1
|
Ali SF, Teh SH, Yang HH, Tsai YC, Chao HJ, Peng SS, Chen SC, Lin LC, Lin NT. Therapeutic Potential of a Novel Lytic Phage, vB_EclM_ECLFM1, against Carbapenem-Resistant Enterobacter cloacae. Int J Mol Sci 2024; 25:854. [PMID: 38255926 PMCID: PMC10815064 DOI: 10.3390/ijms25020854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The global rise of multidrug-resistant Enterobacter cloacae strains, especially those that are resistant to carbapenems and produce metallo-β-lactamases, poses a critical challenge in clinical settings owing to limited treatment options. While bacteriophages show promise in treating these infections, their use is hindered by scarce resources and insufficient genomic data. In this study, we isolated ECLFM1, a novel E. cloacae phage, from sewage water using a carbapenem-resistant clinical strain as the host. ECLFM1 exhibited rapid adsorption and a 15-min latent period, with a burst size of approximately 75 PFU/infected cell. Its genome, spanning 172,036 bp, was characterized and identified as a member of Karamvirus. In therapeutic applications, owing to a high multiplicity of infection, ECLFM1 showed increased survival in zebrafish infected with E. cloacae. This study highlights ECLFM1's potential as a candidate for controlling clinical E. cloacae infections, which would help address challenges in treating multidrug-resistant strains and contribute to the development of alternative treatments.
Collapse
Affiliation(s)
- Saieeda Fabia Ali
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan;
| | - Soon-Hian Teh
- Division of Infectious Diseases, Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien 97002, Taiwan;
| | - Hsueh-Hui Yang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien 97002, Taiwan;
| | - Yun-Chan Tsai
- Department of Life Sciences, College of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan;
| | - Huei-Jen Chao
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien 97002, Taiwan; (H.-J.C.); (S.-S.P.); (S.-C.C.)
| | - Si-Shiuan Peng
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien 97002, Taiwan; (H.-J.C.); (S.-S.P.); (S.-C.C.)
| | - Shu-Chen Chen
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien 97002, Taiwan; (H.-J.C.); (S.-S.P.); (S.-C.C.)
| | - Ling-Chun Lin
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan;
| | - Nien-Tsung Lin
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan;
| |
Collapse
|
2
|
Nikulin N, Nikulina A, Zimin A, Aminov R. Phages for treatment of Escherichia coli infections. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:171-206. [PMID: 37739555 DOI: 10.1016/bs.pmbts.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Diseases due to infections by pathogenic Escherichia coli strains are on the rise and with the growing antimicrobial resistance among bacterial pathogens, including this group. Thus, alternative therapeutic options are actively investigated. Among these alternatives is phage therapy. In the case of E. coli, the combination of the well understood biology of this species and its bacteriophages represents a good guiding example for the establishment of phage therapy principles against this and other pathogenic bacteria. In this chapter, the procedures toward the development of phage therapy against pathogenic E. coli with the use of T-even group of phages are discussed. These steps involve the isolation, purification, characterisation and large-scale production of these phages, with formulation of phage cocktails for in vitro and in vivo studies. The main emphasis is made on phage therapy of enteropathogenic E. coli O157:H, which is one of the prominent human pathogens but persists as a commensal bacterium in many food animals. The implementation of phage therapy against E. coli O157:H within the One Health framework in carrier animals and for treatment of meat, vegetables, fruits and other agricultural produce thus would allow controlling and interrupting the transmission routes of this pathogen to the human food chain and preventing human disease. Examples of successful control and elimination of E. coli O157:H are given, while the problems encountered in phage treatment of this pathogen are also discussed.
Collapse
Affiliation(s)
- Nikita Nikulin
- Laboratory of Molecular Microbiology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia
| | - Alexandra Nikulina
- Laboratory of Molecular Microbiology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia
| | - Andrei Zimin
- Laboratory of Molecular Microbiology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia
| | - Rustam Aminov
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom.
| |
Collapse
|
3
|
Niu YD, Liu H, Du H, Meng R, Sayed Mahmoud E, Wang G, McAllister TA, Stanford K. Efficacy of Individual Bacteriophages Does Not Predict Efficacy of Bacteriophage Cocktails for Control of Escherichia coli O157. Front Microbiol 2021; 12:616712. [PMID: 33717006 PMCID: PMC7943454 DOI: 10.3389/fmicb.2021.616712] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/18/2021] [Indexed: 01/21/2023] Open
Abstract
Effectiveness of bacteriophages AKFV33 (Tequintavirus, T5) and AHP24 (Rogunavirus, T1), wV7 (Tequatrovirus, T4), and AHP24S (Vequintavirus, rV5), as well as 11 cocktails of combinations of the four phages, were evaluated in vitro for biocontrol of six common phage types of Escherichia coli O157 (human and bovine origins) at different multiplicities of infection (MOIs; 0.01–1,000), temperatures (37 or 22°C), and exposure times (10–22 h). Phage efficacy against O157 was highest at MOI 1,000 (P < 0.001) and after 14-18 h of exposure at 22°C (P < 0.001). The activity of individual phages against O157 did not predict the activity of a cocktail of these phages even at the same temperature and MOI. Combinations of phages were neutral (no better or worse than the most effective constituent phages acting alone), displayed facilitation (greater efficacy than the most effective constituent phages acting alone), or antagonistic (lower efficacy than the most effective constituent phages acting alone). Across MOIs, temperatures, exposure time, and O157 strains, a cocktail of T1, T4, and rV5 was most effective (P < 0.05) against O157, although T1 and rV5 were less effective (P < 0.001) than other individual phages. T5 was the most effective individual phages (P < 0.05), but was antagonistic to other phages, particularly rV5 and T4 + rV5. Interactions among phages were influenced by phage genera and phage combination, O157 strains, MOIs, incubation temperatures, and times. Based on this study, future development of phage cocktails should, as a minimum, include confirmation of a lack of antagonism among constituent phages and preferably confirmation of facilitation or synergistic effects.
Collapse
Affiliation(s)
- Yan D Niu
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Hui Liu
- Hohhot Bureau of Ecology and Environment, Hohhot, China.,Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Hechao Du
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.,College of Animal Science and Technology, Jinling Institute of Technology, Nanjing, China
| | - Ruiqiang Meng
- Inner Mongolia C. P. Livestock Husbandry Co., Ltd., Hohhot, China
| | - El Sayed Mahmoud
- School of Applied Computing, Faculty of Applied Science and Technology, Sheridan College, Oakville, ON, Canada
| | - Guihua Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Kim Stanford
- Department of Biological Science, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
4
|
Hoshiga F, Yoshizaki K, Takao N, Miyanaga K, Tanji Y. Modification of T2 phage infectivity towardEscherichia coliO157:H7 via using CRISPR/Cas9. FEMS Microbiol Lett 2019; 366:5364545. [DOI: 10.1093/femsle/fnz041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 02/21/2019] [Indexed: 01/01/2023] Open
Affiliation(s)
- Fumiya Hoshiga
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-15 Nagatsuta-cho, Midori-ku, Yokohama 226–8501, Japan
| | - Kyohei Yoshizaki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-15 Nagatsuta-cho, Midori-ku, Yokohama 226–8501, Japan
| | - Nobumasa Takao
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-15 Nagatsuta-cho, Midori-ku, Yokohama 226–8501, Japan
| | - Kazuhiko Miyanaga
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-15 Nagatsuta-cho, Midori-ku, Yokohama 226–8501, Japan
| | - Yasunori Tanji
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-15 Nagatsuta-cho, Midori-ku, Yokohama 226–8501, Japan
| |
Collapse
|
5
|
Hamdi S, Rousseau GM, Labrie SJ, Tremblay DM, Kourda RS, Ben Slama K, Moineau S. Characterization of two polyvalent phages infecting Enterobacteriaceae. Sci Rep 2017; 7:40349. [PMID: 28091598 PMCID: PMC5238451 DOI: 10.1038/srep40349] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/05/2016] [Indexed: 01/30/2023] Open
Abstract
Bacteriophages display remarkable genetic diversity and host specificity. In this study, we explore phages infecting bacterial strains of the Enterobacteriaceae family because of their ability to infect related but distinct hosts. We isolated and characterized two novel virulent phages, SH6 and SH7, using a strain of Shigella flexneri as host bacterium. Morphological and genomic analyses revealed that phage SH6 belongs to the T1virus genus of the Siphoviridae family. Conversely, phage SH7 was classified in the T4virus genus of the Myoviridae family. Phage SH6 had a short latent period of 16 min and a burst size of 103 ± 16 PFU/infected cell while the phage SH7 latent period was 23 min with a much lower burst size of 26 ± 5 PFU/infected cell. Moreover, phage SH6 was sensitive to acidic conditions (pH < 5) while phage SH7 was stable from pH 3 to 11 for 1 hour. Of the 35 bacterial strains tested, SH6 infected its S. flexneri host strain and 8 strains of E. coli. Phage SH7 lysed additionally strains of E. coli O157:H7, Salmonella Paratyphi, and Shigella dysenteriae. The broader host ranges of these two phages as well as their microbiological properties suggest that they may be useful for controlling bacterial populations.
Collapse
Affiliation(s)
- Sana Hamdi
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
- Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Geneviève M. Rousseau
- Département de Biochimie, de Microbiologie, et de Bio-informatique and PROTEO, Faculté des Sciences et de Génie, Félix d’Hérelle Reference Center for Bacterial Viruses, and GREB, Faculté de Médecine Dentaire, Université Laval, Québec City, Québec, Canada
| | - Simon J. Labrie
- Département de Biochimie, de Microbiologie, et de Bio-informatique and PROTEO, Faculté des Sciences et de Génie, Félix d’Hérelle Reference Center for Bacterial Viruses, and GREB, Faculté de Médecine Dentaire, Université Laval, Québec City, Québec, Canada
| | - Denise M. Tremblay
- Département de Biochimie, de Microbiologie, et de Bio-informatique and PROTEO, Faculté des Sciences et de Génie, Félix d’Hérelle Reference Center for Bacterial Viruses, and GREB, Faculté de Médecine Dentaire, Université Laval, Québec City, Québec, Canada
| | - Rim Saïed Kourda
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
- Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Karim Ben Slama
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
- Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Sylvain Moineau
- Département de Biochimie, de Microbiologie, et de Bio-informatique and PROTEO, Faculté des Sciences et de Génie, Félix d’Hérelle Reference Center for Bacterial Viruses, and GREB, Faculté de Médecine Dentaire, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
6
|
Liu H, Meng R, Wang J, Niu YD, Li J, Stanford K, McAllister TA. Inactivation of Escherichia coli O157 Bacteriophages by Using a Mixture of Ferrous Sulfate and Tea Extract. J Food Prot 2015; 78:2220-6. [PMID: 26613917 DOI: 10.4315/0362-028x.jfp-15-239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bacteriophages (phages) have been used for biocontrol of Escherichia coli O157 and other pathogenic bacteria in many different matrices and foods, but few studies have included inactivation of residual phages in culture medium before plating and enumeration of surviving host bacteria for the assessment of phage efficacy. This oversight may lead to overestimation of phage efficacy. The ability of virucidal solution containing a mixture of ferrous sulfate [iron(II) sulfate, FeSO4] and tea extract [Fe(II)T] to inactivate residual T5-like, T1-like, T4-like, and rV5-like phages was assessed using E. coli O157 as the host. At concentrations of ≥10 mM FeSO4, all phages were not detected after 20 min in a broth culture model. Compared with the virucidal solution-free samples (1 to 96% recovery), Fe(II)T (10 mM FeSO4 plus 15% tea extract) recovered a greater (P < 0.01) number of E. coli O157 from phage-treated broth culture (97 to 100% recovery) and beef samples (52 to 100% recovery). Moreover, with the addition of Fe(II)T, the number of bacteria surviving after exposure to T5-like or T4-like phages was greater (P < 0.01) than that after exposure to T1-like or rV5-like phages. Consequently, use of a virucide for phage inactivation is recommended to improve the accuracy of evaluations of phage efficacy for biocontrol of E. coli O157.
Collapse
Affiliation(s)
- Hui Liu
- China Institute of Food and Drug Control, Hohhot, Inner Mongolia, People's Republic of China, 010020; Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada T1J 4B1; Inner Mongolia Agricultural University, College of Animal Science, Hohhot, Inner Mongolia, People's Republic of China 010018
| | - Ruiqiang Meng
- Inner Mongolia Agricultural University, College of Animal Science, Hohhot, Inner Mongolia, People's Republic of China 010018
| | - Jiaying Wang
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada T1J 4B1; College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China 510642
| | - Yan D Niu
- Alberta Agriculture and Forestry, Agriculture Centre, Lethbridge, Alberta, Canada T1J 4V6.
| | - Jinquan Li
- Inner Mongolia Agricultural University, College of Animal Science, Hohhot, Inner Mongolia, People's Republic of China 010018
| | - Kim Stanford
- Alberta Agriculture and Forestry, Agriculture Centre, Lethbridge, Alberta, Canada T1J 4V6
| | - Tim A McAllister
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada T1J 4B1
| |
Collapse
|
7
|
Cowley LA, Beckett SJ, Chase-Topping M, Perry N, Dallman TJ, Gally DL, Jenkins C. Analysis of whole genome sequencing for the Escherichia coli O157:H7 typing phages. BMC Genomics 2015; 16:271. [PMID: 25887960 PMCID: PMC4429339 DOI: 10.1186/s12864-015-1470-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 03/17/2015] [Indexed: 11/17/2022] Open
Abstract
Background Shiga toxin producing Escherichia coli O157 can cause severe bloody diarrhea and haemolytic uraemic syndrome. Phage typing of E. coli O157 facilitates public health surveillance and outbreak investigations, certain phage types are more likely to occupy specific niches and are associated with specific age groups and disease severity. The aim of this study was to analyse the genome sequences of 16 (fourteen T4 and two T7) E. coli O157 typing phages and to determine the genes responsible for the subtle differences in phage type profiles. Results The typing phages were sequenced using paired-end Illumina sequencing at The Genome Analysis Centre and the Animal Health and Veterinary Laboratories Agency and bioinformatics programs including Velvet, Brig and Easyfig were used to analyse them. A two-way Euclidian cluster analysis highlighted the associations between groups of phage types and typing phages. The analysis showed that the T7 typing phages (9 and 10) differed by only three genes and that the T4 typing phages formed three distinct groups of similar genomic sequences: Group 1 (1, 8, 11, 12 and 15, 16), Group 2 (3, 6, 7 and 13) and Group 3 (2, 4, 5 and 14). The E. coli O157 phage typing scheme exhibited a significantly modular network linked to the genetic similarity of each group showing that these groups are specialised to infect a subset of phage types. Conclusion Sequencing the typing phage has enabled us to identify the variable genes within each group and to determine how this corresponds to changes in phage type. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1470-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lauren A Cowley
- Gastrointestinal Bacteria Reference Unit, Public Health England, 61 Colindale Ave, London, NW9 5HT, UK.
| | - Stephen J Beckett
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Laver Building, North Park Road, Exeter, EX4 4QE, UK.
| | - Margo Chase-Topping
- Division of Immunity and Infection, The Roslin Institute, R(D)VS, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| | - Neil Perry
- Gastrointestinal Bacteria Reference Unit, Public Health England, 61 Colindale Ave, London, NW9 5HT, UK.
| | - Tim J Dallman
- Gastrointestinal Bacteria Reference Unit, Public Health England, 61 Colindale Ave, London, NW9 5HT, UK.
| | - David L Gally
- Division of Immunity and Infection, The Roslin Institute, R(D)VS, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| | - Claire Jenkins
- Gastrointestinal Bacteria Reference Unit, Public Health England, 61 Colindale Ave, London, NW9 5HT, UK.
| |
Collapse
|
8
|
Liu H, Niu YD, Li J, Stanford K, McAllister TA. Rapid and accurate detection of bacteriophage activity against Escherichia coli O157:H7 by propidium monoazide real-time PCR. BIOMED RESEARCH INTERNATIONAL 2014; 2014:319351. [PMID: 25530959 PMCID: PMC4233675 DOI: 10.1155/2014/319351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/10/2014] [Indexed: 01/12/2023]
Abstract
Conventional methods to determine the efficacy of bacteriophage (phage) for biocontrol of E. coli require several days, due to the need to culture bacteria. Furthermore, cell surface-attached phage particles may lyse bacterial cells during experiments, leading to an overestimation of phage activity. DNA-based real-time quantitative polymerase chain reaction (qPCR) is a fast, sensitive, and highly specific means of enumerating pathogens. However, qPCR may underestimate phage activity due to its inability to distinguish viable from nonviable cells. In this study, we evaluated the suitability of propidium monoazide (PMA), a microbial membrane-impermeable dye that inhibits amplification of extracellular DNA and DNA within dead or membrane-compromised cells as a means of using qPCR to identify only intact E. coli cells that survive phage exposure. Escherichia coli O157:H7 strain R508N and 4 phages (T5-like, T1-like, T4-like, and O1-like) were studied. Results compared PMA-qPCR and direct plating and confirmed that PMA could successfully inhibit amplification of DNA from compromised/damaged cells E. coli O157:H7. Compared to PMA-qPCR, direct plating overestimated (P < 0.01) phage efficacy as cell surface-attached phage particles lysed E. coli O157:H7 during the plating process. Treatment of samples with PMA in combination with qPCR can therefore be considered beneficial when assessing the efficacy of bacteriophage for biocontrol of E. coli O157:H7.
Collapse
Affiliation(s)
- Hui Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada T1J 4B1
| | - Yan D. Niu
- Alberta Agriculture and Rural Development, Agriculture Centre, Lethbridge, AB, Canada T1J 4V6
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Kim Stanford
- Alberta Agriculture and Rural Development, Agriculture Centre, Lethbridge, AB, Canada T1J 4V6
| | - Tim A. McAllister
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada T1J 4B1
| |
Collapse
|
9
|
Differing populations of endemic bacteriophages in cattle shedding high and low numbers of Escherichia coli O157:H7 bacteria in feces. Appl Environ Microbiol 2014; 80:3819-25. [PMID: 24747892 DOI: 10.1128/aem.00708-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objectives of this study were to identify endemic bacteriophages (phages) in the feedlot environment and determine relationships of these phages to Escherichia coli O157:H7 from cattle shedding high and low numbers of naturally occurring E. coli O157:H7. Angus crossbred steers were purchased from a southern Alberta (Canada) feedlot where cattle excreting ≥ 10(4) CFU · g(-1) of E. coli O157:H7 in feces at a single time point were identified as supershedders (SS; n = 6), and cattle excreting <10(4) CFU · g(-1) of feces were identified as low shedders (LS; n = 5). Fecal pats or fecal grabs were collected daily from individual cattle for 5 weeks. E. coli O157:H7 in feces was detected by immunomagnetic separation and enumerated by direct plating, and phages were isolated using short- and overnight-enrichment methods. The total prevalence of E. coli O157:H7 isolated from feces was 14.4% and did not differ between LS and SS (P = 0.972). The total prevalence of phages was higher in the LS group (20.9%) than in the SS group (8.3%; P = 0.01). Based on genome size estimated by pulsed-field gel electrophoresis and morphology determined by transmission electron microscopy, T4- and O1-like phages of Myoviridae and T1-like phage of Siphoviridae were isolated. Compared to T1- and O1-like phages, T4-like phages exhibited a broad host range and strong lytic capability when targeting E. coli O157:H7. Moreover, the T4-like phages were more frequently isolated from feces of LS than SS, suggesting that endemic phages may impact the shedding dynamics of E. coli O157:H7 in cattle.
Collapse
|
10
|
Kropinski AM, Waddell T, Meng J, Franklin K, Ackermann HW, Ahmed R, Mazzocco A, Yates J, Lingohr EJ, Johnson RP. The host-range, genomics and proteomics of Escherichia coli O157:H7 bacteriophage rV5. Virol J 2013; 10:76. [PMID: 23497209 PMCID: PMC3606486 DOI: 10.1186/1743-422x-10-76] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 02/28/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Bacteriophages (phages) have been used extensively as analytical tools to type bacterial cultures and recently for control of zoonotic foodborne pathogens in foods and in animal reservoirs. METHODS We examined the host range, morphology, genome and proteome of the lytic E. coli O157 phage rV5, derived from phage V5, which is a member of an Escherichia coli O157:H7 phage typing set. RESULTS Phage rV5 is a member of the Myoviridae family possessing an icosahedral head of 91 nm between opposite apices. The extended tail measures 121 x 17 nm and has a sheath of 44 x 20 nm and a 7 nm-wide core in the contracted state. It possesses a 137,947 bp genome (43.6 mol%GC) which encodes 233 ORFs and six tRNAs. Until recently this virus appeared to be phylogenetically isolated with almost 70% of its gene products ORFans. rV5 is closely related to coliphages Delta and vB-EcoM-FY3, and more distantly related to Salmonella phages PVP-SE1 and SSE-121, Cronobacter sakazakii phage vB_CsaM_GAP31, and coliphages phAPEC8 and phi92. A complete shotgun proteomic analysis was carried out on rV5, extending what had been gleaned from the genomic analyses. Host range studies revealed that rV5 is active against several other E. coli.
Collapse
Affiliation(s)
- Andrew M Kropinski
- Public Health Agency of Canada, Laboratory for Foodborne Diseases, 110 Stone Road West, Guelph, ON N1G 3W4, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Tom Waddell
- Abbott Point of Care, 185 Corkstown Road, Ottawa, ON, K2H 8V4, Canada
| | - Juncai Meng
- Merck Research Laboratories, 126E Lincoln Avenue, Rahway, NJ, 07065, USA
| | - Kristyn Franklin
- Public Health Agency of Canada, Laboratory for Foodborne Diseases, 110 Stone Road West, Guelph, ON N1G 3W4, Canada
| | - Hans-Wolfgang Ackermann
- Département de Microbiologie-infectiologie et immunologie, Faculté de médecine, Université Laval, Québec, QC, G1K 7P4, Canada
| | - Rafiq Ahmed
- Enteric Diseases Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Amanda Mazzocco
- Public Health Agency of Canada, Laboratory for Foodborne Diseases, 110 Stone Road West, Guelph, ON N1G 3W4, Canada
| | - John Yates
- The Scripps Research Institute, Department of Cell Biology, Proteomic Mass Spectrometry Laboratory, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Erika J Lingohr
- Public Health Agency of Canada, Laboratory for Foodborne Diseases, 110 Stone Road West, Guelph, ON N1G 3W4, Canada
| | - Roger P Johnson
- Public Health Agency of Canada, Laboratory for Foodborne Diseases, 110 Stone Road West, Guelph, ON N1G 3W4, Canada
| |
Collapse
|