3G, tetherin, sterile alpha motif and histidine-aspartate domain 1 (SAMHD1), and trim-5α are some of the best known HIV-1 restriction factors that have been studied in great detail. Recently, six novel restriction factors were discovered that exhibit significant antiviral activity: endoplasmic reticulum α1,2-mannosidase I (ERManI), translocator protein (TSPO), guanylate-binding protein 5 (GBP5), serine incorporator (SERINC3/5) and zinc-finger antiviral protein (ZAP). The focus of this review is to discuss the antiviral mechanism of action of these six restriction factors and provide insights into the probable counter-evasion strategies employed by the HIV-1 virus. The recent discovery of new restriction factors substantiates the complex host-pathogen interactions occurring during HIV-1 pathogenesis and makes it imperative that further investigations are conducted to elucidate the molecular basis of HIV-1 replication.
Collapse
Affiliation(s)
- Dibya Ghimire
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110021, India
| | - Madhu Rai
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110021, India
| | - Ritu Gaur
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110021, India
| |
Collapse
|
9
|
Coelho MB, Attig J, Ule J, Smith CWJ. Matrin3: connecting gene expression with the nuclear matrix. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:303-15. [PMID: 26813864 DOI: 10.1002/wrna.1336] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 01/06/2023]
Abstract
As indicated by its name, Matrin3 was discovered as a component of the nuclear matrix, an insoluble fibrogranular network that structurally organizes the nucleus. Matrin3 possesses both DNA- and RNA-binding domains and, consistent with this, has been shown to function at a number of stages in the life cycle of messenger RNAs. These numerous activities indicate that Matrin3, and indeed the nuclear matrix, do not just provide a structural framework for nuclear activities but also play direct functional roles in these activities. Here, we review the structure, functions, and molecular interactions of Matrin3 and of Matrin3-related proteins, and the pathologies that can arise upon mutation of Matrin3. WIREs RNA 2016, 7:303-315. doi: 10.1002/wrna.1336 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Miguel B Coelho
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jan Attig
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Jernej Ule
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | | |
Collapse
|
10
|
Gallego-Iradi MC, Clare AM, Brown HH, Janus C, Lewis J, Borchelt DR. Subcellular Localization of Matrin 3 Containing Mutations Associated with ALS and Distal Myopathy. PLoS One 2015; 10:e0142144. [PMID: 26528920 PMCID: PMC4631352 DOI: 10.1371/journal.pone.0142144] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/18/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mutations in Matrin 3 [MATR3], an RNA- and DNA-binding protein normally localized to the nucleus, have been linked to amyotrophic lateral sclerosis (ALS) and distal myopathies. In the present study, we have used transient transfection of cultured cell lines to examine the impact of different disease-causing mutations on the localization of Matrin 3 within cells. RESULTS Using CHO and human H4 neuroglioma cell models, we find that ALS/myopathy mutations do not produce profound changes in the localization of the protein. Although we did observe variable levels of Matrin 3 in the cytoplasm either by immunostaining or visualization of fluorescently-tagged protein, the majority of cells expressing either wild-type (WT) or mutant Matrin 3 showed nuclear localization of the protein. When cytoplasmic immunostaining, or fusion protein fluorescence, was seen in the cytoplasm, the stronger intensity of staining or fluorescence was usually evident in the nucleus. In ~80% of cells treated with sodium arsenite (Ars) to induce cytoplasmic stress granules, the nuclear localization of WT and F115C mutant Matrin 3 was not disturbed. Notably, over-expression of mutant Matrin 3 did not induce the formation of obvious large inclusion-like structures in either the cytoplasm or nucleus. CONCLUSIONS Our findings indicate that mutations in Matrin 3 that are associated with ALS and myopathy do not dramatically alter the normal localization of the protein or readily induce inclusion formation.
Collapse
Affiliation(s)
- M. Carolina Gallego-Iradi
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
- Santa Fe HealthCare Alzheimer’s Disease Research Center, University of Florida, Gainesville, Florida, United States of America
| | - Alexis M. Clare
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| | - Hilda H. Brown
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
- Santa Fe HealthCare Alzheimer’s Disease Research Center, University of Florida, Gainesville, Florida, United States of America
| | - Christopher Janus
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| | - Jada Lewis
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| | - David R. Borchelt
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
- Santa Fe HealthCare Alzheimer’s Disease Research Center, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
11
|
Erazo A, Goff SP. Nuclear matrix protein Matrin 3 is a regulator of ZAP-mediated retroviral restriction. Retrovirology 2015; 12:57. [PMID: 26129669 PMCID: PMC4487854 DOI: 10.1186/s12977-015-0182-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/11/2015] [Indexed: 12/01/2022] Open
Abstract
Background Matrin 3 is a nuclear matrix protein involved in multiple nuclear processes. In HIV-1 infection, Matrin 3 serves as a Rev cofactor important for the cytoplasmic accumulation of HIV-1 transcripts. ZAP is a potent host restriction factor of multiple viruses including retroviruses HIV-1 and MoMuLV. In this study we sought to further characterize Matrin 3 functions in the regulation of HIV gene expression. Results Here we describe a function for Matrin 3 as a negative regulator of the ZAP-mediated restriction of retroviruses. Mass spectrometry analysis of Matrin 3-associated proteins uncovered interactions with proteins of the ZAP degradation complex, DDX17 and EXOSC3. Coimmunoprecipitation studies confirmed Matrin 3 associations with DDX17, EXOSC3 and ZAP, in a largely RNA-dependent manner, indicating that RNA is mediating the Matrin 3 interactions with these components of the ZAP degradation complex. Silencing Matrin 3 expression caused a remarkably enhanced ZAP-driven inhibition of HIV-1 and MoMuLV luciferase reporter viruses. This effect was shared with additional nuclear matrix proteins. ZAP targets multiply-spliced HIV-1 transcripts, but in the context of Matrin 3 suppression, this ZAP restriction was broadened to unspliced and multiply-spliced RNAs. Conclusions Here we reveal an unprecedented role for a nuclear matrix protein, Matrin 3, in the regulation of ZAP’s antiretroviral activity. Suppressing Matrin 3 powers a heightened and broader ZAP restriction of HIV-1 gene expression. This study suggests that this ZAP regulatory mechanism is shared with additional nuclear matrix proteins.
Collapse
Affiliation(s)
- Angela Erazo
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY, 10032, USA.
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY, 10032, USA. .,Department of Microbiology and Immunology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
12
|
Bayer A, Delorme-Axford E, Sleigher C, Frey TK, Trobaugh DW, Klimstra WB, Emert-Sedlak LA, Smithgall TE, Kinchington PR, Vadia S, Seveau S, Boyle JP, Coyne CB, Sadovsky Y. Human trophoblasts confer resistance to viruses implicated in perinatal infection. Am J Obstet Gynecol 2015; 212:71.e1-71.e8. [PMID: 25108145 DOI: 10.1016/j.ajog.2014.07.060] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/11/2014] [Accepted: 07/30/2014] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Primary human trophoblasts were previously shown to be resistant to viral infection, and able to confer this resistance to nontrophoblast cells. Can trophoblasts protect nontrophoblastic cells from infection by viruses or other intracellular pathogens that are implicated in perinatal infection? STUDY DESIGN Isolated primary term human trophoblasts were cultured for 48-72 hours. Diverse nonplacental human cell lines (U2OS, human foreskin fibroblast, TZM-bl, MeWo, and Caco-2) were preexposed to either trophoblast conditioned medium, nonconditioned medium, or miR-517-3p for 24 hours. Cells were infected with several viral and nonviral pathogens known to be associated with perinatal infections. Cellular infection was defined and quantified by plaque assays, luciferase assays, microscopy, and/or colonization assays. Differences in infection were assessed by Student t test or analysis of variance with Bonferroni correction. RESULTS Infection by rubella and other togaviruses, human immunodeficiency virus-1, and varicella zoster was attenuated in cells preexposed to trophoblast-conditioned medium (P < .05), and a partial effect by the chromosome 19 microRNA miR-517-3p on specific pathogens. The conditioned medium had no effect on infection by Toxoplasma gondii or Listeria monocytogenes. CONCLUSION Our findings indicate that medium conditioned by primary human trophoblasts attenuates viral infection in nontrophoblastic cells. Our data point to a trophoblast-specific antiviral effect that may be exploited therapeutically.
Collapse
|
13
|
Suppression of extracellular signal-regulated kinase activity in herpes simplex virus 1-infected cells by the Us3 protein kinase. J Virol 2012; 86:7771-6. [PMID: 22593153 DOI: 10.1128/jvi.00622-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Host mitogen-activated protein kinases (MAPKs) are deregulated by herpes simplex virus 1 (HSV-1). Unlike p38 MAPK and Jun N-terminal protein kinase (JNK), which require ICP27 for their activation early in infection, extracellular signal-regulated kinase (ERK) activity is suppressed by an unknown mechanism. Here, we establish that HSV-1-induced suppression of ERK activity requires viral gene expression, occurs with delayed-early kinetics, and requires the functional virus-encoded Us3 Ser/Thr protein kinase. Finally, Us3 expression in uninfected cells was necessary and sufficient to suppress ERK activity in the absence of any other virus-encoded gene products. This demonstrates that inhibition of ERK activity in HSV-1-infected cells is an intrinsic Us3 function and defines a new role for this alphaherpesvirus Us3 kinase in regulating MAPK activation in infected cells.
Collapse
|
14
|
Osman AM, van Loveren H. Phosphoproteomic analysis of mouse thymoma cells treated with tributyltin oxide: TBTO affects proliferation and energy sensing pathways. Toxicol Sci 2011; 126:84-100. [PMID: 22174045 DOI: 10.1093/toxsci/kfr333] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report the results of phosphoproteomic analysis of mouse thymoma cells treated with tributyltin oxide (TBTO), an immunotoxic compound. After cell lysis, phosphoproteins were isolated using Phosphoprotein Purification Kit, separated by SDS-PAGE and subsequently digested with trypsin. Phosphopeptides were enriched employing titanium dioxide, and the obtained fractions were analyzed by nano-LC-MS/MS. A total of 160 phosphoproteins and 328 phosphorylation sites were identified in thymoma cells. Among the differentially phosphorylated proteins identified in TBTO-treated cells were key enzymes, which catalyze rate-limiting steps in pathways that are sensitive to cellular energy status. These proteins included acetyl-CoA carboxylase isoform 1, which catalyzes the rate-limiting step of fatty acid synthesis. Another enzyme was glutamine: fructose-6-phosphate amidotransferase, GFAT1, the first and rate-limiting enzyme for the hexoamine synthesis pathway. Pyruvate dehydrogenase (PDH), a multicomplex enzyme that catalyzes the rate-limiting step of aerobic oxidation of fuel carbohydrates, was identified in both TBTO-treated and control cells; however, phosphorylation at residue S293, known to inhibit PDH activity, was identified only in control cells. A lower expression level of ribosomal protein S6 kinase 1, a downstream kinase of the mammalian target of rapamycin signaling pathway implicated in protein synthesis through phosphorylation of 40 ribosomal S6, was observed in the treated cells. Giant kinases like AMP-activated protein kinase (AMPK) and cAMP-dependent protein kinase (PKAR1A), which are known to mediate the phosphorylation of these enzymes, were identified in TBTO-treated cells. Downregulation of proteins, such as MAPK, matrin-3 and ribonucleotide reductase, subunit RRM2, which are implicated in cell proliferation, was also observed in TBTO-treated cells. Together, the results show that TBTO affects proliferation and energy sensor pathways.
Collapse
Affiliation(s)
- Ahmed M Osman
- National Institute for Public Health and the Environment (RIVM), NL-3720 BA Bilthoven, The Netherlands.
| | | |
Collapse
|
15
|
Finnen RL, Johnston SM, Neron CE, Banfield BW. Nucleocytoplasmic shuttling of the HSV-2 serine/threonine kinase Us3. Virology 2011; 417:229-37. [PMID: 21741667 DOI: 10.1016/j.virol.2011.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 06/06/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
Abstract
The alphaherpesvirus serine/threonine kinase Us3 plays diverse roles in virus multiplication and modifies both nuclear and cytoplasmic substrates. We recently reported that treatment of HSV-2 Us3-transfected and HSV-2-infected cells with leptomycin B, an inhibitor of nuclear export mediated by interaction of chromosomal regional maintenance protein (CRM1) with leucine rich nuclear export signals (NESs), resulted in nuclear trapping of Us3. Here, we utilized fluorescence loss in photobleaching to monitor nuclear export of HSV-2 Us3 and confirm that this process proceeds solely via a CRM1-mediated mechanism. Analysis of deletion derivatives of HSV-2 Us3 fused to a nuclear export reporter protein implicated the involvement of NES-like sequences in nuclear export. However, nuclear trapping of HSV-2 Us3 proteins carrying mutations in these potential NESs was not observed, indicating that these sequences are not functional in the context of full-length protein. Our analyses also revealed previously unidentified regions of HSV-2 Us3 that contribute to its kinase activity.
Collapse
Affiliation(s)
- Renée L Finnen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | |
Collapse
|
16
|
Morrison LA, DeLassus GS. Breach of the nuclear lamina during assembly of herpes simplex viruses. Nucleus 2011; 2:271-6. [PMID: 21941110 DOI: 10.4161/nucl.2.4.16334] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Beneath the inner nuclear membrane lies the dense meshwork of the nuclear lamina, which provides structural support for the nuclear envelope and serves as an important organizing center for a number of nuclear and cytoplasmic constituents and processes. Herpesviruses have a significant and wide-ranging impact on human health, and their capacity to replicate and cause disease includes events that occur in the host cell nucleus. Herpesviruses begin assembly of progeny virus in the nuclei of infected cells and their capsids must escape the confines of the nucleus by budding through the inner nuclear membrane (INM) to proceed with later stages of virion assembly and egress. Access of viral capsids to the INM thus necessitates disruption of the dense nuclear lamina layer. We review herpesvirus effects on the nuclear lamina and in particular the roles of the herpes simplex virus-encoded nuclear envelope complex and viral kinases on lamin phosphorylation, dissociation, and nucleocapsid envelopment at the INM.
Collapse
Affiliation(s)
- Lynda A Morrison
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| | | |
Collapse
|