1
|
Yin P, Martin CK, Kielian M. Virus stealth technology: Tools to study virus cell-to-cell transmission. PLoS Pathog 2024; 20:e1012590. [PMID: 39383183 PMCID: PMC11463765 DOI: 10.1371/journal.ppat.1012590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024] Open
Affiliation(s)
- Peiqi Yin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Caroline K. Martin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
2
|
Heindel DW, Figueroa Acosta DM, Goff M, Yengo CK, Jan M, Liu X, Wang XH, Petrova MI, Zhang M, Sagar M, Barnette P, Pandey S, Hessell AJ, Chan KW, Kong XP, Chen BK, Mahal LK, Bensing BA, Hioe CE. HIV-1 interaction with an O-glycan-specific bacterial lectin enhances virus infectivity and resistance to neutralizing antibodies. iScience 2024; 27:110390. [PMID: 39108723 PMCID: PMC11301080 DOI: 10.1016/j.isci.2024.110390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/21/2023] [Accepted: 06/25/2024] [Indexed: 10/13/2024] Open
Abstract
Bacteria dysbiosis and its accompanying inflammation or compromised mucosal integrity is associated with an increased risk of HIV-1 transmission. However, HIV-1 may also bind bacteria or bacterial products to impact infectivity and transmissibility. This study evaluated HIV-1 interactions with bacteria through glycan-binding lectins. The Streptococcal Siglec-like lectin SLBR-N, a part of the fimbriae shrouding the bacteria surface that recognizes α2,3 sialyated O-linked glycans, was noted for its ability to enhance HIV-1 infectivity in the context of cell-free infection and cell-to-cell transfer. Enhancing effects were recapitulated with O-glycan-binding plant lectins, signifying the importance of O-glycans. N-glycan-binding bacterial lectins FimH and Msl had no effect. SLBR-N was demonstrated to capture and transfer infectious HIV-1 virions, bind to O-glycans on HIV-1 Env, and increase HIV-1 resistance to neutralizing antibodies targeting different regions of Env. This study highlights the potential contribution of O-glycan-binding lectins from commensal bacteria at the mucosa in promoting HIV-1 infection.
Collapse
Affiliation(s)
- Daniel W. Heindel
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dania M. Figueroa Acosta
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marisa Goff
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clauvis Kunkeng Yengo
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Muzafar Jan
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiaomei Liu
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiao-Hong Wang
- VA New York Harbor Healthcare System-Manhattan, New York, NY, USA
| | - Mariya I. Petrova
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Mo Zhang
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Manish Sagar
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Phillip Barnette
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Shilpi Pandey
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Ann J. Hessell
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Kun-Wei Chan
- Department of Biochemistry and Molecular Pharmacology New York University Grossman School of Medicine, New York, NY, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology New York University Grossman School of Medicine, New York, NY, USA
| | - Benjamin K. Chen
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lara K. Mahal
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Barbara A. Bensing
- Department of Medicine, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, CA, USA
| | - Catarina E. Hioe
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| |
Collapse
|
3
|
Tada T, Zhang Y, Kong D, Tanaka M, Yao W, Kameoka M, Ueno T, Fujita H, Tokunaga K. Further Characterization of the Antiviral Transmembrane Protein MARCH8. Cells 2024; 13:698. [PMID: 38667313 PMCID: PMC11049619 DOI: 10.3390/cells13080698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The cellular transmembrane protein MARCH8 impedes the incorporation of various viral envelope glycoproteins, such as the HIV-1 envelope glycoprotein (Env) and vesicular stomatitis virus G-glycoprotein (VSV-G), into virions by downregulating them from the surface of virus-producing cells. This downregulation significantly reduces the efficiency of virus infection. In this study, we aimed to further characterize this host protein by investigating its species specificity and the domains responsible for its antiviral activity, as well as its ability to inhibit cell-to-cell HIV-1 infection. We found that the antiviral function of MARCH8 is well conserved in the rhesus macaque, mouse, and bovine versions. The RING-CH domains of these versions are functionally important for inhibiting HIV-1 Env and VSV-G-pseudovirus infection, whereas tyrosine motifs are crucial for the former only, consistent with findings in human MARCH8. Through analysis of chimeric proteins between MARCH8 and non-antiviral MARCH3, we determined that both the N-terminal and C-terminal cytoplasmic tails, as well as presumably the N-terminal transmembrane domain, of MARCH8 are critical for its antiviral activity. Notably, we found that MARCH8 is unable to block cell-to-cell HIV-1 infection, likely due to its insufficient downregulation of Env. These findings offer further insights into understanding the biology of this antiviral transmembrane protein.
Collapse
Affiliation(s)
- Takuya Tada
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (T.T.); (Y.Z.); (D.K.); (W.Y.)
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Yanzhao Zhang
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (T.T.); (Y.Z.); (D.K.); (W.Y.)
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, China
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Dechuan Kong
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (T.T.); (Y.Z.); (D.K.); (W.Y.)
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Michiko Tanaka
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (T.T.); (Y.Z.); (D.K.); (W.Y.)
| | - Weitong Yao
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (T.T.); (Y.Z.); (D.K.); (W.Y.)
- Shenzhen Bay Laboratory, Institute of Chemical Biology, Shenzhen 518132, China
| | - Masanori Kameoka
- Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe 650-0017, Japan;
| | - Takamasa Ueno
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Hideaki Fujita
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo 859-3298, Japan;
| | - Kenzo Tokunaga
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (T.T.); (Y.Z.); (D.K.); (W.Y.)
| |
Collapse
|
4
|
Mazurov D, Herschhorn A. Ultrasensitive quantification of HIV-1 cell-to-cell transmission in primary human CD4 + T cells measures viral sensitivity to broadly neutralizing antibodies. mBio 2024; 15:e0242823. [PMID: 38063394 PMCID: PMC10790777 DOI: 10.1128/mbio.02428-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/07/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE HIV-1 can efficiently transmit from one cell to another but accurate quantification of this mode of transmission is still challenging. Here, we developed an ultrasensitive assay to measure HIV-1 transmission between cells and to evaluate HIV-1 escape from broadly neutralizing antibodies in primary human T cells. This assay will contribute to understanding the fundamental mechanisms of HIV-1 cell-to-cell transmission, allow evaluation of pre-existing or acquired HIV-1 resistance in clinical trials, and can be adapted to study the biology of other retroviruses.
Collapse
Affiliation(s)
- Dmitriy Mazurov
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Engineering in Medicine, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- The College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Heindel DW, Figueroa Acosta DM, Goff M, Yengo CK, Jan M, Liu X, Wang XH, Petrova MI, Zhang M, Sagar M, Barnette P, Pandey S, Hessell AJ, Chan KW, Kong XP, Chen BK, Mahal LK, Bensing BA, Hioe CE. HIV-1 interaction with an O-glycan-specific bacterial lectin enhances virus infectivity and resistance to neutralization by antibodies. RESEARCH SQUARE 2024:rs.3.rs-2596269. [PMID: 36824869 PMCID: PMC9949255 DOI: 10.21203/rs.3.rs-2596269/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bacteria dysbiosis has been associated with an increased risk of HIV-1 transmission and acquisition. The prevalent idea is that bacteria dysbiosis compromises mucosal integrity and promotes inflammatory conditions to cause recruitment and activation of immune cells that harbor or are targeted by HIV-1. However, it is also possible that HIV-1 directly binds bacteria or bacterial products to impact virus infectivity and transmissibility. This study evaluated HIV-1 interactions with bacteria through glycan-binding lectins. The Streptococcal Siglec-like lectin SLBR-N, which is part of the fimbriae shrouding the bacteria surface and recognizes α2,3 sialyated O-linked glycans, was noted for its ability to enhance HIV-1 infectivity in the context of cell-free infection and cell-to-cell transfer. Enhancing effects were recapitulated with O-glycan-binding plant lectins, signifying the importance of O-glycans. Conversely, N-glycan-binding bacterial lectins FimH and Msl had no effect. SLBR-N was demonstrated to capture and transfer infectious HIV-1 virions, bind to O-glycans on HIV-1 Env, and increase HIV-1 resistance to broadly neutralizing antibodies targeting different regions of Env. Hence, this study highlights the potential contribution of O-glycans in promoting HIV-1 infection through the exploitation of O-glycan-binding lectins from commensal bacteria at the mucosa.
Collapse
Affiliation(s)
- Daniel W Heindel
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dania M Figueroa Acosta
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marisa Goff
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clauvis Kunkeng Yengo
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Muzafar Jan
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Present address: Department of Biochemistry, Government Degree College Handwara, University of Kashmir, Jammu & Kashmir, India
| | - Xiaomei Liu
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiao-Hong Wang
- VA New York Harbor Healthcare System-Manhattan, New York, New York, United States of America
| | - Mariya I Petrova
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
- Present address: Microbiome Insights and Probiotics Consultancy, Karlovo, Bulgaria
| | - Mo Zhang
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Manish Sagar
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
| | - Phillip Barnette
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Shilpi Pandey
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Ann J Hessell
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Kun-Wei Chan
- Department of Biochemistry and Molecular Pharmacology New York University Grossman School of Medicine, New York, NY, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology New York University Grossman School of Medicine, New York, NY, USA
| | - Benjamin K Chen
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Barbara A Bensing
- Department of Medicine, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, CA, USA
| | - Catarina E Hioe
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, USA
| |
Collapse
|
6
|
Heindel DW, Figueroa Acosta DM, Goff M, Yengo CK, Jan M, Liu X, Wang XH, Petrova MI, Zhang M, Sagar M, Barnette P, Pandey S, Hessell AJ, Chan KW, Kong XP, Chen BK, Mahal LK, Bensing BA, Hioe CE. HIV-1 interaction with an O-glycan-specific bacterial lectin enhances virus infectivity and resistance to neutralization by antibodies. RESEARCH SQUARE 2024:rs.3.rs-2596269. [PMID: 36824869 PMCID: PMC9949255 DOI: 10.21203/rs.3.rs-2596269/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/14/2024]
Abstract
Bacteria dysbiosis has been associated with an increased risk of HIV-1 transmission and acquisition. The prevalent idea is that bacteria dysbiosis compromises mucosal integrity and promotes inflammatory conditions to cause recruitment and activation of immune cells that harbor or are targeted by HIV-1. However, it is also possible that HIV-1 directly binds bacteria or bacterial products to impact virus infectivity and transmissibility. This study evaluated HIV-1 interactions with bacteria through glycan-binding lectins. The Streptococcal Siglec-like lectin SLBR-N, which is part of the fimbriae shrouding the bacteria surface and recognizes α2,3 sialyated O-linked glycans, was noted for its ability to enhance HIV-1 infectivity in the context of cell-free infection and cell-to-cell transfer. Enhancing effects were recapitulated with O-glycan-binding plant lectins, signifying the importance of O-glycans. Conversely, N-glycan-binding bacterial lectins FimH and Msl had no effect. SLBR-N was demonstrated to capture and transfer infectious HIV-1 virions, bind to O-glycans on HIV-1 Env, and increase HIV-1 resistance to broadly neutralizing antibodies targeting different regions of Env. Hence, this study highlights the potential contribution of O-glycans in promoting HIV-1 infection through the exploitation of O-glycan-binding lectins from commensal bacteria at the mucosa.
Collapse
Affiliation(s)
- Daniel W Heindel
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dania M Figueroa Acosta
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marisa Goff
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clauvis Kunkeng Yengo
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Muzafar Jan
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Present address: Department of Biochemistry, Government Degree College Handwara, University of Kashmir, Jammu & Kashmir, India
| | - Xiaomei Liu
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiao-Hong Wang
- VA New York Harbor Healthcare System-Manhattan, New York, New York, United States of America
| | - Mariya I Petrova
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
- Present address: Microbiome Insights and Probiotics Consultancy, Karlovo, Bulgaria
| | - Mo Zhang
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Manish Sagar
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
| | - Phillip Barnette
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Shilpi Pandey
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Ann J Hessell
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Kun-Wei Chan
- Department of Biochemistry and Molecular Pharmacology New York University Grossman School of Medicine, New York, NY, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology New York University Grossman School of Medicine, New York, NY, USA
| | - Benjamin K Chen
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Barbara A Bensing
- Department of Medicine, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, CA, USA
| | - Catarina E Hioe
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, USA
| |
Collapse
|
7
|
Starling T, Padilla-Parra S. HIV-1 Induced Cell-to-Cell Fusion or Syncytium Formation. Results Probl Cell Differ 2024; 71:319-328. [PMID: 37996684 DOI: 10.1007/978-3-031-37936-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
HIV-1 cell-free infection has been thoroughly investigated; however, its relevance and importance in vitro are questionable. Cell-cell transmission is now thought to be the dominant mode of transmission within the host; however precise molecular details remain elusive. The considerable potency of cell-cell transmission hinges upon its ability to hijack and manipulate host immunological function to target uninfected cells, along with overcoming restriction factors and increasing the speed of latent pool formation. Another question of relevance is virus induced cell-cell fusion and how this process is regulated. How often HIV-1 induces the formation of syncytia? Is cell-cell function a potential process for HIV-1 transmission? These questions are discussed and reviewed together with a description of the most common ways of HIV-1 entry and transinfection.
Collapse
Affiliation(s)
- Tobias Starling
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London, UK
| | - Sergi Padilla-Parra
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London, UK.
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK.
| |
Collapse
|
8
|
Bruce JW, Park E, Magnano C, Horswill M, Richards A, Potts G, Hebert A, Islam N, Coon JJ, Gitter A, Sherer N, Ahlquist P. HIV-1 virological synapse formation enhances infection spread by dysregulating Aurora Kinase B. PLoS Pathog 2023; 19:e1011492. [PMID: 37459363 PMCID: PMC10374047 DOI: 10.1371/journal.ppat.1011492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/27/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
HIV-1 spreads efficiently through direct cell-to-cell transmission at virological synapses (VSs) formed by interactions between HIV-1 envelope proteins (Env) on the surface of infected cells and CD4 receptors on uninfected target cells. Env-CD4 interactions bring the infected and uninfected cellular membranes into close proximity and induce transport of viral and cellular factors to the VS for efficient virion assembly and HIV-1 transmission. Using novel, cell-specific stable isotope labeling and quantitative mass spectrometric proteomics, we identified extensive changes in the levels and phosphorylation states of proteins in HIV-1 infected producer cells upon mixing with CD4+ target cells under conditions inducing VS formation. These coculture-induced alterations involved multiple cellular pathways including transcription, TCR signaling and, unexpectedly, cell cycle regulation, and were dominated by Env-dependent responses. We confirmed the proteomic results using inhibitors targeting regulatory kinases and phosphatases in selected pathways identified by our proteomic analysis. Strikingly, inhibiting the key mitotic regulator Aurora kinase B (AURKB) in HIV-1 infected cells significantly increased HIV activity in cell-to-cell fusion and transmission but had little effect on cell-free infection. Consistent with this, we found that AURKB regulates the fusogenic activity of HIV-1 Env. In the Jurkat T cell line and primary T cells, HIV-1 Env:CD4 interaction also dramatically induced cell cycle-independent AURKB relocalization to the centromere, and this signaling required the long (150 aa) cytoplasmic C-terminal domain (CTD) of Env. These results imply that cytoplasmic/plasma membrane AURKB restricts HIV-1 envelope fusion, and that this restriction is overcome by Env CTD-induced AURKB relocalization. Taken together, our data reveal a new signaling pathway regulating HIV-1 cell-to-cell transmission and potential new avenues for therapeutic intervention through targeting the Env CTD and AURKB activity.
Collapse
Affiliation(s)
- James W. Bruce
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Eunju Park
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Chris Magnano
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Mark Horswill
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Alicia Richards
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Gregory Potts
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Alexander Hebert
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Nafisah Islam
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - Anthony Gitter
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Nathan Sherer
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Paul Ahlquist
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
9
|
Valdebenito S, Ono A, Rong L, Eugenin EA. The role of tunneling nanotubes during early stages of HIV infection and reactivation: implications in HIV cure. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:169-186. [PMID: 37476291 PMCID: PMC10355284 DOI: 10.1515/nipt-2022-0015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/30/2022] [Indexed: 07/22/2023]
Abstract
Tunneling nanotubes (TNTs), also called cytonemes or tumor microtubes, correspond to cellular processes that enable long-range communication. TNTs are plasma membrane extensions that form tubular processes that connect the cytoplasm of two or more cells. TNTs are mostly expressed during the early stages of development and poorly expressed in adulthood. However, in disease conditions such as stroke, cancer, and viral infections such as HIV, TNTs proliferate, but their role is poorly understood. TNTs function has been associated with signaling coordination, organelle sharing, and the transfer of infectious agents such as HIV. Here, we describe the critical role and function of TNTs during HIV infection and reactivation, as well as the use of TNTs for cure strategies.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Akira Ono
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Libin Rong
- Department of Mathematics, University of Florida, Gainesville, FL, USA
| | - Eliseo A. Eugenin
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| |
Collapse
|
10
|
Znaidia M, de Souza-Angelo Y, Létoffé S, Staropoli I, Grzelak L, Ghigo JM, Schwartz O, Casartelli N. Exposure to Secreted Bacterial Factors Promotes HIV-1 Replication in CD4 + T Cells. Microbiol Spectr 2023; 11:e0431322. [PMID: 36853052 PMCID: PMC10100953 DOI: 10.1128/spectrum.04313-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/08/2023] [Indexed: 03/01/2023] Open
Abstract
Microbial translocation is associated with systemic immune activation in HIV-1 disease. Circulating T cells can encounter microbial products in the bloodstream and lymph nodes, where viral replication takes place. The mechanisms by which bacteria contribute to HIV-associated pathogenesis are not completely deciphered. Here, we examined how bacteria may impact T cell function and viral replication. We established cocultures between a panel of live bacteria and uninfected or HIV-1-infected activated peripheral blood CD4-positive (CD4+) T cells. We show that some bacteria, such as Escherichia coli and Acinetobacter baumannii, sustain lymphocyte activation and enhance HIV-1 replication. Bacteria secrete soluble factors that upregulate CD25 and ICAM-1 cell surface levels and activate NF-κB nuclear translocation. Our data also demonstrate that CD25 polarizes at the virological synapse, suggesting a previously unappreciated role of CD25 during viral replication. These findings highlight how interactions between bacterial factors and T cells may promote T cell activation and HIV-1 replication. IMPORTANCE People living with HIV suffer from chronic immune activation despite effective antiretroviral therapy. Early after infection, HIV-1 actively replicates in the gut, causing the breakage of the intestinal epithelial barrier and microbial translocation. Microbial translocation and chronic immune activation have been proven linked; however, gaps in our knowledge on how bacteria contribute to the development of HIV-related diseases remain. Whether T cells in the peripheral blood react to bacterial products and how this affects viral replication are unknown. We show that some bacteria enriched in people living with HIV activate T cells and favor HIV-1's spread. Bacteria release soluble factors that cause the overexpression of cellular molecules related to their activation state. T cells overexpressing these molecules also replicate HIV-1 more efficiently. These results help us learn more about how HIV-1, T cells, and bacteria interact with each other, as well as the mechanisms behind chronic immune activation.
Collapse
Affiliation(s)
- M. Znaidia
- Institut Pasteur, Université Paris-Cité, UMR CNRS 3569, Virus and Immunity Unit, Paris, France
| | - Y. de Souza-Angelo
- Institut Pasteur, Université Paris-Cité, UMR CNRS 3569, Virus and Immunity Unit, Paris, France
| | - S. Létoffé
- Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Paris, France
| | - I. Staropoli
- Institut Pasteur, Université Paris-Cité, UMR CNRS 3569, Virus and Immunity Unit, Paris, France
| | - L. Grzelak
- Institut Pasteur, Université Paris-Cité, UMR CNRS 3569, Virus and Immunity Unit, Paris, France
| | - J. M. Ghigo
- Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Paris, France
| | - O. Schwartz
- Institut Pasteur, Université Paris-Cité, UMR CNRS 3569, Virus and Immunity Unit, Paris, France
- Vaccine Research Institute, Créteil, France
| | - N. Casartelli
- Institut Pasteur, Université Paris-Cité, UMR CNRS 3569, Virus and Immunity Unit, Paris, France
| |
Collapse
|
11
|
Xu J. Dynamic analysis of a cytokine-enhanced viral infection model with infection age. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:8666-8684. [PMID: 37161216 DOI: 10.3934/mbe.2023380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Recent studies reveal that pyroptosis is associated with the release of inflammatory cytokines which can attract more target cells to be infected. In this paper, a novel age-structured virus infection model incorporating cytokine-enhanced infection is investigated. The asymptotic smoothness of the semiflow is studied. With the help of characteristic equations and Lyapunov functionals, we have proved that both the local and global stabilities of the equilibria are completely determined by the threshold $ \mathcal{R}_0 $. The result shows that cytokine-enhanced viral infection also contributes to the basic reproduction number $ \mathcal{R}_0 $, implying that it may not be enough to eliminate the infection by decreasing the basic reproduction number of the model without considering the cytokine-enhanced viral infection mode. Numerical simulations are carried out to illustrate the theoretical results.
Collapse
Affiliation(s)
- Jinhu Xu
- School of Sciences, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
12
|
Interleukin-27 Promotes Divergent Effects on HIV-1 Infection in Peripheral Blood Mononuclear Cells through BST-2/Tetherin. J Virol 2023; 97:e0175222. [PMID: 36602368 PMCID: PMC9888194 DOI: 10.1128/jvi.01752-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Interleukin-27 (IL-27) is able to inhibit HIV-1 replication in peripheral blood mononuclear cells (PBMCs), macrophages, and dendritic cells. Here, we identify that IL-27 can produce opposing effects on HIV-1 replication in PBMCs and that the HIV-1 restriction factor BST-2/Tetherin is involved in both inhibitory and enhancing effects on HIV-1 infection induced by IL-27. IL-27 inhibited HIV-1 replication when added to cells 2 h after infection, promoting the prototypical BST-2/Tetherin-induced virion accumulation at the cell membrane of HIV-1-infected PBMCs. BST-2/Tetherin gene expression was significantly upregulated in the IL-27-treated PBMCs, with a simultaneous increase in the number of BST-2/Tetherin+ cells. The silencing of BST-2/Tetherin diminished the anti-HIV-1 effect of IL-27. In contrast, IL-27 increased HIV-1 production when added to infected cells 4 days after infection. This enhancing effect was prevented by BST-2/Tetherin gene knockdown, which also permitted IL-27 to function again as an HIV-1 inhibitory factor. These contrasting roles of IL-27 were associated with the dynamic of viral production, since the IL-27-mediated enhancement of virus replication was prevented by antiretroviral treatment of infected cells, as well as by keeping cells under agitation to avoid cell-to-cell contact. Likewise, inhibition of CD11a, an integrin associated with HIV-1 cell-to-cell transmission, abrogated the IL-27 enhancement of HIV-1 production. Our findings illustrate the complexity of the HIV-1-host interactions and may impact the potential therapeutic use of IL-27 and other soluble mediators that induce BST-2/Tetherin expression for HIV-1 infection. IMPORTANCE Here, we describe new findings related to the ability of the cytokine IL-27 to regulate the growth of HIV-1 in CD4+ T lymphocytes. IL-27 has long been considered a potent inhibitor of HIV-1 replication, a notion based on several reports showing that this cytokine controls HIV-1 infection in peripheral blood mononuclear cells (PBMCs), monocyte-derived macrophages, and dendritic cells. However, our present results are contrary to the current knowledge that IL-27 acts only as a powerful downregulator of HIV-1 replication. We observed that IL-27 can either prevent or enhance viral growth in PBMCs, an outcome dependent on when this cytokine is added to the infected cells. We detected that the increase of HIV-1 dissemination is due to enhanced cell-to-cell transmission with the involvement of the interferon-induced HIV-1 restriction factor BST-2/Tetherin and CD11a (LFA-1), an integrin that participates in formation of virological synapse.
Collapse
|
13
|
Deng J, Shu H, Wang L, Wang XS. Viral dynamics with immune responses: effects of distributed delays and Filippov antiretroviral therapy. J Math Biol 2023; 86:37. [PMID: 36695964 DOI: 10.1007/s00285-023-01869-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/17/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
In this paper, we propose a general viral infection model to incorporate two infection modes (virus-to-cell mode and cell-to-cell mode), the CTL immune response, and the distributed intracellular delays during the processes of viral infection, viral production, and CTLs recruitment. We investigate the existence, the uniqueness, and the global stability of three equilibria: infection-free equilibrium [Formula: see text], immune-inactivated equilibrium [Formula: see text] and immune-activated equilibrium [Formula: see text], respectively. We prove that the viral dynamics are determined by two threshold parameters: the basic reproduction number for infection [Formula: see text] and the basic reproduction number for immune response [Formula: see text]. We also numerically explore the viral dynamics beyond stability. We use bifurcation diagrams to show that increasing the delay in CTL immune cell recruitment can induce a switch in viral load from a stable constant level to sustained oscillations, and then back to a stable equilibrium. We also compare the contributions of the two infection modes to the total infection level and identify the key parameters that would affect the percentages of virus-to-cell infection and cell-to-cell infection. Finally, we explore how Filippov control can be applied in antiretroviral therapy to reduce the viral loads.
Collapse
Affiliation(s)
- Jiawei Deng
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Hongying Shu
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710062, People's Republic of China.
| | - Lin Wang
- Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Xiang-Sheng Wang
- Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA, 70503, USA
| |
Collapse
|
14
|
Majumder A, Sardar S, Bairagi N. The effect of noise in an HIV infection model with cytotoxic T-lymphocyte impairment. CHAOS (WOODBURY, N.Y.) 2022; 32:113131. [PMID: 36456349 DOI: 10.1063/5.0105770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/06/2022] [Indexed: 06/17/2023]
Abstract
The human immunodeficiency virus (HIV) interacts with the immune cells within the human body, where the environment is uncertain and noisy. Stochastic models can successfully encapsulate the effect of such a noisy environment compared to their deterministic counterparts. The human immune system is complex but well-coordinated with various immune cells like C D 4T cells, dendritic cells, and cytotoxic T-lymphocyte (CTL) cells, among many others. The CTL can kill the antigenic cells after its recognition. However, the efficacy of CTL in removing the infected C D 4T cells is progressively compromised in HIV-infected individuals. This paper considers a noise-induced HIV-immune cell interaction model with immune impairment. A multiplicative white noise is introduced in the infection rate parameter to represent the fluctuations around the average value of the rate parameter as a causative effect of the noise. We analyzed the deterministic and stochastic models and prescribed sufficient conditions for infection eradication and persistence. It is determined under what parametric restrictions the asymptotic solutions of the noise-induced system will be a limiting case of the deterministic solutions. Simulation results revealed that the solutions of the deterministic system either converge to a CTL-dominated interior equilibrium or a CTL-free immunodeficient equilibrium, depending on the initial values of the system. Stochastic analysis divulged that higher noise might be helpful in the infection removal process. The extinction time of infected C D 4T cells for some fixed immune impairment gradually decreases with increasing noise intensity and follows the power law.
Collapse
Affiliation(s)
- Abhijit Majumder
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata 700032, India
| | - Shibani Sardar
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata 700032, India
| | - Nandadulal Bairagi
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
15
|
AlShamrani NH, Alshaikh MA, Elaiw AM, Hattaf K. Dynamics of HIV-1/HTLV-I Co-Infection Model with Humoral Immunity and Cellular Infection. Viruses 2022; 14:v14081719. [PMID: 36016341 PMCID: PMC9415130 DOI: 10.3390/v14081719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 12/04/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) and human T-lymphotropic virus type I (HTLV-I) are two retroviruses which infect the same target, CD4+ T cells. This type of cell is considered the main component of the immune system. Since both viruses have the same means of transmission between individuals, HIV-1-infected patients are more exposed to the chance of co-infection with HTLV-I, and vice versa, compared to the general population. The mathematical modeling and analysis of within-host HIV-1/HTLV-I co-infection dynamics can be considered a robust tool to support biological and medical research. In this study, we have formulated and analyzed an HIV-1/HTLV-I co-infection model with humoral immunity, taking into account both latent HIV-1-infected cells and HTLV-I-infected cells. The model considers two modes of HIV-1 dissemination, virus-to-cell (V-T-C) and cell-to-cell (C-T-C). We prove the nonnegativity and boundedness of the solutions of the model. We find all steady states of the model and establish their existence conditions. We utilize Lyapunov functions and LaSalle’s invariance principle to investigate the global stability of all the steady states of the model. Numerical simulations were performed to illustrate the corresponding theoretical results. The effects of humoral immunity and C-T-C transmission on the HIV-1/HTLV-I co-infection dynamics are discussed. We have shown that humoral immunity does not play the role of clearing an HIV-1 infection but it can control HIV-1 infection. Furthermore, we note that the omission of C-T-C transmission from the HIV-1/HTLV-I co-infection model leads to an under-evaluation of the basic HIV-1 mono-infection reproductive ratio.
Collapse
Affiliation(s)
- Noura H. AlShamrani
- Department of Mathematics, Faculty of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Matuka A. Alshaikh
- Department of Mathematics, College of Science, Taif University, P.O. Box 11099, Taif 21974, Saudi Arabia
| | - Ahmed M. Elaiw
- Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
- Correspondence: or
| | - Khalid Hattaf
- Equipe de Recherche en Modélisation et Enseignement des Mathématiques (ERMEM), Centre Régional des Métiers de l’Education et de la Formation (CRMEF), Derb Ghalef, Casablanca 20340, Morocco
| |
Collapse
|
16
|
Wang SF, Hung YH, Tsao CH, Chiang CY, Teoh PG, Chiang ML, Lin WH, Hsu DK, Jan HM, Lin HC, Lin CH, Liu FT, Chen HY. Galectin-3 facilitates cell-to-cell HIV-1 transmission by altering the composition of membrane lipid rafts in CD4 T cells. Glycobiology 2022; 32:760-777. [PMID: 35789267 DOI: 10.1093/glycob/cwac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 05/28/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Galectin-3 (GAL3) is a β-galactoside-binding lectin expressed in CD4 T cells infected with human immunodeficiency virus-1 (HIV-1). GAL3 promotes HIV-1 budding by associating with ALIX and Gag p6. GAL3 has been shown to localize in membrane lipid rafts in dendritic cells and positively regulate cell migration. HIV-1 spreads between T cells by forming supramolecular structures (virological synapses [VSs]), whose integrity depends on lipid rafts. Here, we addressed the potential role of GAL3 in cell-to-cell transmission of HIV-1 in CD4 T cells. GAL3 expressed in donor cells was more important for facilitating HIV-1 cell-to-cell transfer than GAL3 expressed in target cells. GAL3 was found to be co-transferred with Gag from HIV-1-positive donor to HIV-1-negative target T cells. HIV-1 infection induced translocation of GAL3 together with Gag to the cell-cell interfaces and colocalize with GM1, where GAL3 facilitated VS formation. GAL3 regulated the coordinated transfer of Gag and flotillin-1 into plasma membrane fractions. Finally, depletion of GAL3 reduced the cholesterol levels in membrane lipid rafts in CD4 T cells. These findings provide evidence that endogenous GAL3 stimulates lipid raft components and facilitates intercellular HIV-1 transfer among CD4 T cells, offering another pathway by which GAL3 regulates HIV-1 infection. These findings may inform the treatment of HIV-1 infection based on targeting GAL3 to modulate lipid rafts.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hsien Hung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Han Tsao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Ph.D. Program in Translational Medicine, Kaohsiung Medical University and Academia Sinica, Taiwan
| | - Cho-Ying Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pak-Guan Teoh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Meng-Lin Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Han Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Daniel K Hsu
- Department of Dermatology, University of California Davis, California, USA
| | - Hau-Ming Jan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsiu-Chu Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Dermatology, University of California Davis, California, USA
| | - Huan-Yuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Dermatology, University of California Davis, California, USA
| |
Collapse
|
17
|
Han M, Cantaloube-Ferrieu V, Xie M, Armani-Tourret M, Woottum M, Pagès JC, Colin P, Lagane B, Benichou S. HIV-1 cell-to-cell spread overcomes the virus entry block of non-macrophage-tropic strains in macrophages. PLoS Pathog 2022; 18:e1010335. [PMID: 35622876 PMCID: PMC9182568 DOI: 10.1371/journal.ppat.1010335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/09/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
Abstract
Macrophages (MΦ) are increasingly recognized as HIV-1 target cells involved in the pathogenesis and persistence of infection. Paradoxically, in vitro infection assays suggest that virus isolates are mostly T-cell-tropic and rarely MΦ-tropic. The latter are assumed to emerge under CD4+ T-cell paucity in tissues such as the brain or at late stage when the CD4 T-cell count declines. However, assays to qualify HIV-1 tropism use cell-free viral particles and may not fully reflect the conditions of in vivo MΦ infection through cell-to-cell viral transfer. Here, we investigated the capacity of viruses expressing primary envelope glycoproteins (Envs) with CCR5 and/or CXCR4 usage from different stages of infection, including transmitted/founder Envs, to infect MΦ by a cell-free mode and through cell-to-cell transfer from infected CD4+ T cells. The results show that most viruses were unable to enter MΦ as cell-free particles, in agreement with the current view that non-M-tropic viruses inefficiently use CD4 and/or CCR5 or CXCR4 entry receptors on MΦ. In contrast, all viruses could be effectively cell-to-cell transferred to MΦ from infected CD4+ T cells. We further showed that viral transfer proceeded through Env-dependent cell-cell fusion of infected T cells with MΦ targets, leading to the formation of productively infected multinucleated giant cells. Compared to cell-free infection, infected T-cell/MΦ contacts showed enhanced interactions of R5 M- and non-M-tropic Envs with CD4 and CCR5, resulting in a reduced dependence on receptor expression levels on MΦ for viral entry. Altogether, our results show that virus cell-to-cell transfer overcomes the entry block of isolates initially defined as non-macrophage-tropic, indicating that HIV-1 has a more prevalent tropism for MΦ than initially suggested. This sheds light into the role of this route of virus cell-to-cell transfer to MΦ in CD4+ T cell rich tissues for HIV-1 transmission, dissemination and formation of tissue viral reservoirs.
Collapse
Affiliation(s)
- Mingyu Han
- Institut Cochin, Inserm U1016, Paris, France
- CNRS, UMR8104, Paris, France
- Université de Paris, Paris, France
| | | | - Maorong Xie
- Institut Cochin, Inserm U1016, Paris, France
- CNRS, UMR8104, Paris, France
- Université de Paris, Paris, France
| | | | - Marie Woottum
- Institut Cochin, Inserm U1016, Paris, France
- CNRS, UMR8104, Paris, France
- Université de Paris, Paris, France
| | - Jean-Christophe Pagès
- Institut RESTORE, Université de Toulouse, CNRS U-5070, EFS, ENVT, Inserm U1301, Toulouse, France
| | - Philippe Colin
- Infinity, Université de Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Bernard Lagane
- Infinity, Université de Toulouse, CNRS, INSERM, UPS, Toulouse, France
- * E-mail: (BL); (SB)
| | - Serge Benichou
- Institut Cochin, Inserm U1016, Paris, France
- CNRS, UMR8104, Paris, France
- Université de Paris, Paris, France
- * E-mail: (BL); (SB)
| |
Collapse
|
18
|
Abstract
The HIV Env glycoprotein is the surface glycoprotein responsible for viral entry into CD4+ immune cells. During infection, Env also serves as a primary target for antibody responses, which are robust but unable to control virus replication. Immune evasion by HIV-1 Env appears to employ complex mechanisms to regulate what antigenic states are presented to the immune system. Immunodominant features appear to be distinct from epitopes that interfere with Env functions in mediating infection. Further, cell-cell transmission studies indicate that vulnerable conformational states are additionally hidden from recognition on infected cells, even though the presence of Env at the cell surface is required for viral infection through the virological synapse. Cell-cell infection studies support that Env on infected cells is presented in distinct conformations from that on virus particles. Here we review data regarding the regulation of conformational states of Env and assess how regulated sorting of Env within the infected cell may underlie mechanisms to distinguish Env on the surface of virus particles versus Env on the surface of infected cells. These mechanisms may allow infected cells to avoid opsonization, providing cell-to-cell infection by HIV with a selective advantage during evolution within an infected individual. Understanding how distinct Env conformations are presented on cells versus viruses may be essential to designing effective vaccine approaches and therapeutic strategies to clear infected cell reservoirs.
Collapse
Affiliation(s)
- Connie Zhao
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hongru Li
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Talia H. Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
19
|
Reuschl AK, Mesner D, Shivkumar M, Whelan MVX, Pallett LJ, Guerra-Assunção JA, Madansein R, Dullabh KJ, Sigal A, Thornhill JP, Herrera C, Fidler S, Noursadeghi M, Maini MK, Jolly C. HIV-1 Vpr drives a tissue residency-like phenotype during selective infection of resting memory T cells. Cell Rep 2022; 39:110650. [PMID: 35417711 PMCID: PMC9350556 DOI: 10.1016/j.celrep.2022.110650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/23/2022] [Accepted: 03/17/2022] [Indexed: 12/03/2022] Open
Abstract
HIV-1 replicates in CD4+ T cells, leading to AIDS. Determining how HIV-1 shapes its niche to create a permissive environment is central to informing efforts to limit pathogenesis, disturb reservoirs, and achieve a cure. A key roadblock in understanding HIV-T cell interactions is the requirement to activate T cells in vitro to make them permissive to infection. This dramatically alters T cell biology and virus-host interactions. Here we show that HIV-1 cell-to-cell spread permits efficient, productive infection of resting memory T cells without prior activation. Strikingly, we find that HIV-1 infection primes resting T cells to gain characteristics of tissue-resident memory T cells (TRM), including upregulating key surface markers and the transcription factor Blimp-1 and inducing a transcriptional program overlapping the core TRM transcriptional signature. This reprogramming is driven by Vpr and requires Vpr packaging into virions and manipulation of STAT5. Thus, HIV-1 reprograms resting T cells, with implications for viral replication and persistence.
Collapse
Affiliation(s)
- Ann-Kathrin Reuschl
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK.
| | - Dejan Mesner
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Maitreyi Shivkumar
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Matthew V X Whelan
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Laura J Pallett
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | | | - Rajhmun Madansein
- Department of Cardiothoracic Surgery, University of KwaZulu-Natal, Durban 4091, South Africa; Centre for the AIDS Programme of Research in South Africa, Durban 4091, South Africa
| | - Kaylesh J Dullabh
- Department of Cardiothoracic Surgery, University of KwaZulu-Natal, Durban 4091, South Africa
| | - Alex Sigal
- Africa Health Research Institute, Durban 4001, South Africa; School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4091, South Africa; Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - John P Thornhill
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford OX1 3XY, UK; Department of Infectious Disease, Faculty of Medicine, Imperial College, London W2 1NY, UK
| | - Carolina Herrera
- Department of Infectious Disease, Faculty of Medicine, Imperial College, London W2 1NY, UK
| | - Sarah Fidler
- Department of Infectious Disease, Faculty of Medicine, Imperial College, London W2 1NY, UK; Imperial College NIHR Biomedical Research Centre, London W2 1NY, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Mala K Maini
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK.
| |
Collapse
|
20
|
Kumata R, Iwanami S, Mar KB, Kakizoe Y, Misawa N, Nakaoka S, Koyanagi Y, Perelson AS, Schoggins JW, Iwami S, Sato K. Antithetic effect of interferon-α on cell-free and cell-to-cell HIV-1 infection. PLoS Comput Biol 2022; 18:e1010053. [PMID: 35468127 PMCID: PMC9037950 DOI: 10.1371/journal.pcbi.1010053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/23/2022] [Indexed: 01/23/2023] Open
Abstract
In HIV-1-infected individuals, transmitted/founder (TF) virus contributes to establish new infection and expands during the acute phase of infection, while chronic control (CC) virus emerges during the chronic phase of infection. TF viruses are more resistant to interferon-alpha (IFN-α)-mediated antiviral effects than CC virus, however, its virological relevance in infected individuals remains unclear. Here we perform an experimental-mathematical investigation and reveal that IFN-α strongly inhibits cell-to-cell infection by CC virus but only weakly affects that by TF virus. Surprisingly, IFN-α enhances cell-free infection of HIV-1, particularly that of CC virus, in a virus-cell density-dependent manner. We further demonstrate that LY6E, an IFN-stimulated gene, can contribute to the density-dependent enhancement of cell-free HIV-1 infection. Altogether, our findings suggest that the major difference between TF and CC viruses can be explained by their resistance to IFN-α-mediated inhibition of cell-to-cell infection and their sensitivity to IFN-α-mediated enhancement of cell-free infection.
Collapse
Affiliation(s)
- Ryuichi Kumata
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Faculty of Science, Kyoto University, Kyoto, Japan
| | - Shoya Iwanami
- interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Katrina B. Mar
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yusuke Kakizoe
- Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Naoko Misawa
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shinji Nakaoka
- Laboratory of Mathematical Biology, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - John W. Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Shingo Iwami
- interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
- MIRAI, Japan Science and Technology Agency, Saitama, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Science Groove Inc., Fukuoka, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
21
|
HIV-1 and HTLV-1 Transmission Modes: Mechanisms and Importance for Virus Spread. Viruses 2022; 14:v14010152. [PMID: 35062355 PMCID: PMC8779814 DOI: 10.3390/v14010152] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
So far, only two retroviruses, human immunodeficiency virus (HIV) (type 1 and 2) and human T-cell lymphotropic virus type 1 (HTLV-1), have been recognized as pathogenic for humans. Both viruses mainly infect CD4+ T lymphocytes. HIV replication induces the apoptosis of CD4 lymphocytes, leading to the development of acquired immunodeficiency syndrome (AIDS). After a long clinical latency period, HTLV-1 can transform lymphocytes, with subsequent uncontrolled proliferation and the manifestation of a disease called adult T-cell leukemia (ATLL). Certain infected patients develop neurological autoimmune disorder called HTLV-1-associated myelopathy, also known as tropical spastic paraparesis (HAM/TSP). Both viruses are transmitted between individuals via blood transfusion, tissue/organ transplantation, breastfeeding, and sexual intercourse. Within the host, these viruses can spread utilizing either cell-free or cell-to-cell modes of transmission. In this review, we discuss the mechanisms and importance of each mode of transmission for the biology of HIV-1 and HTLV-1.
Collapse
|
22
|
Snetkov X, Haider T, Mesner D, Groves N, van Engelenburg SB, Jolly C. A Conserved Tryptophan in the Envelope Cytoplasmic Tail Regulates HIV-1 Assembly and Spread. Viruses 2022; 14:v14010129. [PMID: 35062333 PMCID: PMC8778169 DOI: 10.3390/v14010129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
The HIV-1 envelope (Env) is an essential determinant of viral infectivity, tropism and spread between T cells. Lentiviral Env contain an unusually long 150 amino acid cytoplasmic tail (EnvCT), but the function of the EnvCT and many conserved domains within it remain largely uncharacterised. Here, we identified a highly conserved tryptophan motif at position 757 (W757) in the LLP-2 alpha helix of the EnvCT as a key determinant for HIV-1 replication and spread between T cells. Alanine substitution at this position potently inhibited HIV-1 cell–cell spread (the dominant mode of HIV-1 dissemination) by preventing recruitment of Env and Gag to sites of cell–cell contact, inhibiting virological synapse (VS) formation and spreading infection. Single-molecule tracking and super-resolution imaging showed that mutation of W757 dysregulates Env diffusion in the plasma membrane and increases Env mobility. Further analysis of Env function revealed that W757 is also required for Env fusion and infectivity, which together with reduced VS formation, result in a potent defect in viral spread. Notably, W757 lies within a region of the EnvCT recently shown to act as a supporting baseplate for Env. Our data support a model in which W757 plays a key role in regulating Env biology, modulating its temporal and spatial recruitment to virus assembly sites and regulating the inherent fusogenicity of the Env ectodomain, thereby supporting efficient HIV-1 replication and spread.
Collapse
Affiliation(s)
- Xenia Snetkov
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK; (X.S.); (T.H.); (D.M.)
| | - Tafhima Haider
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK; (X.S.); (T.H.); (D.M.)
| | - Dejan Mesner
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK; (X.S.); (T.H.); (D.M.)
| | - Nicholas Groves
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, CO 80210, USA; (N.G.); (S.B.v.E.)
| | - Schuyler B. van Engelenburg
- Molecular and Cellular Biophysics Program, Department of Biological Sciences, University of Denver, Denver, CO 80210, USA; (N.G.); (S.B.v.E.)
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK; (X.S.); (T.H.); (D.M.)
- Correspondence:
| |
Collapse
|
23
|
Sobia P, Archary D. Preventive HIV Vaccines-Leveraging on Lessons from the Past to Pave the Way Forward. Vaccines (Basel) 2021; 9:vaccines9091001. [PMID: 34579238 PMCID: PMC8472969 DOI: 10.3390/vaccines9091001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/05/2022] Open
Abstract
Almost four decades on, since the 1980’s, with hundreds of HIV vaccine candidates tested in both non-human primates and humans, and several HIV vaccines trials later, an efficacious HIV vaccine continues to evade us. The enormous worldwide genetic diversity of HIV, combined with HIV’s inherent recombination and high mutation rates, has hampered the development of an effective vaccine. Despite the advent of antiretrovirals as pre-exposure prophylaxis and preventative treatment, which have shown to be effective, HIV infections continue to proliferate, highlighting the great need for a vaccine. Here, we provide a brief history for the HIV vaccine field, with the most recent disappointments and advancements. We also provide an update on current passive immunity trials, testing proof of the concept of the most clinically advanced broadly neutralizing monoclonal antibodies for HIV prevention. Finally, we include mucosal immunity, the importance of vaccine-elicited immune responses and the challenges thereof in the most vulnerable environment–the female genital tract and the rectal surfaces of the gastrointestinal tract for heterosexual and men who have sex with men transmissions, respectively.
Collapse
Affiliation(s)
- Parveen Sobia
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa;
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban 4001, South Africa
- Correspondence: ; Tel.: +27-(0)-31-655-0540
| |
Collapse
|
24
|
Bystander CD4 T-cell death is inhibited by broadly neutralizing anti-HIV antibodies only at levels blocking cell-to-cell viral transmission. J Biol Chem 2021; 297:101098. [PMID: 34418431 PMCID: PMC8446805 DOI: 10.1016/j.jbc.2021.101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/28/2021] [Accepted: 08/17/2021] [Indexed: 11/23/2022] Open
Abstract
The progressive loss of CD4+ T cells during HIV infection of lymphoid tissues involves both the apoptotic death of activated and productively infected CD4 T cells and the pyroptotic death of large numbers of resting and abortively infected bystander CD4 T cells. HIV spreads both through cellular release of virions and cell-to-cell transmission involving the formation of virological synapses. Cell-to-cell transmission results in high-level transfer of large quantities of virions to the target cell exceeding that achieved with cell-free virions. Broadly neutralizing anti-HIV antibodies (bNAbs) binding to HIV envelope protein capably block cell-free virus spread, and when added at higher concentrations can also interdict cell-to-cell transmission. Exploiting these distinct dose–response differences, we now show that four different bNAbs block the pyroptotic death of bystander cells, but only when added at concentrations sufficient to block cell-to-cell transmission. These findings further support the conclusion that HIV killing of abortively infected bystander CD4 T cells requires cell-to-cell transfer of virions. As bNAbs attract more interest as potential therapeutics, it will be important to consider the higher concentrations of these antibodies required to block the inflammatory death of bystander CD4 T cells.
Collapse
|
25
|
Silvana V, Paul C, Ajasin D, Eugenin EA. Astrocytes are HIV reservoirs in the brain: A cell type with poor HIV infectivity and replication but efficient cell-to-cell viral transfer. J Neurochem 2021; 158:429-443. [PMID: 33655498 PMCID: PMC11102126 DOI: 10.1111/jnc.15336] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/06/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
The major barrier to eradicating Human immunodeficiency virus-1 (HIV) infection is the generation of tissue-associated quiescent long-lasting viral reservoirs refractory to therapy. Upon interruption of anti-retroviral therapy (ART), HIV replication can be reactivated. Within the brain, microglia/macrophages and a small population of astrocytes are infected with HIV. However, the role of astrocytes as a potential viral reservoir is becoming more recognized because of the improved detection and quantification of HIV viral reservoirs. In this report, we examined the infectivity of human primary astrocytes in vivo and in vitro, and their capacity to maintain HIV infection, become latently infected, be reactivated, and transfer new HIV virions into neighboring cells. Analysis of human brain tissue sections obtained from HIV-infected individuals under effective and prolonged ART indicates that a small population of astrocytes has integrated HIV-DNA. In vitro experiments using HIV-infected human primary astrocyte cultures confirmed a low percentage of astrocytes had integrated HIV-DNA, with poor to undetectable replication. Even in the absence of ART, long-term culture results in latency that could be transiently reactivated with histone deacetylase inhibitor, tumor necrosis factor-alpha (TNF-α), or methamphetamine. Reactivation resulted in poor viral production but efficient cell-to-cell viral transfer into cells that support high viral replication. Together, our data provide a new understanding of astrocytes' role as viral reservoirs within the central nervous system (CNS).
Collapse
Affiliation(s)
- Valdebenito Silvana
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| | - Castellano Paul
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| | - David Ajasin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| | - Eliseo A. Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| |
Collapse
|
26
|
Umotoy JC, de Taeye SW. Antibody Conjugates for Targeted Therapy Against HIV-1 as an Emerging Tool for HIV-1 Cure. Front Immunol 2021; 12:708806. [PMID: 34276704 PMCID: PMC8282362 DOI: 10.3389/fimmu.2021.708806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/18/2021] [Indexed: 01/22/2023] Open
Abstract
Although advances in antiretroviral therapy (ART) have significantly improved the life expectancy of people living with HIV-1 (PLWH) by suppressing HIV-1 replication, a cure for HIV/AIDS remains elusive. Recent findings of the emergence of drug resistance against various ART have resulted in an increased number of treatment failures, thus the development of novel strategies for HIV-1 cure is of immediate need. Antibody-based therapy is a well-established tool in the treatment of various diseases and the engineering of new antibody derivatives is expanding the realms of its application. An antibody-based carrier of anti-HIV-1 molecules, or antibody conjugates (ACs), could address the limitations of current HIV-1 ART by decreasing possible off-target effects, reduce toxicity, increasing the therapeutic index, and lowering production costs. Broadly neutralizing antibodies (bNAbs) with exceptional breadth and potency against HIV-1 are currently being explored to prevent or treat HIV-1 infection in the clinic. Moreover, bNAbs can be engineered to deliver cytotoxic or immune regulating molecules as ACs, further increasing its therapeutic potential for HIV-1 cure. ACs are currently an important component of anticancer treatment with several FDA-approved constructs, however, to date, no ACs are approved to treat viral infections. This review aims to outline the development of AC for HIV-1 cure, examine the variety of carriers and payloads used, and discuss the potential of ACs in the current HIV-1 cure landscape.
Collapse
Affiliation(s)
- Jeffrey C Umotoy
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Center (UMC), Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Steven W de Taeye
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Center (UMC), Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
27
|
Gromov KB, Kazennova EV, Kireev DE, Murzakova AV, Lopatukhin AE, Bobkova MR. [Analysis of HIV-1 (Human immunodeficiency virus-1, Lentivirus, Orthoretrovirinae, Retroviridae) Nef protein polymorphism of variants circulating in the former USSR countries.]. Vopr Virusol 2021; 64:281-290. [PMID: 32168442 DOI: 10.36233/0507-4088-2019-64-6-281-290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The human immunodeficiency virus (HIV) Nef protein is one of the key factors determining the infectivity and replicative properties of HIV. With the ability to interact with numerous proteins of the host cell, this protein provides the maximum level of virus production and protects it from the immune system. The main activities of Nef are associated with a decrease in the expression of the CD4 receptor and major histocompatibility complex class I molecules (MHC-I), as well as the rearrangement of the cytoskeleton. These properties of the protein are determined by the structure of several motifs in the structure of the nef gene encoding it, which is quite variable. OBJECTIVES The main goal of the work was to analyze the characteristics of Nef protein of HIV-1 variant A6, which dominates in the countries of the former USSR. The objective of the work was a comparative analysis of natural polymorphisms in the nef gene of HIV-1 sub-subtypes A6 and A1 and subtype B. MATERIAL AND METHODS The sequences of the HIV-1 genome obtained during the previous work of the laboratory were used, as well as the reference sequence from GenBank. In this work, Sanger sequencing and new generation sequencing methods, as well as bioinformation analysis methods were used. RESULTS AND DISCUSSION The existence of noticeable differences in the prevalence of Nef natural polymorphisms (A32P, E38D, I43V, A54D, Q104K, H116N, Y120F, Y143F, V168M, H192T, V194R, R35Q, D108E, Y135F, E155K, E182M, R184K and F191L), some of which are characteristic mutations for variant A6, was shown. CONCLUSION Characteristic substitutions were found in the Nef structure, potentially capable of weakening the replicative properties of HIV-1 variant A6.
Collapse
Affiliation(s)
- K B Gromov
- National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russia
| | - E V Kazennova
- National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russia
| | - D E Kireev
- Central Research Institute of Epidemiology, Moscow, 111123, Russia
| | - A V Murzakova
- Central Research Institute of Epidemiology, Moscow, 111123, Russia
| | - A E Lopatukhin
- Central Research Institute of Epidemiology, Moscow, 111123, Russia
| | - M R Bobkova
- National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russia
| |
Collapse
|
28
|
Kreger J, Garcia J, Zhang H, Komarova NL, Wodarz D, Levy DN. Quantifying the dynamics of viral recombination during free virus and cell-to-cell transmission in HIV-1 infection. Virus Evol 2021; 7:veab026. [PMID: 34012557 PMCID: PMC8117450 DOI: 10.1093/ve/veab026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recombination has been shown to contribute to human immunodeficiency virus-1 (HIV-1) evolution in vivo, but the underlying dynamics are extremely complex, depending on the nature of the fitness landscapes and of epistatic interactions. A less well-studied determinant of recombinant evolution is the mode of virus transmission in the cell population. HIV-1 can spread by free virus transmission, resulting largely in singly infected cells, and also by direct cell-to-cell transmission, resulting in the simultaneous infection of cells with multiple viruses. We investigate the contribution of these two transmission pathways to recombinant evolution, by applying mathematical models to in vitro experimental data on the growth of fluorescent reporter viruses under static conditions (where both transmission pathways operate), and under gentle shaking conditions, where cell-to-cell transmission is largely inhibited. The parameterized mathematical models are then used to extrapolate the viral evolutionary dynamics beyond the experimental settings. Assuming a fixed basic reproductive ratio of the virus (independent of transmission pathway), we find that recombinant evolution is fastest if virus spread is driven only by cell-to-cell transmission and slows down if both transmission pathways operate. Recombinant evolution is slowest if all virus spread occurs through free virus transmission. This is due to cell-to-cell transmission 1, increasing infection multiplicity; 2, promoting the co-transmission of different virus strains from cell to cell; and 3, increasing the rate at which point mutations are generated as a result of more reverse transcription events. This study further resulted in the estimation of various parameters that characterize these evolutionary processes. For example, we estimate that during cell-to-cell transmission, an average of three viruses successfully integrated into the target cell, which can significantly raise the infection multiplicity compared to free virus transmission. In general, our study points towards the importance of infection multiplicity and cell-to-cell transmission for HIV evolution.
Collapse
Affiliation(s)
- Jesse Kreger
- Department of Mathematics, Rowland Hall, University of California, Irvine, CA 92697, USA
| | - Josephine Garcia
- Department of Basic Science, New York University College of Dentistry, 921 Schwartz Building, 345 East 24th Street, New York, NY 10010-9403, USA
| | - Hongtao Zhang
- Department of Basic Science, New York University College of Dentistry, 921 Schwartz Building, 345 East 24th Street, New York, NY 10010-9403, USA
| | - Natalia L Komarova
- Department of Mathematics, Rowland Hall, University of California, Irvine, CA 92697, USA
| | - Dominik Wodarz
- Department of Mathematics, Rowland Hall, University of California, Irvine, CA 92697, USA.,Department of Population Health and Disease Prevention, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA
| | - David N Levy
- Department of Basic Science, New York University College of Dentistry, 921 Schwartz Building, 345 East 24th Street, New York, NY 10010-9403, USA
| |
Collapse
|
29
|
The Mechanism of PEDV-Carrying CD3 + T Cells Migrate into the Intestinal Mucosa of Neonatal Piglets. Viruses 2021; 13:v13030469. [PMID: 33809123 PMCID: PMC8000367 DOI: 10.3390/v13030469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) can cause intestinal infection in neonatal piglets through the nasal cavity. A process in which CD3+ T cells carry PEDV plays a key role. However, the modes through which PEDV bridles CD3+ T cells as a vehicle for migration to the intestinal epithelium have not been clarified. In this study, we first demonstrated that PEDV could survive in blood-derived CD3+ T cells for several hours, depending on the multiplicity of infection. In addition, PEDV preferentially survived in CD4+ T cells over CD8+ T cells. Moreover, viral transmission was mediated by cell-to-cell contact between mesenteric lymph-node-derived CD3+ T cells, but did not occur in blood-derived CD3+ T cells. Following an increase in gut-homing integrin α4β7, blood-derived CD3+ T cells carrying PEDV migrated to the intestines via blood circulation and transferred the virus to intestinal epithelial cells through cell-to-cell contact in neonatal piglets. Our findings have significant implications for understanding PEDV pathogenesis in neonatal piglets, which is essential for developing innovative therapies to prevent PEDV infection.
Collapse
|
30
|
Hikichi Y, Van Duyne R, Pham P, Groebner JL, Wiegand A, Mellors JW, Kearney MF, Freed EO. Mechanistic Analysis of the Broad Antiretroviral Resistance Conferred by HIV-1 Envelope Glycoprotein Mutations. mBio 2021; 12:e03134-20. [PMID: 33436439 PMCID: PMC7844542 DOI: 10.1128/mbio.03134-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the effectiveness of antiretroviral (ARV) therapy, virological failure can occur in some HIV-1-infected patients in the absence of mutations in drug target genes. We previously reported that, in vitro, the lab-adapted HIV-1 NL4-3 strain can acquire resistance to the integrase inhibitor dolutegravir (DTG) by acquiring mutations in the envelope glycoprotein (Env) that enhance viral cell-cell transmission. In this study, we investigated whether Env-mediated drug resistance extends to ARVs other than DTG and whether it occurs in other HIV-1 isolates. We demonstrate that Env mutations can reduce susceptibility to multiple classes of ARVs and also increase resistance to ARVs when coupled with target-gene mutations. We observe that the NL4-3 Env mutants display a more stable and closed Env conformation and lower rates of gp120 shedding than the WT virus. We also selected for Env mutations in clinically relevant HIV-1 isolates in the presence of ARVs. These Env mutants exhibit reduced susceptibility to DTG, with effects on replication and Env structure that are HIV-1 strain dependent. Finally, to examine a possible in vivo relevance of Env-mediated drug resistance, we performed single-genome sequencing of plasma-derived virus from five patients failing an integrase inhibitor-containing regimen. This analysis revealed the presence of several mutations in the highly conserved gp120-gp41 interface despite low frequency of resistance mutations in integrase. These results suggest that mutations in Env that enhance the ability of HIV-1 to spread via a cell-cell route may increase the opportunity for the virus to acquire high-level drug resistance mutations in ARV target genes.IMPORTANCE Although combination antiretroviral (ARV) therapy is highly effective in controlling the progression of HIV disease, drug resistance can be a major obstacle. Recent findings suggest that resistance can develop without ARV target gene mutations. We previously reported that mutations in the HIV-1 envelope glycoprotein (Env) confer resistance to an integrase inhibitor. Here, we investigated the mechanism of Env-mediated drug resistance and the possible contribution of Env to virological failure in vivo We demonstrate that Env mutations can reduce sensitivity to major classes of ARVs in multiple viral isolates and define the effect of the Env mutations on Env subunit interactions. We observed that many Env mutations accumulated in individuals failing integrase inhibitor therapy despite a low frequency of resistance mutations in integrase. Our findings suggest that broad-based Env-mediated drug resistance may impact therapeutic strategies and provide clues toward understanding how ARV-treated individuals fail therapy without acquiring mutations in drug target genes.
Collapse
Affiliation(s)
- Yuta Hikichi
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Rachel Van Duyne
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Phuong Pham
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Jennifer L Groebner
- Translational Research Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Ann Wiegand
- Translational Research Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - John W Mellors
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mary F Kearney
- Translational Research Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
31
|
Abstract
The innate immune system is comprised of both cellular and humoral players that recognise and eradicate invading pathogens. Therefore, the interplay between retroviruses and innate immunity has emerged as an important component of viral pathogenesis. HIV-1 infection in humans that results in hematologic abnormalities and immune suppression is well represented by changes in the CD4/CD8 T cell ratio and consequent cell death causing CD4 lymphopenia. The innate immune responses by mucosal barriers such as complement, DCs, macrophages, and NK cells as well as cytokine/chemokine profiles attain great importance in acute HIV-1 infection, and thus, prevent mucosal capture and transmission of HIV-1. Conversely, HIV-1 has evolved to overcome innate immune responses through RNA-mediated rapid mutations, pathogen-associated molecular patterns (PAMPs) modification, down-regulation of NK cell activity and complement receptors, resulting in increased secretion of inflammatory factors. Consequently, epithelial tissues lining up female reproductive tract express innate immune sensors including anti-microbial peptides responsible for forming primary barriers and have displayed an effective potent anti-HIV activity during phase I/II clinical trials.
Collapse
|
32
|
Leroy H, Han M, Woottum M, Bracq L, Bouchet J, Xie M, Benichou S. Virus-Mediated Cell-Cell Fusion. Int J Mol Sci 2020; 21:E9644. [PMID: 33348900 PMCID: PMC7767094 DOI: 10.3390/ijms21249644] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Cell-cell fusion between eukaryotic cells is a general process involved in many physiological and pathological conditions, including infections by bacteria, parasites, and viruses. As obligate intracellular pathogens, viruses use intracellular machineries and pathways for efficient replication in their host target cells. Interestingly, certain viruses, and, more especially, enveloped viruses belonging to different viral families and including human pathogens, can mediate cell-cell fusion between infected cells and neighboring non-infected cells. Depending of the cellular environment and tissue organization, this virus-mediated cell-cell fusion leads to the merge of membrane and cytoplasm contents and formation of multinucleated cells, also called syncytia, that can express high amount of viral antigens in tissues and organs of infected hosts. This ability of some viruses to trigger cell-cell fusion between infected cells as virus-donor cells and surrounding non-infected target cells is mainly related to virus-encoded fusion proteins, known as viral fusogens displaying high fusogenic properties, and expressed at the cell surface of the virus-donor cells. Virus-induced cell-cell fusion is then mediated by interactions of these viral fusion proteins with surface molecules or receptors involved in virus entry and expressed on neighboring non-infected cells. Thus, the goal of this review is to give an overview of the different animal virus families, with a more special focus on human pathogens, that can trigger cell-cell fusion.
Collapse
Affiliation(s)
- Héloïse Leroy
- Institut Cochin, Inserm U1016, 75014 Paris, France; (H.L.); (M.H.); (M.W.)
- Centre National de la Recherche Scientifique CNRS, UMR8104, 75014 Paris, France
- Faculty of Health, University of Paris, 75014 Paris, France
| | - Mingyu Han
- Institut Cochin, Inserm U1016, 75014 Paris, France; (H.L.); (M.H.); (M.W.)
- Centre National de la Recherche Scientifique CNRS, UMR8104, 75014 Paris, France
- Faculty of Health, University of Paris, 75014 Paris, France
| | - Marie Woottum
- Institut Cochin, Inserm U1016, 75014 Paris, France; (H.L.); (M.H.); (M.W.)
- Centre National de la Recherche Scientifique CNRS, UMR8104, 75014 Paris, France
- Faculty of Health, University of Paris, 75014 Paris, France
| | - Lucie Bracq
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland;
| | - Jérôme Bouchet
- Laboratory Orofacial Pathologies, Imaging and Biotherapies UR2496, University of Paris, 92120 Montrouge, France;
| | - Maorong Xie
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK;
| | - Serge Benichou
- Institut Cochin, Inserm U1016, 75014 Paris, France; (H.L.); (M.H.); (M.W.)
- Centre National de la Recherche Scientifique CNRS, UMR8104, 75014 Paris, France
- Faculty of Health, University of Paris, 75014 Paris, France
| |
Collapse
|
33
|
Li B, Jiao F. A delayed HIV-1 model with cell-to-cell spread and virus waning. JOURNAL OF BIOLOGICAL DYNAMICS 2020; 14:802-825. [PMID: 33084532 DOI: 10.1080/17513758.2020.1836272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
In this paper, we propose and analyse a delayed HIV-1 model with both viral and cellular transmissions and virus waning. We obtain the threshold dynamics of the proposed model, characterized by the basic reproduction number R0 . If R0<1 , the infection-free steady state is globally asymptotically stable; whereas if R0>1 , the system is uniformly persistent. When the delays are positive, we show that the intracellular delays in both viral and cellular infections may lead to stability switches of the infected steady state. Both analytical and numerical results indicate that if the effect of cell-to-cell transmission is ignored, then the risk of HIV-1 infection will be underestimated. Moreover, the viral load of model without virus waning is higher than the one of model with virus waning. These results highlight the important role of two ways of viral transmission and virus waning on HIV-1 infection.
Collapse
Affiliation(s)
- Bing Li
- School of Mathematical Science, Harbin Normal University, Harbin, People's Republic of China
| | - Feng Jiao
- Center for Applied Mathematics, Guangzhou University, Guangzhou, People's Republic of China
| |
Collapse
|
34
|
Analysis of a within-host HIV/HTLV-I co-infection model with immunity. Virus Res 2020; 295:198204. [PMID: 33157165 DOI: 10.1016/j.virusres.2020.198204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 12/16/2022]
Abstract
Human immunodeficiency virus (HIV) and human T-lymphotropic virus type I (HTLV-I) are two retroviruses that attack the immune cells and impair their functions. Both HIV and HTLV-I can be transmitted between individuals through direct contact with certain body fluids from infected individuals. Therefore, a person can be co-infected with both viruses. HIV causes acquired immunodeficiency syndrome, while HTLV-I is the causative agent for adult T-cell leukemia and HTLV-I-associated myelopathy/tropical spastic paraparesis. Several mathematical models have been developed in the literature to describe the within-host dynamics of HIV and HTLV-I mono-infections. However, modeling a within-host dynamics of HIV/HTLV-I co-infection has not been involved. In the present paper, we are concerned to formulate and analyze a new HIV/HTLV co-infection model under the effect of Cytotoxic T lymphocytes (CTLs) immune response. The model describes the interaction between susceptible CD4+T cells, silent HIV-infected cells, active HIV-infected cells, silent HTLV-infected cells, Tax-expressing HTLV-infected cells, free HIV particles, HIV-specific CTLs and HTLV-specific CTLs. The HIV can spread by two routes of transmission, virus-to-cell and cell-to-cell. On the other side, HTLV-I has two modes of transmission, (i) horizontal transmission via direct cell-to-cell contact, and (ii) vertical transmission through mitotic division of Tax-expressing HTLV-infected cells. The well-posedness of the model is established by showing that the solutions of the model are nonnegative and bounded. We define a set of threshold parameters which govern the existence and stability of all equilibria of the model. We explore the global asymptotic stability of all equilibria by utilizing Lyapunov function and LaSalle's invariance principle. We have presented numerical simulations to justify the applicability and effectiveness of the theoretical results. In addition, we evaluate the effect of HTLV-I infection on the HIV dynamics and vice versa.
Collapse
|
35
|
Abstract
HIV-1 can cross the blood-brain barrier (BBB) to penetrate the brain and infect target cells, causing neurocognitive disorders as a result of neuroinflammation and brain damage. The HIV-1 envelope spike gp160 is partially required for viral transcytosis across the BBB endothelium. But do antibodies developing in infected individuals and targeting the HIV-1 gp160 glycoproteins block HIV-1 transcytosis through the BBB? We addressed this issue and discovered that anti-gp160 antibodies do not block HIV-1 transport; instead, free viruses and those in complex with antibodies can transit across BBB endothelial cells. Importantly, we found that only neutralizing antibodies could inhibit posttranscytosis viral infectivity, highlighting their ability to protect susceptible brain cells from HIV-1 infection. HIV-1 can cross the blood-brain barrier (BBB) to penetrate the brain and infect target cells, causing neurocognitive disorders as a result of neuroinflammation and brain damage. Here, we examined whether antibodies targeting the HIV-1 envelope glycoproteins interfere with the transcytosis of virions across the human BBB endothelium. We found that although the viral envelope spike gp160 is required for optimal endothelial cell endocytosis, no anti-gp160 antibodies blocked the BBB transcytosis of HIV-1 in vitro. Instead, both free viruses and those in complex with antibodies transited across endothelial cells in the BBB model, as observed by confocal microscopy. HIV-1 infectious capacity was considerably altered by the transcytosis process but still detectable, even in the presence of nonneutralizing antibodies. Only virions bound by neutralizing antibodies lacked posttranscytosis infectivity. Overall, our data support the role of neutralizing antibodies in protecting susceptible brain cells from HIV-1 infection despite their inability to inhibit viral BBB endocytic transport.
Collapse
|
36
|
Okafo G, Valdebenito S, Donoso M, Luu R, Ajasin D, Prideaux B, Gorantla S, Eugenin EA. Role of Tunneling Nanotube-like Structures during the Early Events of HIV Infection: Novel Features of Tissue Compartmentalization and Mechanism of HIV Spread. THE JOURNAL OF IMMUNOLOGY 2020; 205:2726-2741. [PMID: 33037140 DOI: 10.4049/jimmunol.2000803] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
HIV has become a chronic disease despite the effective use of antiretroviral therapy (ART). However, the mechanisms of tissue colonization, viral evolution, generation of viral reservoirs, and compartmentalization are still a matter of debate due to the challenges involved in examining early events of infection at the cellular and molecular level. Thus, there is still an urgent need to explore these areas to develop effective HIV cure strategies. In this study, we describe the early events of tissue colonization and compartmentalization as well as the role of tunneling nanotube-like structures during viral spread in the presence and absence of effective antiretroviral treatment. To examine these mechanisms, NOD/SCID IL-2 RG-/- humanized mice were either directly infected with HIVADA or with low numbers of HIVADA-infected leukocytes to limit tissue colonization in the presence and absence of TAK779, an effective CCR5 blocker of HIV entry. We identify that viral seeding in tissues occurs early in a tissue- and cell type-specific manner (24-72 h). Reduction in systemic HIV replication by TAK779 treatment did not affect tissue seeding or spreading, despite reduced systemic viral replication. Tissue-associated HIV-infected cells had different properties than cells in the circulation because the virus continues to spread in tissues in a tunneling nanotube-like structure-dependent manner, despite ART. Thus, understanding these mechanisms can provide new approaches to enhance the efficacy of existing ART and HIV infection cure strategies.
Collapse
Affiliation(s)
- George Okafo
- GO Pharma Consulting Ltd., Welwyn AL6 0QT, United Kingdom
| | - Silvana Valdebenito
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Maribel Donoso
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Ross Luu
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX 77555; and
| | - David Ajasin
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Brendan Prideaux
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198
| | - Eliseo A Eugenin
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX 77555; and
| |
Collapse
|
37
|
Abstract
A critical step in the life cycle of a virus is spread to a new target cell, which generally involves the release of new viral particles from the infected cell which can then initiate infection in the next target cell. While cell-free viral particles released into the extracellular environment are necessary for long distance spread, there are disadvantages to this mechanism. These include the presence of immune system components, the low success rate of infection by single particles, and the relative fragility of viral particles in the environment. Several mechanisms of direct cell-to-cell spread have been reported for animal viruses which would avoid the issues associated with cell-free particles. A number of viruses can utilize several different mechanisms of direct cell-to-cell spread, but our understanding of the differential usage by these pathogens is modest. Although the mechanisms of cell-to-cell spread differ among viruses, there is a common exploitation of key pathways and components of the cellular cytoskeleton. Remarkably, some of the viral mechanisms of cell-to-cell spread are surprisingly similar to those used by bacteria. Here we summarize the current knowledge of the conventional and non-conventional mechanisms of viral spread, the common methods used to detect viral spread, and the impact that these mechanisms can have on viral pathogenesis.
Collapse
Affiliation(s)
- Nicolas Cifuentes-Munoz
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, San Miguel, Santiago, Chile
| | - Farah El Najjar
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States.
| |
Collapse
|
38
|
Geng Y, Xu J. Stability and bifurcation analysis for a delayed viral infection model with full logistic proliferation. INT J BIOMATH 2020. [DOI: 10.1142/s1793524520500333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, we study a delayed viral infection model with cellular infection and full logistic proliferations for both healthy and infected cells. The global asymptotic stabilities of the equilibria are studied by constructing Lyapunov functionals. Moreover, we investigated the existence of Hopf bifurcation at the infected equilibrium by regarding the possible combination of the two delays as bifurcation parameters. The results show that time delays may destabilize the infected equilibrium and lead to Hopf bifurcation. Finally, numerical simulations are carried out to illustrate the main results and explore the dynamics including Hopf bifurcation and stability switches.
Collapse
Affiliation(s)
- Yan Geng
- School of Science, Xi’an Polytechnic University, Xi’an 710048, Shaanxi, P. R. China
| | - Jinhu Xu
- School of Sciences, Xi’an University of Technology, Xi’an 710049, Shaanxi, P. R. China
| |
Collapse
|
39
|
Lotfi S, Nasser H, Noyori O, Hiyoshi M, Takeuchi H, Koyanagi Y, Suzu S. M-Sec facilitates intercellular transmission of HIV-1 through multiple mechanisms. Retrovirology 2020; 17:20. [PMID: 32650782 PMCID: PMC7350586 DOI: 10.1186/s12977-020-00528-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/04/2020] [Indexed: 01/08/2023] Open
Abstract
Background HIV-1 promotes the formation of tunneling nanotubes (TNTs) that connect distant cells, aiding cell-to-cell viral transmission between macrophages. Our recent study suggests that the cellular protein M-Sec plays a role in these processes. However, the timing, mechanism, and to what extent M-Sec contributes to HIV-1 transmission is not fully understood, and the lack of a cell line model that mimics macrophages has hindered in-depth analysis. Results We found that HIV-1 increased the number, length and thickness of TNTs in a manner dependent on its pathogenic protein Nef and M-Sec in U87 cells, as observed in macrophages. In addition, we found that M-Sec was required not only for TNT formation but also motility of U87 cells, both of which are beneficial for viral transmission. In fact, M-Sec knockdown in U87 cells led to a significantly delayed viral production in both cellular and extracellular fractions. This inhibition was observed for wild-type virus, but not for a mutant virus lacking Nef, which is known to promote not only TNT formation but also migration of infected macrophages. Conclusions By taking advantage of useful features of U87 cells, we provided evidence that M-Sec mediates a rapid and efficient cell–cell transmission of HIV-1 at an early phase of infection by enhancing both TNT formation and cell motility.
Collapse
Affiliation(s)
- Sameh Lotfi
- Division of Infection & Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811, Japan.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Hesham Nasser
- Division of Infection & Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811, Japan.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan.,Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, 41511, Egypt
| | - Osamu Noyori
- Division of Infection & Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811, Japan.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Masateru Hiyoshi
- Department of Safety Research On Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, 208-0011, Japan
| | - Hiroaki Takeuchi
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto University, KyotoKyoto, 606-8507, Japan
| | - Shinya Suzu
- Division of Infection & Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811, Japan.
| |
Collapse
|
40
|
Yang J, Bi S. Stability and Hopf bifurcation of a delayed virus infection model with latently infected cells and Beddington–DeAngelis incidence. INT J BIOMATH 2020. [DOI: 10.1142/s179352452050045x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, the dynamical behaviors for a five-dimensional virus infection model with Latently Infected Cells and Beddington–DeAngelis incidence are investigated. In the model, four delays which denote the latently infected delay, the intracellular delay, virus production period and CTL response delay are considered. We define the basic reproductive number and the CTL immune reproductive number. By using Lyapunov functionals, LaSalle’s invariance principle and linearization method, the threshold conditions on the stability of each equilibrium are established. It is proved that when the basic reproductive number is less than or equal to unity, the infection-free equilibrium is globally asymptotically stable; when the CTL immune reproductive number is less than or equal to unity and the basic reproductive number is greater than unity, the immune-free infection equilibrium is globally asymptotically stable; when the CTL immune reproductive number is greater than unity and immune response delay is equal to zero, the immune infection equilibrium is globally asymptotically stable. The results show that immune response delay may destabilize the steady state of infection and lead to Hopf bifurcation. The existence of the Hopf bifurcation is discussed by using immune response delay as a bifurcation parameter. Numerical simulations are carried out to justify the analytical results.
Collapse
Affiliation(s)
- Junxian Yang
- School of Science, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Shoudong Bi
- School of Science, Anhui Agricultural University, Hefei 230036, P. R. China
| |
Collapse
|
41
|
Grossman Z, Singh NJ, Simonetti FR, Lederman MM, Douek DC, Deeks SG. 'Rinse and Replace': Boosting T Cell Turnover To Reduce HIV-1 Reservoirs. Trends Immunol 2020; 41:466-480. [PMID: 32414695 DOI: 10.1016/j.it.2020.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/22/2022]
Abstract
Latent HIV-1 persists indefinitely during antiretroviral therapy (ART) as an integrated silent genome in long-lived memory CD4+ T cells. In untreated infections, immune activation increases the turnover of intrinsically long-lived provirus-containing CD4+ T cells. Those are 'washed out' as a result of their activation, which when coupled to viral protein expression can facilitate local inflammation and recruitment of uninfected cells to activation sites, causing latently infected cells to compete for survival. De novo infection can counter this washout. During ART, inflammation and CD4+ T cell activation wane, resulting in reduced cell turnover and a persistent reservoir. We propose accelerating reservoir washout during ART by triggering sequential waves of polyclonal CD4+ T cell activation while simultaneously enhancing virus protein expression. Reservoir reduction as an adjunct to other therapies might achieve lifelong viral control.
Collapse
Affiliation(s)
- Zvi Grossman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Nevil J Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Francesco R Simonetti
- 'L. Sacco' Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
42
|
Monel B, McKeon A, Lamothe-Molina P, Jani P, Boucau J, Pacheco Y, Jones RB, Le Gall S, Walker BD. HIV Controllers Exhibit Effective CD8 + T Cell Recognition of HIV-1-Infected Non-activated CD4 + T Cells. Cell Rep 2020; 27:142-153.e4. [PMID: 30943397 PMCID: PMC6449512 DOI: 10.1016/j.celrep.2019.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/25/2018] [Accepted: 03/05/2019] [Indexed: 02/07/2023] Open
Abstract
Even with sustained antiretroviral therapy, resting CD4+ T cells remain a persistent reservoir of HIV infection, representing a critical barrier to curing HIV. Here, we demonstrate that CD8+ T cells recognize infected, non-activated CD4+ T cells in the absence of de novo protein production, as measured by immune synapse formation, degranulation, cytokine production, and killing of infected cells. Immune recognition is induced by HLA-I presentation of peptides derived from incoming viral particles, and recognition occurred either following cell-free virus infection or following cell-to-cell spread. CD8+ T cells from HIV controllers mediate more effective immune recognition than CD8+ T cells from progressors. These results indicate that non-activated HIV-infected CD4+ T cells can be targeted by CD8+ T cells directly after HIV entry, before reverse transcription, and thus before the establishment of latency, and suggest a mechanism whereby the immune response may reduce the size of the HIV reservoir.
Collapse
Affiliation(s)
- Blandine Monel
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Annmarie McKeon
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Pedro Lamothe-Molina
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Priya Jani
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Julie Boucau
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Yovana Pacheco
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA; Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - R Brad Jones
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA; Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sylvie Le Gall
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Bruce D Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
43
|
Environmental Restrictions: A New Concept Governing HIV-1 Spread Emerging from Integrated Experimental-Computational Analysis of Tissue-Like 3D Cultures. Cells 2020; 9:cells9051112. [PMID: 32365826 PMCID: PMC7291240 DOI: 10.3390/cells9051112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022] Open
Abstract
HIV-1 can use cell-free and cell-associated transmission modes to infect new target cells, but how the virus spreads in the infected host remains to be determined. We recently established 3D collagen cultures to study HIV-1 spread in tissue-like environments and applied iterative cycles of experimentation and computation to develop a first in silico model to describe the dynamics of HIV-1 spread in complex tissue. These analyses (i) revealed that 3D collagen environments restrict cell-free HIV-1 infection but promote cell-associated virus transmission and (ii) defined that cell densities in tissue dictate the efficacy of these transmission modes for virus spread. In this review, we discuss, in the context of the current literature, the implications of this study for our understanding of HIV-1 spread in vivo, which aspects of in vivo physiology this integrated experimental-computational analysis takes into account, and how it can be further improved experimentally and in silico.
Collapse
|
44
|
Dupont M, Sattentau QJ. Macrophage Cell-Cell Interactions Promoting HIV-1 Infection. Viruses 2020; 12:E492. [PMID: 32354203 PMCID: PMC7290394 DOI: 10.3390/v12050492] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Many pathogens infect macrophages as part of their intracellular life cycle. This is particularly true for viruses, of which HIV-1 is one of the best studied. HIV-1 infection of macrophages has important consequences for viral persistence and pathogenesis, but the mechanisms of macrophage infection remain to be fully elucidated. Despite expressing viral entry receptors, macrophages are inefficiently infected by cell-free HIV-1 virions, whereas direct cell-cell spread is more efficient. Different modes of cell-cell spread have been described, including the uptake by macrophages of infected T cells and the fusion of infected T cells with macrophages, both leading to macrophage infection. Cell-cell spread can also transmit HIV-1 between macrophages and from macrophages to T cells. Here, we describe the current state of the field concerning the cell-cell spread of HIV-1 to and from macrophages, discuss mechanisms, and highlight potential in vivo relevance.
Collapse
Affiliation(s)
- Maeva Dupont
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford OX13RE, UK
| | | |
Collapse
|
45
|
Loss of Nef-mediated CD3 down-regulation in the HIV-1 lineage increases viral infectivity and spread. Proc Natl Acad Sci U S A 2020; 117:7382-7391. [PMID: 32179688 PMCID: PMC7132320 DOI: 10.1073/pnas.1921135117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lentiviruses encode accessory proteins to manipulate their host cells in order to efficiently replicate and evade antiviral defenses. Interestingly, most lentiviral Nefs down-regulate CD3 from the surface of infected T cells to perturb immune responses. However, for reasons that are incompletely understood, HIV-1 and its simian immunodeficiency virus ancestors lack this function. Here, we report that engineering HIV-1 for Nef-mediated down-regulation of CD3 reduces Env-dependent HIV-1 infectivity, resulting in less efficient cell-to-cell spread and replication. Our data suggest that HIV-1 may have evolved to lose the CD3 down-modulation function of Nef in order to allow T cell activation and to boost viral replication, possibly at the cost of less effective immune evasion and increased pathogenicity. Nef is an accessory protein of primate lentiviruses that is essential for efficient replication and pathogenesis of HIV-1. A conserved feature of Nef proteins from different lentiviral lineages is the ability to modulate host protein trafficking and down-regulate a number of cell surface receptors to enhance replication and promote immune evasion. Notably, the inability of Nef to down-regulate CD3 from infected T cells distinguishes HIV-1 Nef and its direct simian precursors from other primate lentiviruses. Why HIV-1 does not employ this potential immune evasion strategy is not fully understood. Using chimeric HIV-1 constructs expressing lentiviral Nef proteins that differ in their ability to down-modulate CD3, we show that retaining CD3 on the surface of infected primary T cells results in increased viral replication and cell-to-cell spread. We identified increased expression of envelope (Env) trimers at the cell surface and increased Env incorporation into virions as the determinants for the Nef- and CD3-dependent enhancement of viral infectivity. Importantly, this was independent of Nef-mediated antagonism of the host restriction factor SERINC5. CD3 retention on the surface of infected primary T cells also correlated with increased T cell signaling, activation, and cell death during cell-to-cell spread. Taken together, our results show that loss of an otherwise conserved function of Nef has a positive effect on HIV-1 replication, allowing for more efficient replication while potentially contributing to HIV-1 pathogenesis by triggering T cell activation and cell death during viral spread.
Collapse
|
46
|
HIV-1-Infected CD4+ T Cells Facilitate Latent Infection of Resting CD4+ T Cells through Cell-Cell Contact. Cell Rep 2020; 24:2088-2100. [PMID: 30134170 DOI: 10.1016/j.celrep.2018.07.079] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/01/2018] [Accepted: 07/22/2018] [Indexed: 02/07/2023] Open
Abstract
HIV-1 is transmitted between T cells through the release of cell-free particles and through cell-cell contact. Cell-to-cell transmission is more efficient than cell-free virus transmission, mediates resistance to immune responses, and facilitates the spread of virus among T cells. However, whether HIV cell-to-cell transmission influences the establishment of HIV-1 latency has not been carefully explored. We developed an HIV-1 latency model based on the transmission of HIV-1 directly to resting CD4+ T cells by cell-cell contact. This model recapitulates the spread of HIV-1 in T-cell-dense anatomical compartments. We demonstrate that productively infected activated CD4+ T cells transmit HIV-1 to resting CD4+ T cells in a cell-contact-dependent manner. However, proviruses generated in this fashion are more difficult to induce compared to proviruses generated by cell-free infection, suggesting that cell-to-cell transmission influences the establishment and maintenance of latent infection in resting CD4+ T cells.
Collapse
|
47
|
Liu Y, Cao W, Sun M, Li T. Broadly neutralizing antibodies for HIV-1: efficacies, challenges and opportunities. Emerg Microbes Infect 2020; 9:194-206. [PMID: 31985356 PMCID: PMC7040474 DOI: 10.1080/22221751.2020.1713707] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Combination antiretroviral therapy (cART) is effective but not curative, and no successful vaccine is currently available for human immunodeficiency virus-1 (HIV-1). Broadly neutralizing antibodies (bNAbs) provide a new approach to HIV-1 prevention and treatment, and these promising candidates advancing into clinical trials have shown certain efficacies in infected individuals. In addition, bNAbs have the potential to kill HIV-1-infected cells and to affect the course of HIV-1 infection by directly engaging host immunity. Nonetheless, challenges accompany the use of bNAbs, including transient suppression of viraemia, frequent emergence of resistant viruses in rebound viraemia, suboptimal efficacy in virus cell-to-cell transmission, and unclear effects on the cell-associated HIV-1 reservoir. In this review, we discuss opportunities and potential strategies to address current challenges to promote the future use of immunotherapy regimens.
Collapse
Affiliation(s)
- Yubin Liu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Ming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, People’s Republic of China,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People’s Republic of China, Ming Sun Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, People’s Republic of China Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People’s Republic of China
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China,Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China,Tsinghua University Medical College, Beijing, People’s Republic of China,Taisheng Li Department of Infectious diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| |
Collapse
|
48
|
Olivetta E, Chiozzini C, Arenaccio C, Manfredi F, Ferrantelli F, Federico M. Extracellular vesicle-mediated intercellular communication in HIV-1 infection and its role in the reservoir maintenance. Cytokine Growth Factor Rev 2019; 51:40-48. [PMID: 31926807 DOI: 10.1016/j.cytogfr.2019.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/27/2022]
Abstract
HIV-1 infection is efficiently controlled by combination anti-retroviral therapy (cART). However, despite preventing disease progression, cART does not eradicate virus infection which persists in a latent form for an individual's lifetime. The latent reservoir comprises memory CD4+ T lymphocytes, macrophages, and dendritic cells; however, for the most part, the reservoir is generated by virus entry into activated CD4+ T lymphocytes committed to return to a resting state, even though resting CD4+ T lymphocytes can be latently infected as well. The HIV-1 reservoir is not recognized by the immune system, is quite stable, and has the potential to re-seed systemic viremia upon cART interruption. Viral rebound can occur even after a long period of cART interruption. This event is most likely a consequence of the extended half-life of the HIV-1 reservoir, the maintenance of which is not clearly understood. Several recent studies have identified extracellular vesicles (EVs) as a driving force contributing to HIV-1 reservoir preservation. In this review, we discuss recent findings in the field of EV/HIV-1 interplay, and then propose a mechanism through which EVs may contribute to HIV-1 persistence despite cART. Understanding the basis of the HIV-1 reservoir maintenance continues to be a matter of great relevance in view of the limitations of current strategies aimed at HIV-1 eradication.
Collapse
Affiliation(s)
- Eleonora Olivetta
- National Center for Global Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome, Italy.
| | - Chiara Chiozzini
- National Center for Global Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome, Italy.
| | - Claudia Arenaccio
- National Center for Global Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome, Italy.
| | - Francesco Manfredi
- National Center for Global Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome, Italy.
| | - Flavia Ferrantelli
- National Center for Global Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome, Italy.
| | - Maurizio Federico
- National Center for Global Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
49
|
Abstract
We demonstrate that HIV-1 uses a common two-step cell-to-cell fusion mechanism for massive virus transfer from infected T lymphocytes and dissemination to myeloid target cells, including dendritic cells and macrophages as well as osteoclasts. This cell-to-cell infection process bypasses the restriction imposed by the SAMHD1 host cell restriction factor for HIV-1 replication, leading to the formation of highly virus-productive multinucleated giant cells as observed in vivo in lymphoid and nonlymphoid tissues of HIV-1-infected patients. Since myeloid cells are emerging as important target cells of HIV-1, these results contribute to a better understanding of the role of these myeloid cells in pathogenesis, including cell-associated virus sexual transmission, cell-to-cell virus spreading, and establishment of long-lived viral tissue reservoirs. Dendritic cells (DCs) and macrophages as well as osteoclasts (OCs) are emerging as target cells of HIV-1 involved in virus transmission, dissemination, and establishment of persistent tissue virus reservoirs. While these myeloid cells are poorly infected by cell-free viruses because of the high expression levels of cellular restriction factors such as SAMHD1, we show here that HIV-1 uses a specific and common cell-to-cell fusion mechanism for virus transfer and dissemination from infected T lymphocytes to the target cells of the myeloid lineage, including immature DCs (iDCs), OCs, and macrophages, but not monocytes and mature DCs. The establishment of contacts with infected T cells leads to heterotypic cell fusion for the fast and massive transfer of viral material into OC and iDC targets, which subsequently triggers homotypic fusion with noninfected neighboring OCs and iDCs for virus dissemination. These two cell-to-cell fusion processes are not restricted by SAMHD1 and allow very efficient spreading of virus in myeloid cells, resulting in the formation of highly virus-productive multinucleated giant cells. These results reveal the cellular mechanism for SAMHD1-independent cell-to-cell spreading of HIV-1 in myeloid cell targets through the formation of the infected multinucleated giant cells observed in vivo in lymphoid and nonlymphoid tissues of HIV-1-infected patients.
Collapse
|
50
|
Grossman Z. Immunological Paradigms, Mechanisms, and Models: Conceptual Understanding Is a Prerequisite to Effective Modeling. Front Immunol 2019; 10:2522. [PMID: 31749803 PMCID: PMC6848063 DOI: 10.3389/fimmu.2019.02522] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
Most mathematical models that describe the individual or collective actions of cells aim at creating faithful representations of limited sets of data in a self-consistent manner. Consistency with relevant physiological rules pertaining to the greater picture is rarely imposed. By themselves, such models have limited predictive or even explanatory value, contrary to standard claims. Here I try to show that a more critical examination of currently held paradigms is necessary and could potentially lead to models that pass the test of time. In considering the evolution of paradigms over the past decades I focus on the “smart surveillance” theory of how T cells can respond differentially, individually and collectively, to both self- and foreign antigens depending on various “contextual” parameters. The overall perspective is that physiological messages to cells are encoded not only in the biochemical connections of signaling molecules to the cellular machinery but also in the magnitude, kinetics, and in the time- and space-contingencies, of sets of stimuli. By rationalizing the feasibility of subthreshold interactions, the “dynamic tuning hypothesis,” a central component of the theory, set the ground for further theoretical and experimental explorations of dynamically regulated immune tolerance, homeostasis and diversity, and of the notion that lymphocytes participate in nonclassical physiological functions. Some of these efforts are reviewed. Another focus of this review is the concomitant regulation of immune activation and homeostasis through the operation of a feedback mechanism controlling the balance between renewal and differentiation of activated cells. Different perspectives on the nature and regulation of chronic immune activation in HIV infection have led to conflicting models of HIV pathogenesis—a major area of research for theoretical immunologists over almost three decades—and can have profound impact on ongoing HIV cure strategies. Altogether, this critical review is intended to constructively influence the outlook of prospective model builders and of interested immunologists on the state of the art and to encourage conceptual work.
Collapse
Affiliation(s)
- Zvi Grossman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|